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Abstract
Selection of potential causal variables (PCVs) from a pool of many possibly associated variables is a critical issue since it can
significantly affect the performance of any statistical downscaling model. Generally, the variable to be downscaled is associated
with many other hydrologic and climatic (aka hydroclimatic) variables. Most of the existing approaches, such as correlation
analysis (CA), partial correlation analysis (PaCA), and stepwise regression analysis (SRA), rely mostly on the mutual association
for the selection of PCVs. However, none of these approaches investigate the detailed dependence structure that may be helpful in
eliminating the unwanted information and efficiently selecting the PCVs for downscaling the target variable. In this study, the
effectiveness of graphical modeling (GM) approach is explored for the selection of the PCVs as GM can effectively identify the
detailed conditional independence structure among all the associated variables. For demonstration, downscaling of monthly
precipitation is undertaken using the PCVs, identified by CA, PaCA, SRA, and the proposed GM approach. Two different
downscaling models, namely statistical downscaling model (SDSM) and support vector regression (SVR)–based downscaling
model, are utilized. The results show that the PCVs identified through the proposed GM approach provides consistent as well as
robust performance, across different regions and seasons, due to its ability to capture the complete conditional indepedence
structure among the variables. The downscaled monthly precipitation obtained using the proposed approach is better
matching with the observed data in terms of the mean, variance as well as the probability distribution. Overall, this study
recommends the GM approach for the identification of the PCVs for the downscaling models.

Keywords Statistical downscaling . Potential causal variable selection . Graphical modeling . Correlation analysis . Partial
correlation analysis . Stepwise regression analysis

1 Introduction

Downscaling is a general procedure to assess the information
of any hydroclimatic variable at a finer scale using the infor-
mation of the same and other variables at a coarser scale. The
downscaling methods are broadly categorized into statistical
and dynamical approaches (Wilby et al. 1999; Bergströms
et al. 2001; Fowler et al. 2007; Schoof et al. 2009; Pinto
et al. 2010). Statistical downscaling methods are less compu-
tationally intensive as compared with the dynamical methods,
often the reason for its popularity (Wilby et al. 2002; Fowler
et al. 2007; Chen et al. 2012; Meenu et al. 2013; Gutmann

et al. 2014; Tatsumi et al. 2015; Zuo et al. 2015). There are
many statistical downscaling methods based on various algo-
rithms including automated statistical downscaling (ASD),
artificial neural network (ANN), LARS-WG stochastic weath-
er generator, non-homogeneous hidden Markov model
(NHMM), statistical downscaling model (SDSM), support
vec tor machine (SVM), Bias Correc ted Spat ia l
Disaggregation (BCSD), Asynchronous Regression (AR),
LOcalized Constructed Analogs (LOCA), and so on (Bates
et al. 1998; Semenov et al. 1998; Wilby et al. 1999;
Dettinger et al. 2004; Wood et al. 2004; Coulibaly and
Baldwin 2005; Hessami et al. 2008; Chen et al. 2012; Stoner
et al. 2013; Pierce et al. 2014).

Basic principle of statistical downscaling is to identify the
statistical relationship between the target variable to be down-
scaled and various coarse resolution causal variables (Beuchat
et al. 2012), and then apply the established relationships to
downscale the target variable. In general, the target variable
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is associatedwith a large number of climatic variables (Kidson
and Thompson 1998; Charles et al. 1999; Wilby et al. 1999),
hereafter referred to as associated variables. An important
aspect of downscaling is to find a subset of associated vari-
ables which are potentially useful causal variables, hereafter
referred to as the potential causal variables (PCVs), for devel-
oping a statistical relationship. This study considers this issue
of identifying the PCVs for statistical downscaling models.
This is a challenging task because the choice may vary with
region and the target variable to be downscaled (Huth 1999;
Tomozeiu et al. 2007; Hessami et al. 2008).

As per literature, the commonly used associated vari-
ables are air temperature, geo-potential height, specific hu-
midity, pressure, and zonal/meridional wind speed at differ-
ent pressure levels (Anandhi et al. 2008; Devak and Dhanya
2014; Pichuka and Maity 2016; Chithra and Thampi 2017).
Inclusion of all possible associated hydroclimatic variables
yields either a prohibitively large number of variables in the
causal variables set resulting in highly complex downscal-
ing models which poses serious challenges in parameter
estimation, or ends up in possibly incomplete subset of
the associated variables. Most of the selection criteria for
shortlisting the PCVs are based on the vaguely understood
physical processes of the system and/or correlation between
the causal and target variable (Grimes et al. 2003; Tatli et al.
2004; Haylock et al. 2006; Hessami et al. 2008). For in-
stance, a widely used approach to select the PCVs is corre-
lation analysis (CA) (Chen et al. 2012; Meenu et al. 2013;
Hassan et al. 2014; Pervez and Henebry 2014). Partial cor-
relation analysis (PaCA) is another commonly used method
to identify relevant causal variables (Hessami et al. 2008;
Liu et al. 2011). This method excludes/partials out the ef-
fect of other variables and can thereby reveal the true cor-
relation between two variables of interest (Harpham and
Wilby 2005; Yang et al. 2011). Some researchers, such as
Huth (1999), Hessami et al. (2008), and Chen et al. (2011),
have also used stepwise regression analysis (SRA) to select
the causal variables for statistical downscaling. In order to
reduce the complexity of the downscaling model, certain
studies rely on reducing the dimensionality of the associat-
ed variables by using techniques such as principal compo-
nent analysis (Okkan and Inan 2015), and adaptive nonlin-
ear interaction structures in higher dimensions (Radchenko
and James 2010). These techniques are good in cases where
a well-defined set of associated variables are known; how-
ever, such knowledge is either vague or incomplete.
Moreover, it also remains unknown whether the same in-
formation is provided by more than one causal variable,
also known as redundancy in information. Thereby, the
existing techniques used to identify the PCVs are either
unable to avoid the redundant information from multiple
associated variables or miss out important variables due to
the complex nature of association. When multiple variables

