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Abstract
Intensification of hydrologic cycle, and consequence rise of intense short-term precipitation, are 
considered as the manifestations of climate change. This may lead to an alteration in Intensity– 
Duration–Frequency (IDF) relationship that may change other hydrological processes as well. 
The IDF relationship also serves as a crucial information for the design of any water infrastruc-
ture. This study investigates the spatiotemporal changes in IDF relationship involving hourly 
precipitation events between past and future climate at various return periods across India that 
spans over a wide range of climatology. Contrast between historical (1979–2014), using two 
reanalysis data, and future periods (immediate future: 2015–2039, near-future: 2040–2059 
and far-future: 2060–2100) is explored along with its spatial (re-) distribution. The future 
simulations of precipitation are derived from three climate models, participating in  6th phase 
of Coupled Model Intercomparison Project (CMIP6), for three shared socio-economic path-
ways (SSPs), i.e., SSP126, SSP245 and SSP585. The results show that almost entire Indian 
mainland will experience an increase (~41–44%) in the hourly precipitation intensity under 
the worst climate change scenario (SSP585) with a return period as low as 2 years (almost a 
regular incidence). Furthermore, even under a moderate climate change scenario (SSP245), 
almost entire Indian mainland (~82–99% of spatial extent) will be affected from a significant 
increase (on an average 19%) in the hourly precipitation intensity. It is true for higher return 
periods as well. Findings of the study are alarming for many water infrastructures. This study 
develops new set of  IDF curves across India considering a changing climate that will  be  
useful to set a revised design criteria for water infrastructure.

Keywords Climate change · Precipitation · Intensity · Duration · Frequency · IDF 
relationship

1 Introduction

Intensity-Duration-Frequency (IDF) curves provide a quantitative relationship between pre-
cipitation intensity over several durations and frequencies (return levels or return periods). 
This information is crucial for the design of water infrastructures, and if there is any altera-
tion, it is profound consequences on other hydrological processes. Conventionally, estimation 
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of IDF curves is based on historical data. However, due to the changing climate, the pre-
cipitation characteristics change from the past (historical period) to future, since the extreme 
precipitation events are intensifying globally as a manifestation of climate change (Roy and  
Balling 2004; Semmler and Jacob 2004; Arnbjerg-Nielsen 2012; Asadieh and Krakauer 2015). 
Extreme precipitation has increased at roughly two-thirds of the stations, and the percentage 
of stations with significantly increasing trends is significantly high for the entire globe (Sun 
et  al. 2021) and it is also observed that short-duration extreme precipitation intensity can 
respond more strongly to global warming compared to daily extremes (Fowler et al. 2021).   
Historically, extreme precipitation events caused heavy damages to infrastructures (Keller  
and Atzl 2014; Liu et al. 2021), and further intensification due to climate change poses a major 
challenge to the designers. In the past decade, several incidences of extreme precipitation led 
to severe floods across India, e.g., Uttarakhand, Srinagar, Chennai, Gujarat (Ray et al. 2019), 
Kerala (Mishra and Shah 2018). The damages to the infrastructure and severity of the flood-
ing events indicate the inadequacy of existing hydraulic structures to withstand the changing 
climate. In practice, hydraulic structures such as culverts, stormwater drainage, bridges, small 
dams, and regional flood protection works such as levees, highway drainage etc. are designed 
using IDF relationships, which relate the intensity of precipitation with its return period and 
duration (Kang et al. 2009; Bhatkoti et al. 2016; Bertini et al. 2020). Traditionally, the IDF 
curves are constructed based on sufficiently long historical precipitation records, which may 
not reflect the temporal change due to climate change. So, in order to investigate the future 
changes in IDF curves, researchers have used outputs from climates models - General Circula-
tion Models (GCM) or Regional Climate Models (RCM) or a combination thereof. These mod-
els incorporate the effect of climate change by considering different warming and socio-eco-
nomic scenarios. On the basis of the future simulations, several studies have shown an increase 
in intensity of precipitation throughout the globe. For instance, future simulations from Cana-
dian Regional Climate Model (CRCM) indicated a decrease in return periods for 2- and 6-h 
duration precipitation by half and by one-third for 12- and 24-h events over the Southern Que-
bec region in Canada (Mailhot et al. 2007). Coordinated Downscaling Experiment (CORDEX) 
simulation over Europe showed a 16–27% increase of IDF ordinates for different return periods  
(Hosseinzadehtalaei et  al. 2020). Over 30% increase in IDF ordinate was estimated 
from HadGEM2-AO model for Han river basin (Lima et  al. 2018), and it was observed 
that precipitation intensity is likely to increase in the future than the current design pre-
cipitation intensity over South Korea (Choi et  al. 2019). Similar increasing trends in 
precipitation intensities were observed over selected locations in Brazil (Costa et  al.  
2020), Turkey (Şen and Kahya 2021), and Malaysia (Shukor et al. 2020).

A few studies had been performed in India as well to capture the changes in IDF. An 
ensemble from 23 GCMs indicated a 12–53% increase in extreme precipitation of shorter 
duration for the city of Bangalore (Bengaluru) (Chandra et  al. 2015), whereas for Roor-
kee city in Uttarakhand, the IDF curves estimated from 5 different GCMs showed an 
increment ranging between 12–96% (Singh et  al. 2016). Covariate-based non-stationary  
analysis of the IDF curves for Hyderabad City exhibited a decrease in return period for 
extreme precipitation events (Agilan and Umamahesh 2016). About 12% and 87% increase in 
IDF curves for 2- and 100-year return periods were observed over Chennai city under chang-
ing climate (Andimuthu et al. 2019). Except for a few studies concentrated over some individ-
ual cities, the existing literature did not explore the spatial and temporal changes of IDF curves 
in the future across Indian mainland as a whole. This is essential in the context of climate 
change to understand its spatio-temporal variations and forms the motivation of this study.

