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Abstract
Availability of increasing information and digital meteorological data leads to an opportunity for better simulations/predic-
tion of complex hydroclimatic phenomena. However, volume and size of such data and underlying complex association pose 
many challenges to traditional approaches. This study focuses on the potential of a hybrid deep learning (DL) approach, a 
combination of one-dimensional convolutional neural network (Conv1D) and long short-term memory (LSTM) neural net-
work (hereinafter hybrid Conv1D-LSTM), for multi-step-ahead (1-day to 10-day) daily maximum temperature prediction. 
The proposed approach is applied to twenty-eight major cities in India, located in different climate regimes, to explore its 
potential to predict the daily maximum temperature and to foresee the heatwave events. Seven meteorological precursors, 
closely associated with daily temperature variation along with the month index are used as input and the proposed approach 
is expected to efficiently learn the complex relationship between the precursors and daily maximum temperature. Apart from 
its alluring performance in predicting the daily maximum temperature, the results also show some promise to raise an alert 
for the upcoming heatwaves. The performance of the proposed hybrid model is also compared with other machine learning 
(ML), DL-based approaches, and three popular weather applications (weather apps) that help to portray the superiority of 
the proposed hybrid DL–based approach.

1 Introduction

It is observed that the global average temperatures have 
shown a warming trend of about 0.85 °C in the past century 
due to climate change and are expected to increase by upto 
5.5 °C by the end of the twenty-first century (IPCC 2013; 
Mazdiyasni et al. 2017; Rohini et al. 2016). Considering the 
Indian mainland, a rise in the mean annual temperature of 
about 0.51 °C with an increase in warm days is observed 
during the period 1961–2007 (Kothawale et al. 2010). The 
change in mean value of maximum temperature may cause 
an increase in temperature extremes and thereby lead to a 
heatwave event, an unusual extreme temperature prevailing 
over for days in a region with serious consequences. Maxi-
mum temperature plays a crucial role in managing several 
activities ranging from ecosystem to hydrological system to 
social welfare, required for the prosperity of a nation, such 

as preparedness against heatwave, crop failure, and wild fire 
(Mazdiyasni et al. 2017; Murari et al. 2015). Therefore, con-
sidering the expected increase in temperature and its result-
ing calamitous consequences under the changing climate, 
there is always a need to improve the quality of daily maxi-
mum temperature prediction at a region of interest (Ma et al. 
2015; Vasseur et al. 2014).

The variation in daily maximum temperature of a place 
is affected by numerous uncertain factors viz. local altitude, 
latitude, land use land cover, wind pattern, and even ocean 
currents and distance from the sea, in case of coastal areas. 
Several studies have been carried out in the recent past to 
forecast maximum temperature, minimum temperature, and 
average temperature at various spatio-temporal scale. Many 
of them requires an exhaustive information about the physi-
cal processes viz. laws of physics, atmospheric chemistry, 
and fluid motion, making the simulations computation-
ally intensive (Luk et al. 2000). Whereas some approaches 
implicitly consider the inherent physical processes with-
out any explicit requirement as it is in case of conceptual 
and physical models, e.g., data-driven approaches (DDAs) 
(Cifuentes et  al. 2020; Scher 2018; Tran et  al. 2021). 
Recent growth in data records and computational power 
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has enhanced the potential of DDAs, particularly artificial 
intelligence (AI)-based machine learning (ML) approaches. 
These approaches have proven their potential in understand-
ing many complex phenomenon such as speech recogni-
tion, natural language processing, and image analysis and 
are gradually paving their way in complex hydrological 
processes (Khan and Maity 2020; Kratzert et al. 2019b; 
Krizhevsky et al. 2012; LeCun et al. 2015; Liu et al. 2017; 
Maity et al. 2021; Nearing et al. 2021; Pan et al. 2019). 
Among several ML approaches, deep learning (DL), a name 
coined to a new subset of ML, is the recently popularized 
DDA which has an ability to learn high-level abstractions 
from the raw data features without any human expertise and 
contribute information to the model by using its hierarchical 
architecture. DL-based models have high model efficiency, 
processing capability, and potential in capturing complex 
associations between input features and the target variables 
from a cluster of available data sources which is beyond the 
capabilities of older ML models (Khan and Maity 2020; 
LeCun et al. 2015; Maity et al. 2021; Matsuoka et al. 2020, 
2018).

In the domain of hydroclimatic analysis and modelling, 
during the recent decade, a number of studies have demon-
strated the effectiveness of DL algorithms over traditional/
existing ML approaches in forecasting/simulating hydrocli-
matic variables such as temperature, streamflow, soil mois-
ture, rainfall, and wind speed at various spatio-temporal 
scales. To discuss a few, Liu et al. (2016) proposed a two-
dimensional convolutional neural network (CNN) model to 
extract the weather information from the climate dataset. 
The study was also successful in identifying the weather 
extremes. Hu et al. (2018) simulated rainfall-runoff process 
with the help of long short term memory neural network 
(LSTM) and compared the performance with other artificial 
neural networks (ANNs) and were found better. Wang and 
Li (2018) also showed the potential of LSTM in forecasting 
wind speed. Khan and Maity (2020) designed a DL-based 
hybrid architecture comprising of one-dimensional CNN 
(Conv1D) and multi-layer perceptron (MLP) to forecast 
multi-step ahead daily rainfall. The performance of the pro-
posed hybrid model was also compared with two other popu-
lar ML approaches viz. MLP and support vector regression 
(SVR) and was found better. Fu et al. (2020) analyzed the 
potential of DL-based LSTM model in forecasting another 
hydroclimatic variable, i.e., streamflow, at daily scale. The 
accuracy of the developed LSTM model was tested with 
backpropagation neural network model and was found better. 
Fang et al. (2021) also showed the effectiveness of LSTM 
model in making prediction of two dynamic hydroclimatic 
variables viz. soil moisture and streamflow by incorporating 
data synergy method with DL. The proposed approach was 
successful in developing a more robust model by pooling a 
large dataset irrespective of the region homogeneity, i.e., a 

single model was trained on the whole dataset rather than 
training the model on region wise dataset. Thus, the study 
presents a scope of unification of the several meteorological 
data with DL to overcome the shortage of data in making 
prediction at a particular region. Similarly, several studies 
have been attempted to forecast hydroclimatic variables at 
different spatio-temporal scales in different regions of the 
globe (Cai et al. 2019; Chattopadhyay et al. 2020; Ham et al. 
2019; Liu et al. 2018; Matsuoka et al. 2018; Oh et al. 2020; 
Scher 2018; Shen et al. 2019; Shi et al. 2016; Sun and Tang 
2020; etc.).