are associated with a hydroclimatic variable, complete in-
formation on the conditional independence structure is es-
sential in order to obtain a well-defined set of PCVs. Only
the directly associated variables may be picked out to
be used in the downscaling model, leaving out the effect
of conditionally independent and independent variables.
Here lies the potential of graphical modeling (GM) that
provides a means of representing dependence structure
among a large number of associated variables (Jordan
2004; Bang-Jensen and Gutin 2007; Ihler et al. 2007;
Whittaker 2009). This forms the motivation of this study.

Algorithms that search for such dependence structure are
typically represented using graphical models and have been
used widely in the fields of statistics, machine learning, and
the social and natural sciences (Beal et al. 2003; Lauritzen
and Sheehan 2003; Jordan 2004; Bang-Jensen and Gutin
2007; Whittaker 2009; Krumsiek et al. 2011). GM approach
may be highly beneficial in the field of hydrology and
hydroclimatology where numerous variables are associated
in complex ways with incomplete knowledge of the depen-
dence structure. Some recent studies have shown the efficacy
of GM in identifying the complete conditional independence
structure especially in the field of hydroclimatology (Taeb
et al. 2017; Dutta and Maity 2018; Dutta and Maity 2020a,
b). The objective of this study is to explore the efficacy of
GM, in context of downscaling, to identify the dependence
structure among the associated variables for the identifica-
tion of the PCVs. Different sets of PCVs identified through
the proposed and other existing approaches, (i.e., CA, PaCA,
and SRA) are used for the downscaling of monthly precipi-
tation. Two different downscaling approaches, namely, sta-
tistical downscaling model (SDSM) and support vector re-
gression (SVR)–based downscaling model, are utilized in
this study. Performances of different PCV identification ap-
proaches are compared by comparing the quality of the
downscaled precipitation. Better match between month-
wise mean, probability distributions, and variance of ob-
served and downscaled precipitation is considered the better
quality of downscaled precipitation, which in turn help to
recommend the best PCV identification approach.

2 Methodology

Identification of the PCVs for the statistical downscaling
using GM approach (henceforth “proposed GM approach”
or simply “proposed approach”) is facilitated by identifica-
tion of a conditional dependence structure among the asso-
ciated variables and the target variable to be downscaled.
Detailed description of the proposed approach is discussed
in the following section. However, the methodologies for
other existing approaches are presented in Appendix A.
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2.1 Selection of the potential causal variable

A graph can be defined as a mathematical object, G = (V, E),
where V is the set of vertices or nodes and E is the set of edges
(Whittaker 2009). Each variable is associated with a node and
each edge is associated with a pair of nodes. The graph/
conditional independence structure of a set of random vari-
ables is defined by a set of pairwise conditional independence
relationships that determine the edge set of the graphs. Edges
in the graph represent dependencies between random vari-
ables and presence/absence of edges represents dependence/
independence between random variables.

The selection/identification of the dependence structure
among the associated variables and target variable is deter-
mined using the maximum likelihood approach (Whittaker
2009). For application of this approach, the data should follow
normal distribution. In case the data does not follow normal
distribution, they can be transformed using some transforma-
tionmethodology (e.g., Box and Cox 1964) before developing
the conditional independence structure. In the maximum like-
lihood approach, initially a fully interconnected graph struc-
ture, referred to as a saturated model is considered where all
the nodes are connected to each other. Next, the edge exclu-
sion deviance (EED) is used for testing if an edge can be
eliminated from the saturated model (Whittaker 2009). EED
is formulated as follows,

EED ¼ −nlog 1−corr2n Xi;Xj restj� �� � ð1Þ

where corr2n Xi;XjjrestÞ
�

is the partial correlation coefficient
between any two random variables Xi, Xj given the rest and
n is the sample size. Considering EED to follow chi-square
distribution, at 95% confidence level for one degree of free-
dom (as one edge is removed at a time) the p value is 3.84, so
the edges for which the EED does not reach the value of 3.84
(threshold value) are to be excluded.

The generalized likelihood ratio test statistics can be eval-
uated based on the distance between the observed sample
variance and the estimated variance obtained from the graph
structure. This test statistic, also known as the deviance (dev),
can be used to check the acceptability of the obtained condi-
tional independence structure at a particular confidence level.
The deviance of the model can be evaluated using the follow-
ing equation (Whittaker 2009),

dev ¼ n tr SbV−1
� �

−logdet SbV−1
� �

−k
� �

ð2Þ

where S is the variance matrix, bV is the modified/estimated
variance matrix, k is the number of random variables, and n is
as stated above. Considering the test statistic/deviance to fol-
low chi-square distribution with d degrees of freedom (num-
ber of edges excluded from the saturated graph structure), the

significance level (p value) can be computed as

P χ2
p > dev

� 	
. For this study, the acceptable significance lev-

el is fixed at 0.05, i.e., the graph structure is acceptable with
95% confidence level if the p value is higher than 0.05. In case
the structure fails to meet the acceptability criteria, a new
graph structure with lesser number of edges is to be identifed.