The first major issue in this context is the scarcity of sub-daily (hourly) precipitation records, 
which is essential to generate IDF curves. However, observed hourly precipitation records are 
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not available from most of the data providers, for instance, India Meteorological Department 
(IMD) provides only up to daily gridded precipitation data across Indian main land (Pai et al. 
2014). In such situation, an increasing reliance on the reanalysis data with high temporal and 
spatial resolution offers an opportunity to overcome this hinderance. A reanalysis is an assimi-
lation of observed records with modern weather forecasting models and data assimilation sys-
tem, which serves as the best estimate of atmospheric variables. Use of reanalysis data in afore-
mentioned studies is not new. For instance, Kao and Ganguly (2011) studied the IDF changes 
globally using existing reanalysis datasets with 6-h temporal resolution, and future warming 
scenarios from Coupled Model Intercomparison Project Phase-3 (CMIP3), which showed 
a significant impact on IDF curves due to global warming. Courty et al. (2019) used the  5th 
generation European Centre for Medium-Range Weather Forecasts reanalysis product (ERA5) 
with temporal resolution in hourly-scale to estimate the IDF curves globally and investigated 
the scaling relationship of extreme precipitation of different duration. However, global analysis 
primarily emphasizes the changes at the continental level rather than focusing on the regional 
level. In addition, none of these studies attempted to quantify the effect of climate change in 
IDF curves at hourly-scale, which is of utmost importance to understand the climate change 
effect in a regional scale when short-term extreme precipitation events are notably increasing.

Objective of this study is to assess the spatiotemporal changes in short-duration (hourly) 
IDF curves under changing climate. Entire Indian mainland is considered as a study area 
that spans across a wide range of climate regimes, such as deserts on the west, mountain-
ous, plateau in the southern peninsula, world’s largest plain in the northern parts, world’s 
highest rainfall receiving zone on the east, etc.. Such a study area is helpful to analyze the 
spatiotemporal changes in the IDF curves across different climatology (Fig. 1 and Table 1).

Fig. 1  Köppen-Geiger classifica-
tions of India regenerated using 
the original data from a study by 
Beck et al. (2018) licensed under 
a Creative Commons Attribution 
4.0 International License, which 
permits use, sharing, adaptation, 
distribution and reproduction 
in any medium or format. The 
abbreviations are elaborated in 
Table 1 as per the original study
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Analysis is carried out for several durations (starting from 1 h) and returns level (start-
ing from 2 years) for analyzing the effects of climate change on IDF curves. Finally, the 
maps depicting the future changes of hourly precipitation intensity with 2- and 100-year 
return periods are shown for both the two reanalysis datasets, which may be valuable for 
updating the design standards, as needed.

2  Data Description

We have used ERA5 reanalysis dataset (Hersbach et  al. 2020) and recently released 
Indian Monsoon Data Assimilation and Analysis (IMDAA) reanalysis dataset (Rani 
et al. 2021) as reference to bias correct GCM simulated precipitation data for the his-
torical and future period. The ERA5 is a global reanalysis product developed using the 
Integrated Forecast System (IFS) cycle 41r2 with 4-D-Var data assimilation by Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF) project. The IMDAA 
is a regional atmospheric reanalysis over the Indian subcontinent. It is developed by 
National Centre for Medium Range Weather Forecasting (NCMRWF), India, in collabo-
ration with the Met Office (MO), UK, and the IMD under the National Monsoon Mis-
sion (NMM) project of the Ministry of Earth Sciences, Government of India. Observa-
tional data from the European Centre for Medium-Range Weather Forecasts (ECMWF) 
archive and some exclusive observations from the IMD/NCMRWF archives were used 
to produce the IMDAA reanalysis product (Rani et  al. 2021). The IMDAA has per-
formed well in capturing the mean and extreme precipitation events over complex ter-
rain; however, comparison at hourly scale is limited due to the lack of observational 
data (Rani et al. 2021).

Hourly precipitation data are obtained from both the reanalysis datasets, i.e., ERA5 and 
IMDAA. The ERA5 is available from 1979 to the present date (https:// cds. clima te. coper nicus. 
eu/ cdsapp# !/ datas et/ reana lysis- era5- single- levels accessed in August 2021) at a horizontal 
resolution of 0.25º × 0.25º for the atmospheric variables. The IMDAA is available at a horizon-
tal resolution of 0.12º × 0.12º for the entire Indian mainland (https:// rds. ncmrwf. gov. in/ home/ 
accessed in August 2021). Although both datasets captured the mean rainfall pattern across 
India well, IMDAA overestimates the daily extreme in northern India and underestimates it in 
the western ghat region as compared to ERA5 (Singh et al. 2021).

Future simulated precipitation values are obtained from three GCMs, participating in the 
 6th phase of Coupled Model Intercomparison Project (CMIP6) for three different climate 
change scenarios, which are combinations of Shared Socioeconomic Pathways (SSPs) and 
Representative Concentration Pathways (RCPs), namely SSP126, SSP245, SSP585. SSP126 
(SSP1+RCP2.6) is the most optimistic scenario which represents sustainable development 
with a low level of greenhouse gas emission, SSP245 (SSP2+RCP4.5) represents a moder-
ate world with an intermediate level of emission, and SSP585 (SSP5+RCP8.5), which is the 
most extreme scenario, represents a society with rapid fossil fuel-based development with 
the highest level of greenhouse gas emission (Riahi et al. 2017; Li et al. 2020).

The model simulated daily precipitation values are downloaded from the World Climate 
Research Program (WCRP) (https:// esgf- node. llnl. gov/ proje cts/ cmip6/ accessed in August 
2021) for the historical (1979–2014) and future (2015–2100) periods. Outputs from three 
climate models, i.e., EC-Earth3, CESM2-WACCM and MPI-ESM1-2-HR are consid-
ered. A brief description of the climate models is presented in Table 2. Before proceeding 
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with the analysis, all the datasets are regridded to a common resolution of 0.25º × 0.25º to 
address the resolution mismatch between the reanalysis data and the climate model out-
puts, using the first-order conservative interpolation scheme (“remapcon” command of 
the Climate Data Operators software), which is often used in climate studies (Bador et al. 
2015; Schoetter et al. 2015; Ring et al. 2018). The period from 1979 to 2014 (36 years) is 
selected as the historical baseline, considering the available data records.