Apart from the aforesaid literatures, studies specifically 
related to temperature forecasting have also been carried 
out in the recent decade, using AI-based ML/DL DDAs 
(Cifuentes et al. 2020; Tran et al. 2021). For instance, Kisi 
and Shiri (2014) assessed the potential of adaptive neuro-
fuzzy inference system (ANFIS) and ANN in predicting 
monthly air temperature in Iran. In this study, four geo-
graphical inputs viz. station latitude, longitude, and alti-
tude, and month number of the year (periodicity) are used 
as input to the model and monthly averaged air tempera-
ture was estimated. In order to perform the training of the 
model, 14 years of data from 20 weather stations are uti-
lized and the performance was assessed on ten other weather 
stations. The testing performance of both the models are 
analyzed using coefficient of determination and root mean 
square error (RMSE) and ANN having a lower RMSE (i.e., 
in the range of 1.53 to 4.20 °C) across all the 10 testing 
stations is found better. Kisi and Sanikhani (2015) carried 
out another study to evaluate the performance of five differ-
ent DDAs viz. gene expression programming (GEP), ANN, 
support vector regression (SVR), ANFIS with subtractive 
clustering (SC), and ANFIS with grid partition (GP), using 
50 weather station data of Iran. The authors utilized the 
same set of geographical inputs, as mentioned in the previ-
ous study, for training. The result of the analysis shows a 
clear dominance of the SVR model over other models in 
terms of lower RMSE, ranging between 0.63 and 2.17 °C. 
Salcedo-Sanz et al. (2016) compared the performance of 
two popular regression ML algorithm namely SVR and 
MLP by predicting monthly mean air temperature at ten 
stations, eight located in Australia and two in New Zealand. 
In this study, time series data of past monthly average tem-
perature, two dummy variables, and three climate indices 
viz. Indian ocean dipole (IOD), pacific decadal oscillation 
(PDO), and southern oscillation index (SOI) were used to 
train the model to predict next month average temperature. 
The result was assessed using mean absolute error (MAE), 
which showed that SVR yielded better performance (0.73 
to 1.33 °C). Papacharalampous et al. (2018) evaluated the 
performance of SVR and MLP model along with four other 
classical algorithms by predicting monthly temperature 
and precipitation in Greece. The study mainly focuses on 
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the performance of the ML models in predicting both the 
hydroclimatic variables at 1 month and 12 months lead. It 
was concluded that performance of ML and classical model 
depends on the criteria of interest and limitations imposed in 
the study and both can be equally good. The RMSE obtained 
by the models in case of temperature prediction at 1 month 
and 12-month lead ranges between 0.66 to 1 °C and 1.14 
to 1.70 °C respectively. Likewise, in the case of precipita-
tion prediction, RMSE values at 1 month and 12-month lead 
ranges between 39 to 72 mm and 41 to 52 mm respectively. 
Zhang et al. (2020) forecasted the daily average value of 
temperature using a hybrid of CNN and recurrent neural 
network (RNN) for mainland China. The model reported 
an RMSE of 1.67 °C during the testing period. Tran et al. 
(2020) compared the performance of three different neu-
ral networks viz. ANN, RNN, and LSTM, optimized using 
genetic algorithm (GA), in predicting daily maximum 
temperature in four different seasons at Cheongju station 
in South Korea. The study aimed to predict the maximum 
temperature at 15 different lead times (1-day to 15-day) 
using 40 years of only maximum temperature time series 
data. Among the three aforesaid models, GA-based LSTM 
was found performing better in terms of RMSE values. The 
lowest RMSE of 2.36 °C was achieved by the best model at 
1-day lead during the summer season. Kreuzer et al. (2020) 
proposes a hybrid of two-dimensional CNN and LSTM 
to forecast hourly temperature up to 24 h. The proposed 
approach was applied to five different weather stations in 
Germany and was found better than the seasonal autore-
gressive integrated moving average (SARIMA), LSTM, and 
Naïve forecast, especially at longer leads. The author also 
showed the forecast at daily scale (24-h advance) by aver-
aging the hourly performance of the model and achieved a 
RMSE of 2.10 °C.

Summarizing the aforesaid literatures, it can be observed 
that performance of DL models is better than other models. 
However, a reasonably higher value of RMSE and feeding of 
limited input variables to models creates a scope for improv-
ing the model performance. This forms the motivation of the 
study which aims to propose a suitable hybrid DL model to 
predict daily maximum temperature in major cities of India. 
Therefore, an analysis is carried out to test the performance 
with individual DL models and thereafter by combining two 
best performing DL models (i.e., hybrid model), which may 
enhance the performance by considering different aspects 
of modelling of different modules of DL approaches (Khan 
and Maity 2020). Furthermore, the potentials of DL is used 
to foresee the temperature-related weather hazards through 
the prediction of daily maximum temperature. This is in the 
focus of this study. Thus, the objective of this study is to 
develop a location-specific hybrid DL approach for predict-
ing maximum daily temperature for 1-day to 10-day-ahead 
and to foresee the heatwave events, if any. The performance 

of hybrid model is also compared with LSTM, Conv1D, 
MLP, SVR, and with the performance of three popular 
weather apps, namely AccuWeather, real-time weather sys-
tem, and weather underground to investigate the benefit of 
the proposed hybrid DL approach.