Surviving edges for the finally obtained graph structure can
be tested for their strength of association, also known as edge
strength. The divergence against conditional independence
can be used as the edge strength. The edge strength between
two nodes in the conditional independence/graph structure
can be calculated as follows (Whittaker 2009),

Inf
�
X i∐Xjjrest

	
¼ −

1

2
log 1−corrn2ðXi;XjjrestÞ

� 	
ð3Þ

where Inf(Xi∐ Xj|rest) is the edge strength between Xi and Xj
given rest.

The conditional independence structure provides the in-
formation on dependent (directly connected/parents to the
target variable), independent (not connected to the target
variable), and conditionally independent (not directly con-
nected to the target variable) causal variables with respect
to the target variable. Thereby, it helps to identify the par-
ents of the target variable and these variables are selected
as the PCVs for the statistical downscaling model. It may
be noted here that the variables were transformed only to
develop the graph structure. After selection of the PCVs,
the actual data is used in the downscaling model, not the
transformed data.

2.2 Assessment of downscaling performance

As mentioned before, two different downscaling approaches
are employed to downscale monthly precipitation considering
the PCVs identified using the proposed GM approach and
other existing approaches. In the downscaling process, the
model is calibrated (1960–1995) and validated (1996–2005)
separately, and the analysis is carried out for each station using
the separately identified PCVs, using different approaches.
The first downscaling model, SDSM, is constructed based
on multiple regression equations, given the target variable
(monthly precipitation) and PCVs (selected coarse resolution
atmospheric variables) during calibration period. The param-
eters of the developed regression model are saved and further
used during validation period. Model validation produces 20
ensembles of downscaled monthly precipitation at each sta-
tion given the respective PCVs and the parameters of the de-
veloped regression model. The second downscaling model,
SVM for regression, also known as SVR, is used to downscale
the monthly rainfall considering the PCVs identified using the
different approaches. Details of the methodology on SVR can

1257Identification of potential causal variables for statistical downscaling models: effectiveness of graphical...



be found in Chen et al. (2010). While developing the SVR
model during calibration period, the goal is to find a function y
= f(x) such that any observation (y) does not deviate from the
simulated/predicted value (ŷ) by more than a threshold value
ε, known as ε-margin, for the corresponding causal/input data
(x). This relation/function is further utilized during model val-
idation to obtain the downscaled precipitation.

Efficacy of the proposed approach is established by com-
paring the observed and downscaled monthly precipitation in

terms of mean, variance and probability distribution. Whereas
the variances are compared considering all the months in the
year, comparison between mean are undertaken month-wise
using the Wilcoxon test. The mean error in downscaled
monthly precipitation is evaluated as the absolute difference
between the monthly observed and downscaled data. The en-
semble mean of the downscaled target variable is used to
evaluate the monthly mean error. The mean error is further
tested using Wilcoxon rank-sum test, a non-parametric ap-
proach to establish the significant difference between two
samples of data using magnitude based rank (Johnson and
Bhattacharya 2009; Maity 2018). In this study, the
Wilcoxon test is used to study the difference between the
observed and downscaled monthly precipitation (each ensem-
ble) for each month of analysis. The null hypothesis consid-
ered for the test is that the population means (designated as μ1
and μ2) are equal and the alternative hypothesis is that the
population means are not equal. Assuming the sample size
to be large, the rank sum test uses a Z-statistic that follows
standard normal distribution. The test statistic can be evaluat-
ed as,

Z ¼ W−n1 N þ 1ð Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2 N þ 1ð Þ=12p ð4Þ

where n1 and n2 are the number of data points of μ1 (mean for
downscaled results) and μ2(mean for observed data) respec-
tively, N = n1 + n2, andW is the sum of ranks for μ1. Based on
the value of the test statistic, p value is obtained for each
ensemble of the downscaled data. The average values across
the ensembles are considered the final p value for each month.
Considering a significance level (α) of 0.05, the null

Table 1 Details of the meteorological stations along with the basic statistics of the rainfall data at each station

Station
ID

Station
name

District (state) Latitude and
longitude

Description of
location

Basic statistics

Mean
(mm)

Range (min to
max in mm)

Standard
deviation (mm)

Coefficient of
variation

Skewness

S1 Chiplima Sambalpur (Orissa) 21.36° N and
83.88° E

Central
Highlands

109 0 to 636 148 1.35 1.47

S2 Jaisalmer Jaisalmer
(Rajasthan)

26.90° N and
70.92° E

Dessert 15 0 to 201 28 1.91 2.97

S3 Jalore Jalore (Rajasthan) 25.38° N and
72.99° E

Dessert 36 0 to 335 65 1.83 2.30

S4 Gulbarga Gulbarga
(Karnataka)