3  Methodology

Initially the Annual Maximum Series (AMS) of precipitation intensity over moving 
windows of 1-, 2-, 3-, 6-, 9-, 12- and 24-h duration is extracted from the regridded 
hourly data for each grid point. The future period is divided into three time periods, i.e., 
2015–2039 (immediate future), 2040–2059 (near-future) and 2060–2100 (far-future), 
and the daily annual maximum series is extracted for each time period and climate sce-
narios after correcting the model simulated bias. The entire methodological approach is 
summarized in a flowchart as shown in Fig. 2. Sequentially, these are i) bias correction 
of GCM simulation, ii) application of AMS and Reliability Ensemble Average (REA) 
method to obtain the weighted AMS from ensemble of GCM outputs for the histori-
cal and future periods, iii) and iv) probabilistic treatment of data through Generalized 
Extreme Values (GEV) distribution, and v) quantification of spatiotemporal change in 
IDF curves. The probabilistic treatment of data includes two parts - fitting with GEV 
distribution to AMS using method of L-moments and scale-invariance model for the 
scaling relationship between daily and hourly precipitation intensity during the histori-
cal period. Using this relationship, future hourly-scale precipitation intensities with var-
ious return periods are obtained from daily-scale precipitation intensity. All these the 
steps are elaborated in the following subsections.

3.1  Bias Correction of GCM Simulated Data

Underestimation or overestimation of model simulated hydrological variables with regard 
to available observed data is called bias. Despite recent advancements in model simula-
tion, climate models continue to have major biases, owing mostly to a lack of knowledge 
of physical processes and coarse grid resolution (Addor et al. 2016; Maity et al. 2019). Use 
of model simulated data without bias correction as input in any model can significantly 
impact the outcome (Hagemann et al. 2011; Rojas et al. 2011). Hence bias correction of 
model simulated climate variables is a standard practice before proceeding with further 
analysis. Bias correction techniques can be broadly categorized as linear, non-linear and 
distributional quantile mapping (QM) (Kim et  al. 2019; Maity et  al. 2019; Mishra et  al. 
2020). Among these, distributional QM technique is widely utilised because of its ease of 
use and good efficacy in eliminating biases from simulated data (Mearns et al. 2013; Pierce 
et al. 2015; Shin et al. 2019; Mishra et al. 2020).

In this study, mixed distribution-based QM technique is used for bias correction. This 
method utilizes a combination of Gamma and Gumbel distribution to correct the bias in 
mean and extreme precipitation separately (Shin et al. 2019). The Gumbel distribution is 
applied to bias correct the extreme values (values above  95th percentile), whereas gamma 
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distribution is applied to the rest, excluding zero values. In QM method, first, the probabil-
ity distribution of the historical model output from GCM is adjusted in relation to the prob-
ability distribution of the observed data by matching the cumulative distribution function. 

Fig. 2  Methodological flowchart outlining major steps
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Subsequently, the future simulations are adjusted based on the transfer function obtained 
from the first step. In this study, considering the common period of available data from 
the reanalysis product and historical GCM simulations, we choose 1979–2014 as the base 
period to bias-correct the future data (2019–2100) separately with respect to ERA5 and 
IMDAA.

In general, the QM approach for bias correction can be expressed as:

where xbc,GCM and xf ,GCMrepresent the bias-corrected and raw future data, respectively. F−1
obs

 
is the inverse of CDF for the observed data and Fb,GCM is the CDF of the model output 
for the base period. In this study, initially, the hourly precipitation data are aggregated to 
obtain the daily precipitation data. Then, the historical model simulated precipitation data 
is bias-corrected with respect to reanalysis data. Precipitation values above the  95th per-
centile are bias-corrected using Gumbel distribution, and the rest are corrected using two-
parameter gamma distribution. Finally, the future data is bias-corrected following Eq. (1).

The CDF of Gumbel distribution can be expressed as:

where � and � are the location and scale parameters, respectively.
The CDF of the gamma distribution can be expressed as:

where � and � are scale and shape parameters respectively and Γ(∗) is the gamma function. 
This process is repeated for each grid covering all the three models and scenarios to bias 
correct the historical and future precipitation values.

3.2  Reliability Ensemble Averaging

A total of 30 AMS are derived from bias-adjusted daily precipitation values from each of 
the climate model, one for each scenario (three), coupled with future periods (three), and 
one for the historical period. The REA method is applied to address the inter-model uncer-
tainty (Chandra et al. 2015). Unlike simple ensemble mean, which gives equal weightage 
to all the models, the REA method distributes the weights across the models based on two 
criteria, i.e., model performance and model convergence (Giorgi and Mearns 2002). Model 
performance criteria assign initial weights to the models based on their ability to simu-
late present-day climate, while model convergence criteria modify the initial weights until 
they converge with respect to the future simulation. Giorgi and Mearns (2002) applied this 
method to address the inter-model uncertainty of temperature and precipitation over 22 
regions across the globe considering the A2 and B2 climate change scenarios of the  4th 
assessment report of the Intergovernmental Panel on Climate Change (IPCC). However, 
in the aforementioned study, the weights were assessed based on the mean values only. 
Some studies used information based on cumulative distribution functions (CDF) instead 
of mean only (Ghosh and Mujumdar 2009). Later, Chandra et al. (2015) applied REA for 

(1)xbc,GCM = F−1
obs

(

Fb,GCM

(

xf ,GCM
))

(2)Fgu(x) = exp

[

−exp

(

−
x − �

�

)]

(3)Fg(x) = ∫
x

0

𝛽𝜅

Γ(𝜅)
x𝜅−1 exp

(

−
x

𝛽

)

dx; x, 𝛽, 𝜅 > 0
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total 85 future simulations to obtain the weight-averaged AMS to assess the IDF changes 
in the future over Bengaluru City. In many studies, the original or modified versions of the 
REA technique is adopted to address the inter-model uncertainty of future GCM simula-
tions (Kim and Lee 2010; Exbrayat et al. 2018; Tegegne et al. 2019).

We used the modified REA technique on each grid point separately to address the 
inter-model uncertainty for individual climate change scenarios and timelines obtained 
from the three climate models after bias correction. The algorithm of the REA method 
is explained in the following steps:

 (i) First, the CDF deviation of the observed daily AMS from the historically simulated 
series is measured in terms of Root Mean Square Error (RMSE) for 100 equally 
spaced data points covering the whole range of data and the initial weights are cal-
culated by taking the reciprocal of the RMSE.