2  Study area and data

Twenty-eight major cities located in different states of India 
are considered in this study. Location of these cities are 
shown in Fig. 1. India is a vast country that spans over a 
wide range of climatological conditions. According to Kop-
pen climate classification, the climate of India is categorized 
into six main subcategories. The temperature at a place in 
the country is classified according to the season that com-
prises of mainly summer, winter, and rainy season. Indian 
subcontinent is extremely hot and the maximum tempera-
ture at many locations in the country experiences a very 
hot climate where the daily maximum temperature crosses 
40 °C and heatwaves are common in summer season at many 
places as evidenced in the recent past.

We considered daily maximum temperature from 1979 
to 2020 for the analysis. Seven meteorological variables 
at daily scale, are considered input to the model (Table 1). 
These are lagged (previous 4  days) values of outgoing 
longwave radiation (W/m2), relative humidity, resultant of 
zonal and meridional wind speed (m/s), sea level pressure 
(kPa) and rainfall (mm), maximum temperature (°C), and 
solar radiation (J/m2). In addition, month index, i.e., 1 for 
January, 2 for February, is also used as an input. Out of 
these variables, rainfall and maximum temperature values 
are observed records, converted to gridded products with 
a spatial resolution of 0.25° (latitude) × 0.25° (longitude) 
and 1° (latitude) × 1° (longitude), respectively. These are 
obtained from the India Meteorological Department (IMD) 
(URL: https:// www. imdpu ne. gov. in/ Clim_ Pred_ LRF_ New/ 
Grided_ Data_ Downl oad. html, accessed in February 2022). 
Other causal variables are the reanalysis products, obtained 
from the fifth generation European Centre for Medium-
Range Weather Forecasts (ECMWF), popularly known as 
ERA-5 with a spatial resolution of 0.25° (latitude) × 0.25° 
(longitude) (ERA5, URL: https:// www. ecmwf. int/ en/ forec 
asts/ datas ets/ reana lysis- datas ets/ era5, accessed in February 
2022).

3  Methodology

3.1  Data preparation

The preparation of dataset and its handling are entirely 
carried out in scientific python development environment 
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(spyder) notebook. The values of meteorological pre-
cursors, at a specific city, are computed through inverse 
distance weighting (IDW) method from its nearest neigh-
bouring four grid intersections. The values obtained from 
ERA5 are converted to daily scale, since they are obtained 
at hourly scale, and are then normalized between 0 and 1 
to avoid the problem of scaling between different input 
features. Next, the dataset is split into k (k = 5) parts 

(folds), i.e., each fold contains an approximate of 20% of 
the total dataset, in order to perform fivefold cross valida-
tion (CV) of the model. Thereafter, the model is repeat-
edly train using the aforementioned seven meteorological 
precursors and the month index on (k-1) fold (i.e., 80% of 
the data) and is tested on the kth fold (i.e., 20% of the data) 
to predict the daily maximum temperature with a lead time 
of 1-day to 10-day.

Fig. 1  Study area map showing the location of twenty-eight major cities located in different states of India
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3.2  Proposed hybrid Conv1D‑LSTM model

The proposed DL model is a hybrid composition of one-
dimensional convolutional neural network (CNN), hence-
forth Conv1D, and long short-term memory (LSTM) neural 
network architecture. It is of a sequential type as shown in 
Fig. 2, and it is developed using a Keras library, built on the 

top of tensorflow used for large scale DL algorithms, in the 
spyder notebook.

The Conv1D comprises of three layers, i.e., an input 
layer, hidden layers, and an output layer. The input layer 
is the first layer of the model which feeds the input to the 
model and is of Conv1D type. It comprises of filters, ker-
nel size, activation function, kernel initializer, and input 

Table 1  Details of the hydrometeorological dataset used in this study

Dataset
(1979–2020)

Variables Spatial resolution Vertical/pressure level Units

ERA5 hourly data on single levels Mean sea level pressure 0.25° × 0.25° Surface Pa
Long wave radiation flux 0.25° × 0.25° Surface W/m.2

Solar radiation 0.25° × 0.25° Surface J/m.2

10-m u-wind (zonal) 0.25° × 0.25° 10-m above surface m/s
10-m v-wind (meridional) 0.25° × 0.25° 10-m above surface m/s

ERA5 hourly data on pressure levels Relative humidity 0.25° × 0.25° 1000 hPa %
IMD gridded data Rainfall 0.25° × 0.25° Surface mm

Maximum air temperature 0.1° × 0.1° Surface °C

Fig. 2  Schematic representation of the proposed hybrid Conv1D-LSTM model architecture and its workflow
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shape. Next, the hidden layers are added that vary in types 
as well as in numbers. Finally, the output layer is added.

Each Conv1D layer is the building component of model. 
These are also known as the computational engine of the 
model. The configurations (except input shape argument) 
and functions of all Conv1D layers are the same as that of 
the input layer. It consists of 1-D filter to extract the com-
plex features from the input dataset. Though it is 1-D by 
name, the width of the filter by default captures the entire 
width of input shape at a time step and height can vary 
according to the provided input shape.

After the Conv1D layers, a max-pooling/dropout layer 
(if used) is used after the Conv1D layer. Max-pooling 
layer reduces the dimensionality and thereby avoids the 
complexity of the model output. Dropout layer helps in 
improving the overfitting/underfitting of the model on the 
testing dataset by assigning zero weights to the less con-
tributing neurons (Srivastava et al. 2014). A more detailed 
background about Conv1D can be found in Kiranyaz et al. 
(2019) and Khan and Maity (2020).