17.35° N and
76.80° E

Deccan
Plateau

59 0 to 480 70 1.20 1.69

S5 Gadchiroli Gadchiroli
(Maharashtra)

20.17° N and
79.98° E

Deccan
Plateau

88 0 to 453 112 1.27 1.17

S6 Pasighat East Siang
(Arunachal
Pradesh)

28.10° N and
95.37° E

North East 155 0 to 640 140 0.91 0.81

S7 Badaun Badaun (Uttar
Pradesh)

28.01° N and
79.11° E

Gangetic
Plain

64 0 to 455 98 1.53 1.83

S8 Bardhaman Bardhaman (West
Bengal)

23.21° N and
87.88° E

Gangetic
Plain

117 0 to 633 131 1.13 1.24

Table 2 Details of the entire set of possibly associated variables

Sl. no. Description of the variables (units) Code of the variable

1 925 mb air temperature (°K) ta_925

2 700 mb air temperature (°K) ta_700

3 500 mb air temperature (°K) ta_500

4 200 mb air temperature (°K) ta_200

5 925 mb geopotential height (m) zg_925

6 500 mb geopotential height (m) zg_500

7 200 mb geopotential height (m) zg_200

8 925 mb specific humidity (kg/kg) huss_925

9 850 mb specific humidity (kg/kg) huss_850

10 925 mb zonal wind (m/s) ua_925

11 500 mb zonal wind (m/s) ua_500

12 200 mb zonal wind (m/s) ua_200

13 925 mb meridional wind (m/s) va_925

14 500 mb meridional wind (m/s) va_500

15 200 mb meridional wind (m/s) va_200

16 Surface pressure (Pa) ps

17 Precipitable water (kg/m2) pr
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hypothesis of equality in mean is rejected if the p value is less
than 0.05.

3 Data used

Eight meteorological stations (designated as S1 through S8)
are selected from different climatic regions in India and down-
scaling is carried out at each station to study the spatial vari-
ation in the selection of the PCVs. The time period of the
analysis is 46 years where, the first 30 years (1960–1989) is
used for model development and the next 16 years (1990–
2005) for model testing. Description for all the stations along
with the basic statistics (mean, range, standard deviation, co-
efficient of variation, and skewness) of the rainfall data at each
station is provided in Table 1. It is noticed that the range and
pattern of rainfall are very different from one another, includ-
ing the stations lying in the same climatic region. For instance,
stations S2 and S3 both lie in the dessert region; however, the
range of rainfall for the former is 0–201 mm and the same for
the latter is 0–335 mm. Next, considering the stations S4 and
S5, the range of rainfall is approximately same. However, for
station S4, the variation in the month-wise mean rainfall dur-
ing the summer monsoon season (June–September) is very
low (with the highest monthly mean of ~ 200 mm) and for
station S5, the variation in the month-wise mean rainfall dur-
ing the same season is very high (with the lowest and highest
month-wise mean of ~ 180 mm and ~ 300 mm respectively).
Lastly, considering stations S7 and S8, the range of rainfall for
the former is 0–455 mm (with high variation in month-wise
mean during summer monsoon season) and the same for the
latter is 0–633 mm. Stations S1 and S6 also have a unique
pattern of rainfall with highest month-wise means of ~ 400
mm.

For each station, monthly precipitation is used as the target
variable to be downscaled, sourced from the India Water
Portal (http://www.indiawaterportal.org/data). The coarse
resolution associated variables used are air temperature,
geopotential height, specific humidity, zonal wind,
meridional wind, surface pressure, and precipitable water at
different altitudes, obtained from World Data Center for
HadCM3 (historical data) climate model (http://www.ipcc-
data.org/sim/gcm_monthly/AR5/Reference-Archive.html).
These initially selected variables are based on the physical
interaction among the hydroclimatic variables as identified
by various studies, primarily considering the Indian domain
and the details for the same are given in Table 2. Owing to the
varying range and pattern of rainfall as well as the
geographical location, it is probable that the set of potential
causal variables will be different from one location to another.
For instance, the association of lower, middle, and upper
tropospheric circulations and rainfall varies with
geographical location and season. The high variation in

Table 3 Potential causal variables (PCVs) selected based on edge
strength (ES) using the proposed GM approach

Station ID PCV ES

S1 pr 0.84

ta_500 0.81

ta_700 0.70

huss_925 0.13

huss_850 0.12

zg_200 0.09

ua_500 0.08

S2 ta_700 0.95

zg_500 0.96

zg_200 0.81

huss_925 0.71

ua_500 0.67

pr 0.52

S3 pr 0.70

ta_200 0.69

zg_500 0.14

zg_200 0.11

ps 0.10

S4 va_200 0.95

ps 0.94

pr 0.80

ta_500 0.13

ua_500 0.10

zg_925 0.08

S5 ua_925 0.92

ps 0.70

pr 0.67

zg_200 0.10

huss_925 0.10

S6 ta_925 0.93

ta_500 0.94

ps 0.70

va_200 0.69

zg_925 0.12

pr 0.09

S7 zg_200 0.97

va_200 0.95

ua_925 0.71

pr 0.71

ta_200 0.11

S8 ta_700 0.85

zg_925 0.85

ua_925 0.17

pr 0.11

zg_500 0.10

va_500 0.07
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summer monsoon rainfall may be caused by meridional wind,
zonal wind, and temperature at different pressure levels due to
monsoon circulations. Thereby, the causal variables at
different altitudes may influence rainfall at a particular
location to varying degrees depending of various factors.