 (ii) Weights are proportionately assigned to the GCMs, with the sum of the weights equal 
to 1 across all GCMs.

 (iii) Weights obtained in step 2 are multiplied with the CDFs derived from the future 
values to generate the future weighted mean CDF.

where Fwm is the weighted mean CDF of future values, wi is the weight assigned to 
the ith GCM and FGCMi

 is the CDF of the ith GCM.
 (iv) The deviation is calculated for the future period between CDF of individual GCM 

and weighted mean CDF by calculating the RMSE. The average of the inverse RMSE 
derived in steps (i) to (iii) are calculated and proportionately assigned as new weights 
across the GCMs, keeping the sum of weights equal to 1.

 (v) Steps (iii) to (iv) are repeated until the weights converge.
 (vi) This process is repeated for the three climate change scenarios and three future 

periods.

Finally, the weighted mean AMS for three future periods are constructed by summing up 
the weighted AMS corresponding to each climate change scenario.

3.3  Estimation of Generalized Extreme Value (GEV) Distribution Parameters

GEV distribution belongs to the family of extreme value distribution, and it is widely used in 
hydrological studies to estimate IDF curves from AMS of different duration and return periods 
(Semmler and Jacob 2004; Kao and Ganguly 2011; Shrestha et al. 2017; Cook et al. 2020; Gaur 
et al. 2020; Hosseinzadehtalaei et al. 2020). The CDF of GEV distribution is expressed as:

where α, β and κ are the location, scale and shape parameters, respectively. When κ = 0, 
GEV distribution represents Gumbel distribution. Studies demonstrate that the estimates 
from the two-parameter Gumbel distribution show a smaller error than the three-parameter 
GEV distribution due to the difficulties in assessing the shape parameter owing to a small 
length of records (Lu and Stedinger 1992; Papalexiou and Koutsoyiannis 2013). However, 

(4)Fwm =
∑n

i=1
wi × FGCMi

(5)F(i) = exp

[

−

(

1 + �

(

i − �

�

))−
1

�

]

for � ≠ 0
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the use of Gumbel distribution could underestimate the precipitation intensity for long 
return periods (Koutsoyiannis 2004). Papalexiou and Koutsoyiannis (2013) showed that 
the value of the shape parameter of GEV distribution could be approximated to 0.114 irre-
spective of geographic location. To avoid unrealistic estimation of precipitation intensity 
for different return periods due to incorrect shape parameters, we assumed that AMS fol-
lows the GEV distribution with κ = 0.114 for all the durations. The location parameters (α) 
and scale parameters (β) are estimated keeping κ = 0.114 using the method of L-moments, 
which is less sensitive to sample variability of the extreme values and yields better estima-
tion compared to other methods in case of small sample sets (Hosking 1990). The param-
eters of GEV distribution are estimated using the following equations given by Hosking 
(1990):

wherel1 and l2 are the sample L-moment estimate of first-order and second-order, respec-
tively (Hosking 1990) and Γ(.) is the gamma function. The values of l1 and l2 are computed 
using Python “lmoments3” library. Kolmogorov–Smirnov (K-S) test is applied to check the 
goodness-of-fit of GEV distribution (Massey 1951) at a 5% significance level. The K-S test 
is a nonparametric test that measures the maximum absolute difference between the empir-
ical CDF and the CDF obtained from assumed distribution. If the maximum difference is 
greater than the critical value, the null hypothesis that the data comes from the assumed 
distribution is rejected for the desired significance level.

3.4  Scale‑Invariance Model for GEV Distribution

One major issue in assessing the future changes of the IDF relationship is the unavailability 
of hourly precipitation data from the climate models. This shortcoming led to the develop-
ment of several methods to approximate precipitation statistics from daily-scale to sub-daily 
scales, such as the K-Nearest-Neighbour (KNN) Weather Generator (WG) algorithm (Peck 
et al. 2012), discrete multiplicative random cascade model (Molnar and Burlando 2005), Equi-
distance Quantile Matching Method (Srivastav et al. 2014), Bartlett-Lewis Rectangular Pulse 
(BLRP) model (Koutsoyiannis and Onof 2001; Ritschel et al. 2017), Scale-invariance model 
(Gupta and Waymire 1990). Among the methods mentioned above, the scale-invariance model 
is one of the simplest, yet accurate method and successfully used in numerous studies, even 
in the recent past (Yu et al. 2004; Blanchet et al. 2016; Ghanmi et al. 2016; Lima et al. 2018; 
Cannon and Innocenti 2019; Choi et al. 2019; Courty et al. 2019). Scale invariance implies 
that statistical properties of extreme precipitation for different duration are related to each 
other by a scale ratio. By definition, f(t) is scale-invariant, if for all positive values of λ, f(t) is 
proportional to scaled function f(λt) (Yeo et al. 2021). The values of t and λt represent lower 
and higher temporal resolution, respectively. Mathematically, it can be written as:

(6)� =
l2�

(1 − 2−�)Γ(1 + �)

(7)� = l1 +
�[Γ(1 + k) − 1]

�

(8)f (t) = �−�f (�t)
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where f(t) and f(λt) have same distribution. λ is the scale factor (e.g. if t = 24 h, λt = 1 h, then 
λ = 1/24) and θ is the scaling exponent. Equation (8) can be rewritten in terms of moments 
as following (Gupta and Waymire 1990):

where q represents the order of moment and E[f (t)q]and E[f (�t)q] denotes the Non-Central  
Moments (NCMs) of order q. Log-linearity of NCMs with duration indicates a scaling 
property of extreme precipitation, and linear relationship between scaling exponent (θ) and 
order of moments (q) implies simple scaling. (Gupta and Waymire 1990). In the present 
study, we adopt the scaling method to derive the sub-daily scale precipitation statistics 
using GEV distribution. The scaled GEV distribution parameters (κ, β, α) and precipitation 
intensities (I) for the T year return period can be expressed as following (Yeo et al. 2021):

where IT is the magnitude of precipitation intensity for T year return period, calculated 
by taking the inverse of the CDF of GEV distribution function which is expressed as 
following:

The parameter λθ can be estimated as the ratio of first order NCMs of daily and sub-
daily duration and expressed as:

where μ1(λt) and μ1(t) are the first order NCMs for sub-daily and daily scale.