In the proposed hybrid model architecture, a network 
of LSTM layers is added after the Conv1D layers. The 
layers of LSTM have memory units that are responsible 
for remembering the information from the inputs passing 
through the layer and deciding which information is to be 
memorized and kept, and which is to be forgotten. The 
first layer of LSTM receives the inputs from the last layer 
of Conv1D. Return sequence, kernel initializers, and acti-
vation functions are some of the hyper-parameters in the 
LSTM layers. The return sequence has Boolean value, i.e., 
either true or false. True value keeps the same dimension 
of the input data of the proceeding layer and the false value 
changes the dimension to 1D form to move the output to 
the fully connected dense/dropout layer. The LSTM net-
work may or may not have dropout layer(s), depending on 
the need of the model. A more detailed background about 
the LSTM can be found in Hochreiter and Schmidhuber 
(1997). After the Conv1D and LSTM networks, a output 
layer is added to the model. It is a type of fully connected 
dense layer responsible for providing the outputs.

The aforesaid several parameters/hyper-parameters of 
the hybrid model need to be configured properly depend-
ing on the problem at hand. The details are provided in 
the next section (Section 3.3). Once the layers are config-
ured, the input features are mapped to the target feature to 
learn their associations. This process involves adjustments 
of hyper-parameters by observing the loss function. The 
loss functions are defined to measure the error between 
observed and the modeled value of training and valida-
tion data at each time step. Once the model validation is 
completed, the model is ready for further application to 
new data (testing data).

3.3  Model parameters/configurations

In order to obtain a reliable model, several combinations 
of model hyper-parameters are to be examined, such as 
number of filters, kernel size, hidden layers, dropout rate, 
and LSTM units. Similarly, several hyper-parameters, 
such as learning rate, decay rate, momentum rate, num-
ber of epochs, batch size, kernel initializer, loss function, 
and activation function, are also optimized to ascertain 
the stability of the neural network across all the cities. 
Once finalized, the model configuration is kept unchanged 
across all the cities.

Memory blocks of LSTM layers are more wiser than 
the classic neurons as it memorizes the sequence of the 
time series, also known as serial dependency (Hochreiter 
and Schmidhuber 1997). It uses the sigmoid activation 
function and a pointwise multiplication operation for flow 
and change of information within the cell state. Memories 
perform the mapping of an input sequence to a target/out-
put sequence using the Eqs. 1, 2, 3, 4, 5, and 6 with the 
help of three gates. Three different types of gates within 
a memory unit are as follows: (a) forget gate: condition-
ally take control of the unwanted information, (b) input 
gate: conditionally selects information from the input 
sequence to update the memory/cell state, and (c) output 
gate: responsible for giving the output after analyzing the 
conditions of the input and the memory cells.

In these equations, it, ft and ot are the outputs of three 
sigmoid functions and their values range between 0 and 1. 
They control the stored information in the new cell state 
(C̃t) , forgotten information in old cell state (Ct−1) , and 
the output information to the cell (ht) , respectively. Xt is 
the input given to the memory block at time instant t  and 
ht−1 is the output of the previous cell, and Wi, Wf ,Wc,W0, 
bi, bf , bc, b0 are their corresponding weights and biases.

(1)it = �
(

Wi.
[

ht−1, Xt

]

+ bi
)

(2)C̃t = 𝑡𝑎𝑛h
(

Wc

[

ht−1,Xt

]

+ bc
)

(3)it = �
(

Wi.
[

ht−1, Xt

]

+ bi
)

(4)Ct = it ∗ C̃t + ft ∗ Ct−1

(5)ot = �
(

W0

[

ht−1, Xt

]

+ b0
)

(6)ht = ot ∗ ���h
(

Ct

)
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3.4  Comparison with other models

The effectiveness of hybrid Conv1D-LSTM model is vali-
dated by comparing it with four other popular approaches 
widely used for the prediction of hydroclimatic variables. 
These are long short-term memory (LSTM) neural network, 
1-dimensional convolutional neural network (Conv1D), 
multilayer perceptron (MLP), and support vector regres-
sion (SVR). These models are briefly described here. The 
designed structure of LSTM, Conv1D, and MLP, a DL-
based algorithm, also contains three categories of layer, i.e., 
an input layer for receiving the input data, hidden layers for 
computation, and an output layer for receiving the predicted 
values.

The models are developed and configured in the same 
spyder environment using the Keras library with same pro-
portion of training, validation, and testing dataset as that of 
proposed hybrid model. After successful configuration of all 
the layers of these models, the input data sets are mapped 
to the output data to learn the hidden associations in them 
(Livingstone 2008). The models are used for making pre-
dictions once training and validation are completed. More 
details about the working of these approaches can be found 
elsewhere (Haidar and Verma 2018; Kashid and Maity 2012; 
Khan and Maity 2020; Kiranyaz et al. 2019; Kratzert et al. 
2019a; Maity et al. 2021).

The fourth model used for comparison is the ML-based 
SVR model, which is a regression form of support vectors 
in support vector machine (SVM) (Drucker et al. 1996). The 
modelling of SVR is performed by using the scikit-learn 
library, available in python. The optimization of SVR model 
is carried out by using cost function (C) and regularization 
parameter (γ) of the radial basis function (RBF) (Choy and 
Chan 2003). The details about its working principle may be 
found in the existing literature (Bhagwat and Maity 2014 and 
Drucker et al. 1996).

The prediction of maximum temperature by the proposed 
hybrid model is compared with the aforementioned mod-
els using three performance metrics, namely coefficient 
of correlation (CC), root mean square error (RMSE), and 
Nash–Sutcliffe efficiency (NSE). Apart from these, the 
prediction skill is also investigated in terms of identifying 
upcoming heatwaves, which is discussed later.