4 Results and discussion

4.1 Selection of the PCVs using the proposed GM
approach and comparison with other approaches

Two typical examples of conditional independence structures
between all the associated and target variables are shown in
Fig. 1 for stations S1 and S4. The parent variables, selected as
the PCVs, are tabulated in Table 3 for all the stations (S1 to
S8) along with the edge strengths. Results indicate that sta-
tions in the same zone have many common PCVs which in-
dicates that the proposed approach can appropriately prioritize
the causal variables for downscaling. Still there are some dif-
ferences and different sets of PCVs are identified for stations
in different climatic zones. This is expected due to the wide
variation in the precipitation characteristics even within a cli-
matic zone. As observed, stations S2 and S3 or S4 and S5 or
S7 and S8, though lying in the same climatic zone, do not have
the exactly same set of causal variables. Geographically, they
are hundreds to thousands kilometer away (S2 to S3 ~ 250 km,
S4 and S5 ~ 650 km, and S7 to S8 ~ 1000 km). The broad
climatic zones (as shown in Table 1) are as per India-WRIS.
However, precipitation varies at very small scale and every
station will thereby have its unique features. Further, the range
and pattern of rainfall are very different at each station.
Following the pattern of monthly rainfall in the different sta-
tions (figure not shown), it is observed that the maximum

variation in month-wise mean rainfall is observed for the sum-
mer monsoon months at stations S1, S2, S3, S5, and S7.
However, at stations S4, S6, and S8, the month-wise mean
rainfall during the summer monsoon months is similar to that
during the pre- and post-monsoon months (October–May).
For the former group of stations, GM identifies the upper-
and mid-tropospheric circulations as the PCVs. The poleward
retraction of the mid-tropospheric circulation and warming of
the troposphere suggest that precipitation processes may be
more directly linked to upper-tropospheric circulation, as it
is common in convective and monsoon regimes. However,
for the stations S4, S6, and S8, mostly the lower- and mid-
tropospheric circulations show strong association with precip-
itations due to the equatorward migration of the mid-
tropospheric flow during winter months. The moist condition
of the mid-tropospheric air is an important factor in precipita-
tion mechanisms, since moist air is associated with vertical
motion and convective processes, especially during the warm-
er months (Cavazos and Hewitson 2005). It is interesting to
note that stations S7 and S8, though lying in the same climatic
regions, have different sets of PCVs due to different pattern of
rainfall in the two stations. Furthermore, for the stations S1,
S5, S7, and S8, temperature of the tropospheric layer and low-
level zonal wind are identified as PCVs. These stations have
high range and variation in month-wise mean rainfall during
the monsoon months. Significance of these variables is appar-
ent during this season when it is common for an expansion of
the troposphere due to monsoonal circulation. Generally, in
tropical convective regions, low-level convergence is accom-
panied by upper-level divergence (Webster et al. 1998).
Though stations S4 and S5 lie in the same climatic region,
the meridional wind and pressure also play an important role
at station S4 in addition to temperature and zonal wind. This
may be primarily due to the high variation in month-wise

Fig. 1 Conditional independence structure, where numbers 1 to 17
represent the causal variables (details in Table 2) and Y is the target
variable to be downscaled, a obtained for station S1, and b obtained for
station S4. The edges between the target variable and its parents are

shown with varying gradients of gray shade denoting the approximate
strength of association. Dotted lines indicate even poorer association. The
edges for parents not considered the PCVs (based on edge strength) are
shown by dashed lines
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mean rainfall at station S4 during the post-monsoon when
precipitation is influenced by surface meridional synoptic sys-
tems. Meridional wind is also playing an important role in
influencing precipitation at stations S6, S7, and S8, stations
with high variation during the post-monsoon months.
Temperature at different tropospheric levels is identified as
the PCVs for most of the stations. The mid- and upper-

tropospheric ridges and troughs are linked to the underlying
tropospheric temperature, which serves to intensify develop-
ing systems through changes in the thickness advection
(Cavazos and Hewitson 2005). Precipitable water is associat-
ed with the precipitation at all stations; however, the degree of
association may vary depending on the climatic conditions.
Thereby, the sets of causal variables are not exactly the same
even within a specific climatic zone and these are distinctly
different for the stations lying in different climatic zones. Said
above, it should also be noted that the aforementioned justifi-
cations are not exhaustive. For a complete justification, sepa-
rate extensive analysis is needed, which is beyond the scope of
this study. This study focuses on the effectiveness of the pro-
posed GM approach in identifying the PCVs at a location as
compared with its counterparts.