3.5  Quantification of Spatiotemporal Change in IDF Curves

In order to quantify the impact of climate change on IDF curves, historical and future IDF 
curves for three climate change scenarios and three future time periods are compared at 
each grid point in terms of absolute and percentage change. Plotting these values at each 
grid point will provide the spatiotemporal changes in IDF (with a specific duration and 
return period) across Indian mainland. Entire available historical period, i.e., 1979–2014 
is considered to determine the historical IDF curves. The GEV distribution is fitted to the 
AMS of 1-, 2-, 3-, 6-h, 9-h, 12- and 24-h duration using the L-moment method as dis-
cussed in Sect. 3.3. The magnitude of precipitation intensity for return period of 2-, 25-, 
50- and 100-year is calculated using Eq.  (14). For each scenario and future time period, 
the daily precipitation intensities for the same return periods are determined following the 

(9)E[f (t)q] = �−�(q)E[f (�t)q]

(10)�(�t) = �(t)

(11)�(�t) = ���(t)

(12)�(�t) = ���(t)

(13)IT (�t) = ��IT (t)

(14)IT = � −
�

�

(

1 −
[

−��
(

1 −
1

T

)]−�
)

(15)�� =
�1(�t)

�1(t)
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same procedure. The sub-daily estimates are generated as per the simple-scaling relation, 
mentioned in Sect. 3.4 using Eq. (13).

4  Results and Discussion

4.1  Bias Correction

The bias in the model-simulated precipitation with respect to two reanalysis precipita-
tion datasets (base period of 1979–2014) is assessed on the basis of difference in mean of 
daily AMS at each grid point. The results are presented in Fig. 3a, b for IMDAA and ERA5, 
respectively. In both the cases, significant bias in all the three models is noticed during the 
base period. It is evident from the figures that the EC-Earth3 model overestimates (positive 
bias) the precipitation magnitudes in the western ghats region and underestimates (negative 
bias) across the rest of Indian mainland. The CESM2-WACCM model outputs exhibit an 
opposite characteristic compared to EC-Earth3 model outputs. The MPI-ESM1-2-HR model 
consistently underestimates the precipitation magnitudes all across the Indian mainland.

Such biases are corrected and the mean of the daily AMS after bias-correction is pre-
sented in the third column of Fig. 3a, b for IMDAA and ERA5, respectively. A comparison 
between the bias before and after bias-correction is also presented in the last two columns 
of the same figures. Near-zero values of the remaining bias for all the models indicate that 
the combination of Gamma and Gumbel distribution-based QM technique can successfully 
correct the bias in extreme precipitation values. Following the similar procedure, the future 
precipitation values for the period of 2015–2100 are also corrected, separately for each 
scenario.

4.2  Determination of Model Weights Using REA Method

The inter-model uncertainty is addressed using REA method. First, the daily AMS is 
extracted from the bias-corrected simulations for the base period and two future periods 
(near- and far- future), considering each climate change scenarios. Following the method 
described in methodology, the weights of each GCMs are computed at each grid point 
considering both the model performance and convergence criteria. The measured model 
weights are used to construct weighted daily AMS for the historical period, and immediate- 
future, near-future and far-future periods at each grid point for each climate change sce-
nario. Figures S1 and S2 in the supplementary material shows the spatiotemporal varia-
tion of the weights assigned to the GCMs for the three climate change scenarios and two 
future time periods. For example, higher weights are assigned to the EC-Earth3 model in 
the western ghats regions of India as compared to other two models in case of SSP585 
scenario during the immediate-future and near-future period. Similarly, higher weights 
are assigned to MPI-ESM1-2-HR model as compared to the CESM2-WACCM model in 
the western (Gujarat region) and northern plain region during the far-future period. The 
assigned weights to a particular model also vary spatially and temporally for different com-
binations of scenarios. For example, weights assigned to the CESM2-WACCM model for 
the far-future period under SSP585 scenario are visibly higher than that under SSP126 and 
SSP245. The inter-model and spatiotemporal variation of assigned weights indicate that 
the simple ensemble mean may not be sufficient to quantify the inter-model uncertainty. 
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Fig. 3   a Bias-correction of GCM simulated precipitation data with respect to IMDAA reanalysis across 
India evaluated in terms of the mean of daily Annual Maximum Series (AMS) considering 1979–2014 as 
the base period. b Same as Fig. 3a but with respect to the ERA5 reanalysis

5384 S. S. Maity, R. Maity



1 3

Another important observation is that the patterns of assigned weights more or less agree 
to each other for both the reanalysis datasets.

4.3  Parameter Estimation of GEV Distribution and Goodness of Fit Test

The GEV distribution with a fixed shape parameter (κ = 0.114) is fitted to the historical 
(1979–2014) and future (immediate-future, near-future & far-future) AMS for all con-
cerned durations and scenarios using the method of L-moments, and the goodness-of-fit of 
the distribution is assessed with K-S test at 5% significance level, as described in method-
ology section.

Tables 3 and 4 present the percentage of grids points where K-S test does not reject the 
null-hypothesis that the data comes from the GEV distribution at 5% significance level at 
5% significance level for historical and future periods, respectively. The result shows that 
percentage of grids range from 90 to 99% where the AMS can be assumed to follow GEV 

Table 4  Percentage of grid points where K-S test does not reject the null-hypothesis that the data comes 
from GEV distribution at 5% significance level for future periods at daily scale

Reference Data Source Data Period Scenarios

SSP126 SSP245 SSP585

IMDAA Immediate-future
(2015–2039)

99.98 99.98 99.98

Near-future
(2040–2059)

99.87 99.98 100.00

Far-future
(2060–2100)

99.96 99.93 99.93

ERA5 Immediate-future
(2015–2039)

99.96 99.96 99.93

Near-future
(2040–2059)

99.70 99.93 99.98

Far-future
(2060–2100)

99.91 999.93 99.91

Table 3  Percentage of grid points where K-S test does not reject the null-hypothesis that the data comes 
from GEV distribution at 5% significance level for historical period

Data Source Duration (hr)

1 2 3 6 9 12 24

IMDAA
(1979–2014)

98.98 96.84 94.91 90.98 90.46 90.40 92.41

ERA5
(1979–2014)

99.67 95.82 95.36 96.55 93.65 95.60 96.77
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distribution at 5% significance level for both the reanalysis products as well as weighted 
future data. Hence, it is reasonable to accept that the GEV distribution with shape param-
eter κ = 0.114 could be used for IDF derivation for the entire Indian mainland.