4  Results and discussion

4.1  Model configuration and calibration

In the proposed model, the finalized architecture comprises 
of eight layers (Fig. 2), whose configurations are discussed 
as follows. The prepared set of seven causal variables and 
month index are fed as input to the first layer. The input 

shape is arranged in a three-dimensional tensor form. It con-
tains values from 4 previous time steps (days) of each causal 
variable and the month index. The first layer of the model, 
i.e., Conv1D layer, helps to identify the pattern and extract 
the hidden information in the input sequence. It comprises of 
224 filters, kernel size/stride of 1, Glorot uniform kernel ini-
tializer (aka Xavier uniform initializer), input shape, and rec-
tified linear unit (ReLU) activation function. Kernel/stride 
size signifies the height of the filter, and activation func-
tion is responsible for neuron’s output. A threshold value 
is set by the activation function on the basis of the input 
and output data and is to be achieved by the neuron before 
it moves to the subsequent layer. The second layer added 
to the hybrid model is also a Conv1D layer, comprising of 
192 filters and same kernel/stride size, kernel initializer, and 
activation function as that of the first Conv1D layer. After 
providing two consecutive Conv1D layers, a dropout layer 
(dropout rate = 0.30) is added as the third layer. Dropout 
layer reduces the chances of overfitting and complexity in 
the model as it ignores the weight of each dropout neuron 
during the backward pass of training (Srivastava et al. 2014). 
Next, three consecutive layers LSTM are added as a fourth, 
fifth, and sixth layer in the model architecture having same 
kernel initializer and activation function as that of Conv1D 
layers and 64 number of memory cells.

Next, a dropout layer having 10% of dropout rate (i.e., 
0.10) is added in the LSTM network as a seventh layer. It is 
followed by a fully connected dense layer, i.e., output layer 
(eighth layer), consisting of ten neurons, which is added to 
the model. These ten neurons provide the 1-day to 10-day 
lead forecast of maximum temperature.

Having configured the different layers of the network 
architecture, the model is compiled with a batch size of 60 
and 550 epochs. The mean absolute error (MAE) is defined 
as a loss function, and Adam optimizer function (learning 
rate = 0.0001, momentum rate 0.9, and decay rate 1 ×  10−7) 
of stochastic gradient descent is adopted for training and 
validation of the proposed hybrid model. A proper observa-
tion of MAE was done during the training and validation 
period to avoid chances (if any) of overfitting/underfitting of 
the hybrid Conv1D-LSTM model. After successful training 
of the model, the testing dataset is used to assess the model 
performance. The aforesaid process is repeated for each fold, 
i.e., the model is trained on (k − 1) folds and is tested on kth 
fold; hence, the robustness of the model is checked.

4.2  Prediction of multi‑step ahead (1‑day to 10‑day) 
daily maximum temperature

The proposed DL-based hybrid Conv1D-LSTM model is 
applied to twenty-eight selected cities across India to predict 
the multi-step (1-day to 10-day) ahead daily maximum tem-
perature. The model is trained using hydrometeorological 
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precursors as inputs and daily maximum temperature, for the 
next 10 days, as output. Table 2 shows the average perfor-
mance obtained across five folds for 1-day ahead prediction 
through CC, RMSE, and NSE, obtained at all twenty-eight 
cities. It also presents the values of these performance met-
rics for other four models used for comparison, i.e., LSTM, 
Conv1D, MLP, and SVR model. It is observed that the SVR 
model is the least performing model showing the highest 
range of RMSE values (0.74 to 1.64 °C), lowest range of 
CC (0.90 to 0.98) and NSE (0.80 to 0.95), respectively, dur-
ing the training phase. Moreover, its performance on testing 
dataset is also poorer than the other models. The values of 
the performance metrics during testing period are noticed 
to be in the range of 0.75 to 1.70 °C (RMSE), 0.89 to 0.97 
(CC), and 0.79 to 0.95 (NSE).

Next, the performances of MLP and Conv1D are com-
pared. It is noticed that the performance of Conv1D model 
varies marginally to reasonably better than MLP across all 
twenty-eight cities. An investigation of quality of the per-
formance by both the models leads to a summary as follows: 
the RMSE — 0.61 to 1.44 °C by Conv1D and 0.63 to 1.74 °C 
by MLP, CC — 0.93 to 0.99 by Conv1D and 0.93 to 0.98 
by MLP, and NSE — 0.83 to 0.96 by Conv1D and 0.83 to 
0.95 by MLP during the training period. During the testing 
period, RMSE ranges from 0.68 to 1.58 °C, CC ranges from 
0.91 to 0.98, and NSE ranges from 0.83 to 0.96 in case of 
Conv1D, whereas these ranges (in same order) are 0.68 to 
1.85 °C, 0.91 to 0.98, and 0.65 to 0.93, respectively, in case 
of MLP. Hence, from the aforementioned statistics, a lower 
RMSE value of the Conv1D model establishes the better 
performance of the model across all the cities.

Having established the better performance of the Conv1D 
model over MLP and SVR, its performance is compared with 
LSTM. It is observed that the performance of the Conv1D 
model is better than LSTM model in most of the cities except 
Bengaluru, Jaipur, New Delhi, Patna, and Ranchi. Although 
it is difficult to segregate the model performance of the cities 
based on local climatological conditions and geographical 
locations, an investigation of the performances metrics por-
trays the superiority of LSTM over Conv1D and vice versa 
at selected cities. The range of values of three performance 
metrics obtained during the evaluation of LSTM model is 
as follows: RMSE ranges from 0.63 to 1.39 °C, CC ranges 
from 0.90 to 0.98, and NSE 0.85 to 0.97 during the training 
period. Likewise, RMSE ranging from 0.73 to 1.52 °C, CC 
ranging from 0.90 to 0.98, and NSE ranging from 0.80 to 
0.96 are obtained during the testing period.