The PCVs selected using the proposed GM approach are
compared with the same obtained using the other existing
approaches and presented in Table 4. It can be clearly ob-
served that different approaches provide different set of
PCVs; however, for a particular station, certain PCVs remain
the same for all the approaches. For instance, specific humid-
ity at 850 mb and zonal wind at 925 mb are selected as PCV
using all the selection approaches at stations S1 and S8 re-
spectively. Although some such cases may be observed, the
overall set of the PCVs significantly changes with the ap-
proach and the station considered. Further, it may be ob-
served that for most of the stations, certain common PCVs
are selected using GM, PaCA, and SRA, although the entire
set may be unique. For instance, at station S4, the variables,
air temperature at 500 mb, zonal wind at 500 mb, meridional
wind at 200 mb, and surface pressure are selected as the
PCVs using all the three approaches. However, CA provides
a completely different combination of PCVs, the reason be-
ing that CA provides misleading results in case the causal
variables are strongly correlated amongst themselves. This is
a very common occurrence as most of the coarse scaled at-
mospheric variables are dependent and this approach is un-
able to capture the true association among the large pool of
associated variables and the target variable. Approaches like
PaCA and SRA may provide results closer to GM as the
former partials out the effect of other variables and the latter
stepwise eliminates the effect of weakly associated variables.
However, these approaches do not consider the complete
interaction among all the variables, which may lead to redun-
dancy in information. This may lead to a combination of
PCVs that is insufficient for developing precise downscaling
model. Thereby, proper identification of the PCVs has been
increasingly identified as a major issue for the statistical
downscaling model and a robust statistical technique needs
to be utilized to resolve uncertainties associated with selec-
tion of causal variables. It is vital to determine the complete
conditional independence structure among the large pool of
associated variables and the target variable. The proposed

Table 4 Potential causal variables (PCVs) selected using the four ap-
proaches (GM, PaCA, SRA, and CA). The code of the variables is given in
Table 2

Station ID PCV using different methods

GM PaCA SRA CA

S1 ta_700 ta_700 zg_500 ta_500
ta_500 huss_850 huss_925 ta_200
zg_200 ua_500 huss_850 zg_200
huss_925 ua_200 va_925 huss_850
huss_850 pr ua_500 va_200
ua_500 pr
pr

S2 ta_700 ta_925 ta_700 ta_500
zg_500 ta_700 ta_200 ta_200
zg_200 ta_500 zg_500 zg_200
huss_925 ta_200 zg_200 huss_850
ua_500 zg_500 ua_500 ua_925
pr pr pr va_500

va_200
pr

S3 ta_200 ta_500 ta_700 ta_500
zg_500 zg_925 zg_925 zg_925
zg_200 zg_200 zg_500 zg_500
ps ps ps ps
pr pr pr pr

S4 ta_500 ta_500 ta_500 ta_500
zg_925 zg_500 ua_500 ta_200
ua_500 ua_500 va_200 zg_200
va_200 va_200 pr ua_925
pr ps ps va_200
ps pr

S5 zg_200 zg_200 zg_200 zg_500
huss_925 huss_925 huss_850 huss_850
ua_925 ua_925 ua_925 va_500
ps va_200 ps va_200
pr pr pr ps

S6 ta_925 ta_925 ta_925 ta_925
ta_500 ta_500 zg_925 ta_700
zg_925 zg_200 ua_500 zg_200
va_200 huss_925 ua_200 huss_850
ps ua_200 va_200 ua_925
pr va_200 pr va_500

pr va_200
S7 ta_200 ta_200 ta_200 ta_500

zg_200 zg_200 zg_200 zg_200
ua_925 ua_925 ua_925 huss_850
va_200 va_925 va_200 ua_925
pr pr pr pr

S8 ta_700 ta_700 zg_500 ta_500
zg_925 ta_500 ua_925 zg_200
zg_500 zg_200 ua_200 huss_850
ua_925 ua_925 va_925 ua_925
va_500 va_925 va_200 va_200
pr pr
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GM approach facilitates identification of such structures and
can be used effectively for identification of PCVs.

4.2 Relative performance of downscaled precipitation
using different sets of PCVs

4.2.1 Performance in terms of month-wise mean

The absolute error in the estimates of mean downscaled pre-
cipitation obtained using the proposed approach is compared
with the existing approaches (Figs. 2 and 3). In this and sub-
sequent figures, legends are used as per the name of ap-
proaches used for selecting the PCVs though the downscaling
model remains same, i.e., either SDSM or SVR, as mentioned
before. It is noticed that the performance of the proposed GM
approach is best or nearest to the best considering both the
downscaling models. This is consistent for all the location
with different climate regimes. It is further noticed that the
performance of the existing methods varies from one location
to another. In other words, one method may perform best at a
location but exhibits lack of robustness at other locations.
However, performance of GM is consistently good (best or

near to the best as compared with its counterparts) at all the
locations. Particularly, at station S6, GM and CA show distin-
guishably low errors as compared with the other two selection
approaches considering both SDSM and SVR. Moreover, at
stations S1, S2, S5, and S8, GMprovides comparatively lower
error as compared with the other three approaches. At stations
S3, S4, and S7, the absolute errors using GM and other
existing approaches are completely or closely coinciding for
all the months of analysis. Further, downscaling of monthly
precipitation is carried out using all the 17 causal variables and
the results for the same are shown in Figs. 2 and 3. The results
clearly show that the model performance diminishes on using
all the causal variables as PCVs. Large numbers of causal
variables which are either independent or conditionally inde-
pendent of precipitation for a certain station/region increases
the complexity of the model without providing additional
information.