4.4  Changing Pattern in IDF Relationship

4.4.1  Simple‑scaling and Generation of IDF Curves

To estimate the change in the IDF in future, simple scaling behavior of extreme precipitation 
is examined for the historical period (1979–2014) following the method explained in the 
methodology section. The existence of scaling between 1-h and 24-h precipitation extremes 
are examined by measuring the coefficient of determination (R2) between log-transformed 
values of NCMs and durations for five orders of moments. Table 5 shows that more than 
90 percent of the grids for the five NCMs show the value of R2 greater than 0.85 for both 
the reanalysis datasets, which supports the existence of a scaling relation between daily and 
hourly extreme precipitation. Similarly, the simple scaling assumption is tested by checking 
the linearity between scaling exponents and order of moments; it also holds true for 99% 
grids, showing R2 value more than 0.9. Figure 4 shows the spatial variation of R2 value for 
the simple scaling assumption. After validation of simple-scaling property, parameter λβ is 
calculated for sub-daily scales using Eq. (15), as explained in methodology section.

To examine the changes, first, using the scale-invariance relation derived from reanaly-
sis datasets, precipitation intensities at sub-daily scales are estimated from daily scales for 
historical and future periods considering 2-, 25-, 50-, and 100-year return periods. For the 
historical and future periods, precipitation intensities at daily scale are generated using 
Eq.  (14) for the concerned return periods. Subsequently, the sub-daily scale precipitation 
intensities are obtained by multiplying the daily scale intensities with parameter �� as shown 
in Eq. (13). This process is repeated for each grid points to obtain the spatial variation of 

Fig. 4  Spatial distribution of 
linear association between scal-
ing exponents (θ) and order of 
moments (q) over India, indicat-
ing existence of simple scaling

Table 5  Percentage of grid points showing linearity between log-transformed NCMs and durations for five 
orders of moments with respect to R2 values

Data Source Range of  R2 NCM 1 NCM 2 NCM 3 NCM 4 NCM 5

IMDAA
(1979–2014)

 ≥ 0.85 100 100 99.80 99.07 98.09

ERA5
(1979–2014)

 ≥ 0.85 99.67 99.41 96.44 90.98 85.06
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IDF. Lastly, two sets of IDF datasets are obtained for both historical and future periods from 
the CMIP6 simulations based on the reference reanalysis data used for bias-correction (i.e. 
ERA5 and IMDAA), and the changes in future IDFs relative to the historical period are pre-
sented in terms of absolute and percentage change in the following section.

4.4.2  Future IDF Curves and Comparison with the Historical Period

The variations in the 1-h duration precipitation intensity agree with the SSPs and the time 
periods considered. For SSP126, the most conservative of the three scenarios, the average rise 
in hourly precipitation intensity considering 100-year return period is 13–14% over 45–52% 
area in the immediate-future, 16–17% over 54–59% area in the near-future, and 15–16% over 
62–68% are in the far-future based on both bias-corrected datasets. The decline in average 
increase in the far-future for SSP126 agrees with the net-zero  CO2 emission projection in the 
far-future. For SSP245 and SSP585, the spatial pattern of change in the immediate-future is 
similar to SSP126 because the projected emission scenario in the immediate-future is same as 
SSP126. But for near-future and far-future the spatio-temporal change is different for SSP245 
and SSP585 due to the difference in  CO2 projection scenario. In the near future, 53–59% of 
the region shows an average rise of 19–20% for the intermediate scenario SSP 245, while 
in the far future, it is approximately 21–22%, encompassing 76–83% of the country. How-
ever, the average increase in the far-future for the most extreme scenario, SSP585 is around 
44–48%, nearly double that of SSP245, and covers almost the whole Indian mainland. Higher 
increase (≈100–120%) in 1-h precipitation intensity with 100-year return period is observed 
in the central part of mainland India starting from Gujarat coast followed by parts of northern 
India near mountainous regions of Uttarakhand, some parts of eastern India and north-east 

Fig. 5  a Percentage change between future (2015–2039, 2040–2059, 2060–2100) and historical (1979–
2014) precipitation intensity of 1-h duration for 100-year return period considering three climate change 
scenarios (bias corrected with reference to IMDAA). b Same as Fig. 5a but bias corrected with reference to 
ERA5
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India as shown in Fig. 5a, b (Fig. 6a, b) in terms of percentage change (absolute change in 
mm/hr). A significant increase is also observed over the arid regions of India which generally 
receives very less rainfall. The average increase in precipitation intensity for 100-year return 
period is summarized in Table 6.

Changes in precipitation intensity patterns over the Indian subcontinent for even shorter 
return periods such as 2-years are consistent with those seen in precipitation with a 100-
year return period. The zones with highest increase (≈ 90–120%) are scattered across the 
central part of India starting from Gujarat and part of Rajasthan followed by Terai regions 
in the north as shown in Fig. 7a, b (Fig. 8a, b) in terms of percentage change (absolute 
change). For SSP126 scenario the average increase in precipitation intensity in the imme-
diate-future lies between 8–8.75% covering 64–71% area, which increases in near-future 
to 12–13% covering almost 74–80% area but decreases in far-future to 11–12% covering 
almost 85–92% of Indian mainland. However, for SSP245 and SSP585 it continuously 
increases from immediate-future to far-future. The rise in precipitation intensity is simi-
lar to SSP 126 in the immediate-future for SSP245 and SSP585. However, in the near-
future for SSP245 it increases to 12.5–13.6% over 82–87% area which further increases 
to 17–19% covering almost entire mainland in the far-future. Although the increment for 
SSP585 is similar to SSP245 in the near-future, it nearly doubles in the far-future when 
compared to SSP245. The average increase in precipitation intensity for 100-year return 
period is summarized in Table 7.