In contrast to the performance of the aforementioned four 
comparative models, the performance of the proposed hybrid 
Conv1D-LSTM model is observed to be the best in terms of 
its accuracy in capturing the magnitude of daily maximum 
temperature at all the cities. The comparison indicates that 
the improvement achieved by the hybrid Conv1D-LSTM 

model varies from “marginally” to “reasonably” across 
different cities. It is observed from Table 2 that CC values 
range from 0.92 to 0.98, NSE values range from 0.84 to 
0.97, and RMSE values range from 0.65 to 1.40 °C during 
the training period, whereas these values (in the same order) 
range from 0.91 to 0.98, 0.83 to 0.96, and 0.68 to 1.49 °C 
with the testing dataset. Evidently, the performance of the 
hybrid Conv1D-LSTM is the best in all the cities.

For a visual impression of the performance, scatter plots 
between the observed and the modelled values are plotted 
for each pair of training and testing folds for all twenty-eight 
cities. However, for the brevity of presentation, a tradition-
ally hot weather city (Jaipur) is considered for illustration. 
The model performance is shown in Fig. 3 that comprises 
of 3 sub parts. The part (i) shows the scatter plots between 
observed and predicted values of daily maximum tempera-
ture (1-day ahead) by all five models during the training 
period. The training period shown in the figure comprises 
of dataset from fold1 to fold4. Next, part (ii) shows a scat-
ter plot, similar to the part (i) but for the testing period, 
i.e., performance of the model on unseen dataset, fold1. In 
addition to the above two scatter plots, another visualization, 
summarizing the performance of the testing dataset across 
all folds, is shown in Fig. 3 part (iii). It shows a scatter plot 
between the observed and the predicted maximum tempera-
ture (1-day lead) obtained by combining the performance of 
all the testing folds (fold 1 to fold 5). Apart from the general 
correspondence between observed and predicted values, it is 
further noticed that the range of daily maximum temperature 
extremes is better captured by the proposed hybrid model, 
whereas LSTM, Conv1D, SVR, and MLP models are not 
as efficient as the proposed one in capturing the same. This 
observation is more or less true for other cities also and it 
motivates to an investigation on the performance towards 
the assessment of the models in foreseeing the heatwaves.

However, so far, the discussion pertains to the 1-day 
ahead performance. The benefit of the proposed hybrid 
Conv1D-LSTM model is better realized in case of longer 
lead times (2- to 10- day ahead predictions. Thus, the results 
for all the lead times (1-day to 10-day ahead) prediction 
are investigated using the same performance metrics. The 
performance metrics values during training and testing 
period for all 10 lead times at all the selected cities are com-
puted. As a typical case, a summary of the performance in 
terms of the statistical metrics viz. CC, RMSE, and NSE is 
graphically presented in case of the Jaipur city for all the 
lead times and for all the models (Fig. 4). The error bar 
in the figure indicates the variation in the performance of 
the models across different folds. In general, it is noticed 
that the model performances are gradually decreasing with 
the increase in the lead time of prediction, i.e., from 1-day 
to 10-day. However, a faster decrease is noticed in case of 
LSTM, Conv1D, MLP, and SVR as compared to proposed 
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Table 2  Performance 
statistics obtained at 1-day 
lead in predicting maximum 
temperature by the proposed 
model along with the other 
models used for comparison, 
during training (Tr) and testing 
(Ts) period. Each cell shows the 
averaged value (fold1 to fold 5) 
of CC, RMSE, and NSE from 
top to bottom

City hybrid
Conv1D-
LSTM

LSTM Conv1D MLP SVR

Tr Ts Tr Ts Tr Ts Tr Ts Tr Ts

Agartala 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.94 0.94
0.91 0.97 0.90 1.00 0.90 0.98 0.93 1.01 1.09 1.10
0.92 0.91 0.92 0.90 0.92 0.90 0.91 0.90 0.88 0.88

Aizawl 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.94 0.94
0.97 1.03 0.98 1.08 0.96 1.03 0.97 1.07 1.15 1.16
0.91 0.90 0.91 0.89 0.92 0.90 0.91 0.89 0.88 0.88

Bengaluru 0.96 0.96 0.96 0.95 0.96 0.96 0.97 0.96 0.95 0.95
0.78 0.85 0.79 0.89 0.76 0.84 0.77 0.86 0.90 0.92
0.92 0.91 0.92 0.90 0.93 0.91 0.93 0.91 0.90 0.90

Bhopal 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.97
1.05 1.14 1.07 1.20 1.07 1.20 1.14 1.26 1.32 1.36
0.96 0.96 0.96 0.95 0.96 0.95 0.96 0.95 0.94 0.94

Bhubaneswar 0.96 0.95 0.96 0.94 0.96 0.95 0.96 0.95 0.93 0.93
0.95 1.01 0.98 1.08 0.94 1.02 0.91 1.01 1.17 1.19
0.91 0.90 0.91 0.89 0.92 0.90 0.92 0.90 0.87 0.86

Chandigarh 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.97
1.24 1.34 1.27 1.42 1.27 1.41 1.42 1.54 1.52 1.56
0.96 0.96 0.96 0.95 0.96 0.95 0.95 0.94 0.95 0.94

Chennai 0.96 0.96 0.97 0.95 0.96 0.96 0.97 0.96 0.94 0.94
0.90 0.96 0.90 1.02 0.90 0.98 0.89 0.98 1.11 1.13
0.93 0.92 0.93 0.91 0.93 0.91 0.93 0.91 0.89 0.89

Dehradun 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.97 0.97
1.23 1.31 1.23 1.35 1.22 1.34 1.38 1.50 1.46 1.49
0.95 0.95 0.95 0.94 0.95 0.94 0.94 0.93 0.93 0.93

Gandhinagar 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.96 0.96
0.93 1.02 0.95 1.07 0.94 1.05 0.97 1.09 1.19 1.22
0.96 0.95 0.95 0.94 0.96 0.94 0.95 0.94 0.93 0.92