As stated earlier, the error values are tested by a non-
parametric Wilcoxon rank-sum test at the 95% confidence
level (Figs. 4 and 5). The results obtained using GM and
the existing approaches are vastly varying with respect to
the station and the month of analysis. At stations S1, S2,

Fig. 2 Month-wise mean absolute errors (in mm) in SDSM downscaled precipitation obtained using PCVs identified by the proposed GM and existing
approaches at different stations
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S3, and S4, considering 95% confidence level the errors
are insignificant for all months (i.e., the p value is above
0.05) using GM. These results are closely followed by the
same obtained using SRA for the abovementioned sta-
tions. However, PaCA also shows the second best perfor-
mance at certain stations. For instance, at station S3 (Figs.
4 and 5), PaCA closely follows the results provided by
GM for certain months, whereas SRA shows the second
best results for the rest of the months. At stations S6 and
S7, GM provides insignificant error for eleven months
except the month of May, July and August. At stations
S1 and S7, variation in results can be observed using the
three existing approaches, as discussed earlier. For exam-
ple, SRA provides the second best result for almost all the
months at station S1, whereas for station S7, SRA and
PaCA provide the closest results for some specific
months. Similar to Figs. 2 and 3 at station S6, GM follow-
ed by CA provides insignificant error for most of the
months, whereas the error is significant using PaCA and
SRA. For the remaining stations, namely S5 and S8, the
performance of GM is better as compared with the other
three approaches. The precision of the downscaled results

depends on the PCVs and in terms of error analysis of
mean, it is clearly evident that different combination of
causal variables leads to varying error in the downscaled
results. However, it is vital to note the performance of
GM is superior at each station considering the monthly
means using both the downscaling approaches.

4.2.2 Performance in terms of variance and probability
distribution

The variance of the observed and downscaled monthly
precipitation is evaluated at each station considering all
the months together. The variance of the downscaled
monthly precipitation is evaluated individually for each
ensemble obtained during model validation and the aver-
age is considered for comparison in case of SDSM. The
results show that the variance in the observed precipita-
tion is best captured in the downscaled precipitation while
using PCVs identified by the proposed approach as com-
pared with using the same obtained through other existing
approaches across all the stations (Fig. 6). The second
best performance varies spatially among the existing

Fig. 3 Month-wise mean absolute errors (in mm) in SVR downscaled precipitation obtained using PCVs identified by the proposed GM and existing
approaches at different stations
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approaches (PaCA, SRA, and CA) establishing the robust
performance of the proposed approach.

Apart from the variance, the probability distributions of
observed and downscaled monthly precipitation were also
compared considering all the months together and KS test
is used to evaluate whether the two distributions are essen-
tially same at the 95% confidence level. The test results,
shown in Fig. 7, indicate the p values obtained for the
abovementioned test. In the case of the proposed GM ap-
proach for identifying PCVs, p value exceeds 0.05 for all
the stations considering both the downscaling models.
Thereby, thedownscaled results performwell in reproducing
the distribution ofmonthly precipitation at significance level
of 0.05 using the PCVs identified through the proposed GM
approach. The comparative results clearly depict that the
downscaling models developed considering the PCVs iden-
tified through PaCA, SRA, and CA provide varying perfor-
mance across the different stations. However, GM consis-
tently provides superior results at all the locations with vary-
ing climate regime for all the months.

4.2.3 Overall comparison and recommendation

As the downscaling model (SDSM and SVM) remains the
same, the PCVs identified using the different approaches
are the only factors influencing the performance of the
downscaled product. In brief, comparison of mean and
variance and probability distribution of downscaled pre-
cipitation with that of the observed data establishes the
efficacy of the GM approach to identify the PCVs as
compared with the other three existing approaches. It is
due to the fact that GM utilizes the complete conditional
independence structure and eliminates the effect of inde-
pendent or conditionally independent associated variables.
Apart from many other factors, the precision of the down-
scaled results depends on the combinations of PCVs used
as input, and it is clearly evident from the analysis that
different combination of PCVs leads to varying perfor-
mance and quali ty of the downscaled products.
However, the performance of the proposed GM approach
in identifying the PCVs is superior at each station

Fig. 4 Month-wise p values of Wilcoxon rank-sum test results for the
assessment of difference in means between observed and SDSM down-
scaled precipitation obtained using PCVs identified by the proposed GM

and existing approaches at different stations. The higher the p value, the
better is the performance of the model for a particular month
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considering all three metrics mentioned before.
Considering a significant spatio-temporal variation in
hydroclimatic association, the proposed GM approach
can be recommended as a promising approach to identify
the PCVs for the downscaling models.

5 Conclusion

In this study, the proposed GM approach is established as an
effective technique for selection of the PCVs of a statistical
downscaling model. It facilitates the development of a

Fig. 5 Month-wise p values of Wilcoxon rank-sum test results for the
assessment of difference in means between observed and SVR down-
scaled precipitation obtained using PCVs identified by the proposed

GM and existing approaches at different stations. The higher the p value,
the better is the performance of the model for a particular month

Fig. 6 Comparison of the
variance between the observed
and downscaled precipitation
obtained using PCVs identified
by the proposed GM and existing
approaches at different stations
through a SDSM and b SVR as
the downscaling model

1265Identification of potential causal variables for statistical downscaling models: effectiveness of graphical...



conditional independence structure which helps to study the
detailed association among the large pool of associated vari-
ables and target variable. The redundancy in information or
possibility of missing out important variables due to complex
nature of association is eliminated by considering the detailed
conditional independence structure. Comparison of the ob-
served monthly precipitation with the downscaled precipita-
tion obtained using the proposed GM approach, in terms of
mean, variance, and probability distribution, shows satisfacto-
ry performance for most of the stations.