From the results it is observed that overall, the central part of India starting from Gujarat  
and Rajasthan (Am, Aw, BWh & BSh; Elaborated in Table  1) will be the worst affected  
followed by the mountainous regions of north India (Cwa, Cwb, Cwc, ET) as well as parts 
of northeast India (Cwa & Af) due to increase in precipitation intensity of different return 
periods. Maximum increase for the worse climate change scenario is evident. Even for the 
moderate scenario (SSP245), the increase is alarming that prompts us to reconsider the 

Fig. 6  a Absolute change between future (2015–2039, 2040–2059, 2060–2100) and historical (1979–2014) 
precipitation intensity of 1-h duration for 100-year return period considering three climate change scenarios 
(bias corrected with reference to IMDAA). b Same as Fig. 6a but bias corrected with reference to ERA5
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design criteria of different water infrastructure. A similar pattern of spatio-temporal change is 
observed across the Indian mainland in terms of percentage from both datasets that are bias 
corrected independently with regard to each reanalysis dataset, which strengthens the conclu-
sion even further.

Similar patterns are noticed for other return periods as well and maps for other return 
periods can also be prepared in the same manner. However, entire data set is prepared and 

Fig. 8  a Absolute change between future (2015–2039, 2040–2059, 2060–2100) and historical (1979–2014) 
precipitation intensity of 1-h duration for 2-year return period considering three climate change scenarios 
(bias corrected with reference to IMDAA). b Same as Fig. 8a but bias corrected with reference to ERA5

Fig. 7  a Percentage change between future (2015–2039, 2040–2059, 2060–2100) and historical (1979–
2014) precipitation intensity of 1-h duration for 2-year return period considering three climate change sce-
narios (bias corrected with reference to IMDAA). b Same as Fig. 7a but bias corrected with reference to 
ERA5

5390 S. S. Maity, R. Maity



1 3

Ta
bl

e 
7 

 A
ve

ra
ge

 p
er

ce
nt

ag
e 

in
cr

ea
se

 in
 1

-h
 d

ur
at

io
n,

 2
-y

ea
r 

re
tu

rn
 p

er
io

d 
pr

ec
ip

ita
tio

n 
in

te
ns

ity
 a

nd
 c

or
re

sp
on

di
ng

 p
er

ce
nt

ag
e 

of
 g

rid
-p

oi
nt

s 
fo

r 
th

re
e 

fu
tu

re
 p

er
io

ds
 a

nd
 

th
re

e 
cl

im
at

e 
ch

an
ge

 sc
en

ar
io

s w
ith

 re
sp

ec
t t

o 
hi

sto
ric

al
 p

er
io

d

Re
fe

re
nc

e 
D

at
a 

fo
r 

B
ia

s C
or

re
ct

io
n

C
lim

at
e 

ch
an

ge
 

sc
en

ar
io

Im
m

ed
ia

te
 fu

tu
re

(2
01

5–
20

39
)

N
ea

r-f
ut

ur
e

(2
04

0–
20

59
)

Fa
r-f

ut
ur

e
(2

06
0–

21
00

)

Pe
rc

en
ta

ge
 o

f g
rid

-
po

in
ts

A
ve

ra
ge

 in
cr

ea
se

Pe
rc

en
ta

ge
 o

f g
rid

-
po

in
ts

A
ve

ra
ge

 in
cr

ea
se

Pe
rc

en
ta

ge
 o

f g
rid

-
po

in
ts

A
ve

ra
ge

 in
cr

ea
se

IM
D

A
A

SS
P1

26
64

.6
5

8.
07

74
.4

3
12

.2
0

85
.7

6
11

.2
2

SS
P2

45
60

.9
0

7.
43

82
.5

1
12

.5
1

97
.4

0
17

.9
6

SS
P5

85
66

.8
2

8.
06

89
.9

7
13

.4
6

99
.9

6
41

.2
8

ER
A

5
SS

P1
26

71
.3

3
8.

75
80

.7
1

12
.9

7
92

.3
3

12
.1

0
SS

P2
45

68
.5

1
7.

85
87

.6
9

13
.6

1
99

.0
5

19
.5

3
SS

P5
85

76
.3

3
8.

40
94

.7
6

14
.4

1
10

0.
00

43
.5

0

5391Changing Pattern of Intensity–Duration–Frequency Relationship…



1 3

kept in an open-source data repository (https:// data. mende ley. com/ datas ets/ gg3vy 49jzg/ 
draft?a= 50c8f 564- 183a- 49d3- 8536- 598ef 40b3a 9b).

Next, we have selected four metro cities in India, namely Kolkata, Chennai, Mumbai and 
New Delhi, to discuss the temporal change IDF under the changing climate. The increase 
in the IDF curves as observed from the figures suggest that the most populated urban areas 
will get significantly affected due to climate change. The changes in the far-future for the 
worst-case scenario considering 2- and 100-year return period for the four metro cities are 
presented in Fig. 9. The results show that all the cities will experience a significant increase 
in precipitation intensity in the future. However, the findings considering ERA5 are more 
reliable than the IMDAA due to its inherent bias in capturing extreme precipitation as dis-
cussed earlier. Based on the above observation, IDF curves for the four cities are constructed 
considering ERA5 as reference data. For brevity, IDF curves for only Kolkata and Mumbai 
are plotted in the Fig. 10a, b respectively. The IDFs for the city of Chennai and New Delhi 
are presented in Figs. S3 and S4 of the supplementary material.