Gangtok 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.94 0.94
1.08 1.13 1.04 1.19 1.05 1.14 1.06 1.17 1.23 1.24
0.91 0.90 0.92 0.89 0.92 0.90 0.91 0.90 0.88 0.88

Guwahati 0.96 0.96 0.96 0.95 0.96 0.95 0.97 0.96 0.95 0.94
0.99 1.04 0.98 1.09 0.99 1.07 1.00 1.09 1.18 1.19
0.92 0.91 0.93 0.91 0.92 0.91 0.92 0.91 0.89 0.89

Hyderabad 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.97 0.96 0.96
0.95 1.01 0.96 1.09 0.95 1.04 0.99 1.08 1.17 1.19
0.95 0.94 0.94 0.93 0.95 0.93 0.94 0.93 0.92 0.91

Imphal 0.94 0.94 0.95 0.93 0.94 0.94 0.95 0.93 0.92 0.92
1.12 1.19 1.11 1.26 1.10 1.18 1.08 1.20 1.31 1.32
0.89 0.87 0.89 0.85 0.89 0.87 0.89 0.87 0.85 0.84

Itanagar 0.95 0.94 0.95 0.94 0.95 0.94 0.96 0.94 0.93 0.93
1.14 1.23 1.13 1.27 1.13 1.23 1.14 1.26 1.33 1.34
0.90 0.88 0.91 0.88 0.91 0.88 0.90 0.88 0.87 0.86

Jaipur 0.98 0.98 0.99 0.98 0.98 0.98 0.99 0.98 0.97 0.97
1.07 1.18 1.08 1.24 1.12 1.26 1.22 1.35 1.39 1.43
0.97 0.96 0.97 0.96 0.97 0.96 0.96 0.95 0.95 0.95

Kohima 0.94 0.94 0.95 0.93 0.95 0.94 0.95 0.94 0.92 0.92
1.16 1.22 1.16 1.29 1.14 1.23 1.15 1.26 1.35 1.37
0.89 0.88 0.89 0.86 0.89 0.87 0.89 0.87 0.85 0.84
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hybrid Conv1D-LSTM model. Thus, the benefit of proposed 
hybrid Conv1D-LSTM model is established for longer lead 
times. Apart from the aforesaid illustration of model per-
formance at all 10-day lead of a particular city, the average 
performance metrics (averaged across fold1 to fold5) of all 
twenty-eight cities are presented in Table 3. The metrics val-
ues portrayed in the table shows the dominance of the hybrid 
model even at longer lead time. Hence, better performance 
of hybrid Conv1D-LSTM model is established for all the 
cities, at all lead times.

4.3  Prediction of heatwave events

How good is the potential of the proposed hybrid Conv1D-
LSTM model in foreseeing the heatwaves in the coming 
days? To investigate this, the prediction skill of the proposed 
model is analyzed to identify the heat days of a heatwave 
event occurring during the year 2012–2020 of the dataset. 
Before proceeding, a brief discussion on the heatwaves is 
presented. Heatwaves are commonly defined as unusual 
extreme temperatures prevailing over for days in a region 

Table 2  (continued) City hybrid
Conv1D-
LSTM

LSTM Conv1D MLP SVR

Tr Ts Tr Ts Tr Ts Tr Ts Tr Ts

Kolkata 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.94 0.94

0.96 1.02 0.98 1.10 0.95 1.04 0.94 1.05 1.19 1.21

0.92 0.91 0.92 0.89 0.92 0.90 0.92 0.90 0.88 0.87
Lucknow 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.97

1.19 1.27 1.23 1.38 1.23 1.37 1.36 1.50 1.45 1.49
0.96 0.96 0.96 0.95 0.96 0.95 0.95 0.94 0.94 0.94

Mumbai 0.96 0.96 0.96 0.95 0.96 0.96 0.97 0.96 0.95 0.94
0.77 0.81 0.78 0.85 0.73 0.80 0.74 0.81 0.90 0.91
0.92 0.91 0.92 0.90 0.93 0.91 0.93 0.91 0.89 0.89

New Delhi 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.98 0.98 0.97
1.21 1.32 1.22 1.37 1.29 1.43 1.46 1.58 1.51 1.55
0.97 0.96 0.97 0.96 0.96 0.96 0.95 0.95 0.95 0.95

Panaji 0.96 0.95 0.96 0.94 0.96 0.95 0.96 0.95 0.93 0.93
0.67 0.72 0.67 0.76 0.67 0.72 0.65 0.71 0.81 0.81
0.91 0.90 0.91 0.89 0.91 0.90 0.92 0.90 0.87 0.87

Patna 0.98 0.98 0.98 0.97 0.98 0.97 0.98 0.98 0.97 0.97
1.06 1.13 1.05 1.17 1.09 1.20 1.20 1.31 1.28 1.31
0.96 0.95 0.96 0.95 0.96 0.95 0.95 0.94 0.94 0.94

Raipur 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.98 0.97 0.97
1.01 1.07 1.03 1.16 1.02 1.11 1.09 1.19 1.23 1.26
0.96 0.95 0.96 0.95 0.96 0.95 0.95 0.94 0.94 0.94

Ranchi 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.96 0.96
1.01 1.08 1.01 1.13 1.03 1.14 1.07 1.18 1.25 1.28
0.95 0.95 0.95 0.94 0.95 0.94 0.95 0.94 0.93 0.93

Shillong 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.94 0.94
0.99 1.06 0.97 1.11 0.98 1.06 0.97 1.06 1.19 1.20
0.92 0.90 0.92 0.89 0.92 0.90 0.92 0.90 0.88 0.87