The efficacy of the proposed approach in identifying the
PCVs is established by comparing the downscaled results
obtained using the PCVs identified by other existing ap-
proaches (CA, PaCA, and SRA). In the case of the existing
approaches, the downscaled result shows inconsistent per-
formance. Certain studies comparing the abovementioned
existing approaches for different regions have depicted sim-
ilar results (Yang et al. 2016, 2017). PCVs identified by a
particular approach may provide better performance for cer-
tain months of analysis and a specific location; however,
PCVs identified by no one approach provides consistent per-
formance throughout all months and locations. However, the
comparison of mean, variance, and probability distribution
of the downscaled and observed data shows that the PCVs
identified through the proposed GM approach helps to obtain
consistent and robust results considering different seasons at
each station located in varying climatic regions. The pro-
posed GM approach provides a complete conditional inde-
pendence structure, eliminating the information on indepen-
dent and conditionally independent variables, which can be
efficiently used for selection of the PCVs. Thereby, the pro-
posed GM approach can be promising to identify the PCVs
for downscaling models to tackle the significant spatio-
temporal variation in hydroclimatic association. The error
in the downscaled results can be reduced by using different
downscaling methodologies. Further studies can be carried
out by varying the large pool of associated variables initially
considered, using downscaling models with higher

efficiency and considering the time-varying association
among the casual and target variables.
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79/2017(G)), through a sponsored project.

Appendix 1. Mathematical details
of correlation analysis, partial correlation
analysis, and stepwise regression analysis

Appendix 1.1. Correlation analysis

The correlation analysis (CA) is the most commonly used
approach for selection of the PCVs. Strong correlation of the
causal variables, from a pool of possibly associated
hydroclimatic variables, with the target variable is the most
basic criteria for selection of PCVs. In this approach, the se-
lection is governed by the correlation coefficient between the
associated variables and the target variable to be downscaled.
A certain value of the correlation coefficient is considered the
threshold value and all the associated variables having equal
or higher correlation are considered the PCVs for downscal-
ing. Pearson’s correlation coefficient is used in this study and
the same can be expressed as follows,

rxy ¼
∑
n

i¼1
xi−x

� 	
yi−y

� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
xi−x

� 	2
∑
n

i¼1
yi−y

� 	2
r ð5Þ

where rxy is Pearson’s correlation coefficient between the as-
sociated variables (X) and predictand (Y), n is the number of
observations, xi and yi are the observations of X and Y respec-
tively, and x and y are the means ofX and Y respectively. The p
value is evaluated, considering the correlation coefficient to
follow t distribution at 95 % confidence level with n − 2

Fig. 7 p values (probability scale)
of Kolmogorov-Smirnov
goodness-of-fit test to compare
the distributions of observed and
downscaled precipitation obtain-
ed using PCVs identified by the
proposed GM and existing ap-
proaches at different stations.
Results are shown for a SDSM
and b SVR as the downscaling
model. The higher the p value, the
better is the performance of the
model for a particular month
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degrees of freedom. The causal variables with p value greater
than 0.05 are recommended to select as the PCVs of the sta-
tistical downscaling model.

Appendix 1.2. Partial correlation analysis

Partial correlation is the measure of association between two
variables (a particular associated variable and target variable),
while controlling the effect of other associated variables. The
partial correlation analysis (PaCA) can be used to identify the
PCVs for downscaling as it adjusts the effect of other associ-
ated variables. The partial correlation coefficient between two
variables controlling the third variable can be expressed as
follows,

rxy;z ¼ rxy−rxzryzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−r2xz
� �

1−r2yz
� 	r ð6Þ

where rxy, z is the partial correlation between two vari-
ables X and Y when the third variable Z is controlled
and rxy, rxz, ryz is the correlation coefficient between X
and Y, X and Z, and Y and Z respectively. The p value
is evaluated, considering the partial correlation coefficient
to follow t distribution at 95% confidence level with n − 3
degrees of freedom. The causal variables with p value
greater than 0.05 are recommended to select as the
PCVs of the statistical downscaling model.

Appendix 1.3. Stepwise regression analysis

The stepwise regression analysis (SRA) is a method of
fitting a regression model by stepwise removal of the least
significant variables until all the remaining variables are
significant. This method is often used for selection of
PCVs when a large number of associated variables are
available and to deal with issues related to multi-collin-
earity. In this technique, initially all the causal variables
are considered in the model. At each step of the analysis,
a variable is included or excluded from the model usually
based on the partial F-tests. If F is greater than the critical
F value, the causal variables can be included in the equa-
tion. The partial F statistic can be expressed as follows,

F ¼
R2
q−R

2
q−1

� 	
n−q−1ð Þ

1−R2
q

� 	 ð7Þ

where R is the correlation coefficient between a criteria
variable and prediction equation, q is the number of caus-
al variables in the equation, and n is as defined before. If
the test statistic is less than the critical F value at 95%
confidence level with degree of freedom (n − q − 1), the
causal variables should be excluded from the equation.

The causal variables with p value greater than 0.05 are
recommended to select as the PCVs of the statistical
downscaling model.
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