The overall evaluation of the findings suggests that the hourly precipitation intensity 
will rise significantly in the future for both short and long return periods, and analysis 
with regard to IMDAA and ERA5 supports this conclusion. The comparison indicates 
a very alarming situation for the central India encompassing parts of Gujarat, Madhya 
Pradesh and Maharashtra. Ministry of Earth Sciences (MoES), Government of India 
reported that Over central India, the frequency of daily precipitation extremes increased 
by 75% between 1950–2015 (Krishnan et  al. 2020). Frequent floods in these states 
due to heavy rainfall in recent decades indicates that the scenario is already changing 
(https:// www. hindu stant imes. com/ india- news/ why- is- it- flood ing- in- centr al- india/ story- 
KpsDi w5nbu 5OaAY dccka LL. html accessed in August 2022). The arid regions of India 

Fig. 9  Precipitation intensity (mm/hr) and the respective percentage change at immediate-future (ep1:2015–
2039), near-future (ep2:2040–2059) and far-future (ep3:2060–2100) considering SSP585 scenario with ref-
erence to historical data (1979–2014) (Bias corrected with reference to ERA5 and IMDAA reanalysis data). 
Results obtained from ERA5 are more reliable (for discussion refer the text)
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Fig. 10  a IDF curves for immediate-future (2015–2039), near-future (2040–2059) and far-future (2060–2100) con-
sidering three climate change scenarios for City of Kolkata. b Same as Fig. 10a but for City of Mumbai
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in Rajasthan which generally receives very less rainfall annually, is seeing an increase 
in heavy precipitation and projected to witness a significantly heavy precipitation in the 
future. The mountainous and Terai regions which already have a fragile ecosystem due 
to sensitive geology of Himalaya (Poonam et al. 2017) will also witness an increase in 
extreme precipitation in the future. In 2021, Uttarakhand faced series of flash floods due 
to glacial lake bursts caused by extreme precipitation of short duration (https:// www. 
ndtv. com/ india- news/ cloud burst- in- uttar akhan ds- devpr ayag- shops- houses- damag ed- 
report- 24397 04, accessed in May 2021). Devastating floods are witnessed in Bihar and 
Uttar Pradesh due to high-intensity precipitation in the upstream of Himalayan rivers, 
resulting in the rise of water levels downstream (https:// times ofind ia. india times. com/ 
city/ patna/ nepal- rivers- in- spate- may- flood- swath es- of- bihar- up/ artic leshow/ 77098 534. 
cms accessed in May 2021). Further increase in the hourly-precipitation intensity of 
short return period, as indicated in this study, will make such disasters more frequent. 
Apart from that, a substantial increase in hourly precipitation intensity for both short 
and long return period in the highly populated western and central part of India indi-
cates chances of disastrous flash floods in the future which will severely affect the liveli-
hood and economy of the regions.

Precipitation in the mountainous region is dominated by orographic precipitation, 
and the possible cause behind the significant increase in hourly precipitation intensity 
can be attributed to the precipitation shift from snow to rain due to climate change in 
the Himalayan region (Pavelsky et al. 2012). However, this study does not explore the 
contribution of global and regional effects of climate change separately.

5  Conclusions

How does climate change alter the relationship between intensity, duration and frequency 
(IDF) of precipitation? This study attempts to explore this question. Spatiotemporal vari-
ation of IDF relationships using two reanalysis products from past and model-simulated 
future precipitation from three CMIP6 models, namely EC-Earth3, CESM2-WACCM & 
MPI-ESM1-2-HR. Three climate change scenarios, as designated by SSP126, SSP245 
and SSP585, are used in case of future precipitation and the inter-model uncertainty is 
addressed using the REA technique. The changes in precipitation intensity for various 
return periods (2 to 100  years) are evaluated for immediate-future (2015–2039), near-
future (2040–2059) and far-future (2060–2100) periods with respect to the historical period 
(1979–2014), separately considering CMIP6 dataset bias-corrected separately with respect 
to two reanalysis datasets.

The comparison with reference to both the reanalysis data shows an average increase of 
17% to 21% in precipitation intensity covering around 70–90% of the area under SSP245, 
whereas for SSP585 the increment is in the range of 40–48%, covering almost entire India. 
The increase in the precipitation intensity is more in the Central part of India starting from 
coast of Gujarat, the mountainous regions of Himachal Pradesh and Uttarakhand along 
with the Terai region and Northeast India under the SSP245 and SSP585 scenario. The 
great plains of north, southern peninsula and the desert region will also witness a moder-
ate increase in precipitation intensity. On the contrary, SSP126, which assumes sustain-
able development in the future, shows a minimal increase compared to the other two sce-
narios. These changes indicate that if the trend of rapid development and uncontrolled use 
of fossil fuels continues, India will witness a significant increase in hourly precipitation 
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intensity in the future. The ecologically sensitive mountainous regions of India will experi-
ence frequent floods than the rest of India as a consequences of climate change. The most 
populated metro cities will also suffer significantly due to increase in extreme precipitation 
intensity in the coming future. Entire information on future IDF with respect to latitude, 
longitude, near- or far-future, scenario of climate change are provided in an open reposi-
tory (https:// data. mende ley. com/ datas ets/ gg3vy 49jzg/ draft?a= 50c8f 564- 183a- 49d3- 8536- 
598ef 40b3a 9b).

To minimize the impact of increasing extreme precipitation due to climate change, a sus-
tainable development approach should be of utmost priority for future infrastructure develop-
ment activities. The approaches to incorporate climate change impact in the design of infra-
structure may vary significantly from place to place depending on the importance of the place 
and the cost involved. The most practical approach for mitigating the consequences of cli-
mate change is to design and build structures with sufficient flow capacity to handle future 
flow conditions rather than present flow conditions. However, this strategy comes with lots 
of uncertainty arising from the data quality, resolution and modelling assumptions which 
may increase the cost of project rendering it economically unviable. Watt et al. (2003) sug-
gested that in absence of better estimates of precipitation intensity the design storm adopted 
for design should be 15% larger than the present estimate. However, retrofitting of existing 
infrastructures to accommodate the increased flow requires more detailed planning because 
most of the infrastructures are underground thus having constraints related to availability of 
space to expand and associated costs. Furthermore, non-stationary approach for planning and 
designing of hydraulic infrastructures should be adopted because stationary assumptions may 
not provide adequate safety from floods in the context of climate change. However, it should 
be noted that these conclusions are based on the reanalysis data used, which may be an excel-
lent alternative to compensate for the lack of hourly observational data, but may have a signifi-
cant difference with respect to the actual scenario. Hence, the interpretation should be more 
focused on the spatiotemporal pattern of the change rather than the absolute values. Consider-
ation of monsoon and non-monsoon precipitation separately may be a potential further scope 
of study.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s11269- 022- 03313-y.
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