Shimla 0.98 0.98 0.98 0.97 0.98 0.97 0.98 0.97 0.97 0.97
1.23 1.31 1.23 1.37 1.24 1.37 1.40 1.51 1.47 1.50
0.96 0.95 0.96 0.95 0.96 0.95 0.95 0.94 0.94 0.94

Srinagar 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97
1.40 1.49 1.39 1.52 1.44 1.58 1.74 1.85 1.64 1.70
0.97 0.96 0.97 0.96 0.96 0.96 0.95 0.94 0.95 0.95

Thiruvananthapuram 0.92 0.91 0.93 0.90 0.93 0.91 0.93 0.91 0.90 0.89
0.65 0.68 0.63 0.73 0.63 0.68 0.61 0.68 0.74 0.75
0.84 0.83 0.85 0.80 0.86 0.83 0.86 0.83 0.80 0.79
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with serious consequences. The India Meteorological 
Department (IMD) uses the following criteria to define a 
heatwave: (i) on the basis of departure from normal tempera-
ture: If the departure of actual maximum temperature from 
the normal is 4.5 to 6.4 °C, it will be called as heatwave and 
when the departure is greater than 6.4 °C, it will be called 
as severe heatwave; (ii) on the basis of actual maximum 
temperature: If the actual maximum temperature is ≥ 45 °C, 
it is called as heatwave, and if the actual maximum tempera-
ture is ≥ 47 °C, it will be called as a severe heat wave; (iii) 
heatwave should be declared if actual maximum temperature 
in a region remains 45 °C or more, irrespective of the nor-
mal maximum temperature; (iv) heatwave should not to be 
considered, if the observed maximum temperature in plains 
and hilly regions are less than 40 °C and 30 °C respectively.

The criteria (i), (ii), and (iii) should be met at least at two 
meteorological station for at least 2 consecutive days, and on 
the second day, it is declared as a heatwave. An attempt to 
capture the heatwave events is carried out in the light of the 
aforementioned criteria. It is noticed that among the twenty-
eight selected cities, twenty-four cities have faced several 
heatwave and severe heatwave events. The number of heat 
days trapped in the event of heat wave varies between 3 and 

70 days across the affected cities. Table 4 shows the detailed 
figure of heat days occurred under several heat wave/severe 
heat wave events in different cities along with the predicted 
heat days at 1-day lead to 7-day lead, during the period 
2012–2020. It may be noted that the estimation of heat days 
was carried out considering the aforesaid criteria. The total 
number of heat days occurred across the twenty-four cities as 
shown in the table counts to a total of 615 days, out of which 
the proposed model was able to capture 594 days at 1-day 
lead with an error of 5%, i.e., a total 31 false heat days were 
predicted. In other words, it can be said that accuracy of 
92% was achieved by the proposed model in predicting heat 
days successfully at 1-day lead. Likewise, the performance 
of the proposed model was analyzed up to 7-day lead time in 
foreseeing the heat days. A gradual reduction in the accuracy 
was noticed as the lead time was increased. For instance, 
accuracy at 2-, 3-, 4-, 5-, 6-, and 7-day lead was observed to 
be 76% (counts to 469 heat days), 66% (counts to 407 heat 
days), 58% (counts to 358 heat days), 52% (counts to 318 
heat days), 45% (counts to 281 heat days), and 39% (counts 
to 242 heat days), respectively. It may be noted that at longer 
leads, no false alarm was made by the model; however, per-
formance of the model went below 50% accuracy after 5-day 
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Fig. 3  Comparative scatter plots between the observed and 1-day 
ahead predicted maximum temperature obtained during the (i) train-
ing period (i.e., by considering fold1 to fold 4 as training dataset), (ii) 
testing period (i.e., by considering fold5 as testing dataset) and (iii) 
testing period of all 5 folds (i.e., fold1 + fold2 + fold3 + fold4 + fold

5, when each fold is treated as a testing dataset during fivefold CV), 
for a traditionally hot weather city (Jaipur), of (a) hybrid Conv1D-
LSTM, (b) LSTM, (c) Conv1D, (d) MLP, and (e) SVR model run 
respectively
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lead and even below 40% accuracy at 7-day lead. Hence, the 
prediction of foreseeing the heat wave event was stopped at 
7-day lead.

Thus, overall, it can be said that the proposed model is 
able to capture the range of daily maximum temperature 
efficiently. However, the performance of the hybrid model 
also reduces with the increasing lead time.

5  Comparison between proposed DL‑based 
model and a few existing weather 
applications

With the increase in advancement in the technology since 
twentieth century, the access to weather forecast has been 
drastically increased. Weather forecasts are available from 
different weather applications (weather apps) through the 
smartphones. For example, Zabini (2016) reported the func-
tioning of 39 popular smartphone-based weather apps to 
communicate weather forecasts to the general public in the 
USA, the UK, and Italy. The study concluded that advances 
in mobile communication technologies could theoretically 

improve weather communication effectiveness. Moreover, 
the expectations that have been built up around weather fore-
casts appear to be vastly out of step with existing forecasting 
capabilities, especially given the inherent uncertainties in 
location and time, as well as the nature of the forecasted 
weather occurrences. It may be further noted that past val-
ues of forecasts, background methodologies/models of these 
weather applications (weather apps) are not openly acces-
sible. Therefore, authors were not able to directly compare 
the performance with weather apps. However, an attempt 
is made for the comparison with the help of the informa-
tion available in the existing literature on weather apps 
performances.

Thomas et al. (2016) has tried to assess the accuracy 
of weather forecast, available to the public in India by 
three popular weather apps, namely, AccuWeather (Accu-
Wth), real-time weather system (RTWS), and weather 
underground (WUnd). The evaluation comprised of the 
assessment of forecasting skills of aforesaid apps in meas-
uring maximum temperature, minimum temperature, pres-
sure, wind speed, wind direction, and rainfall with those 
of observed record of IMD, made through synoptic and 
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Fig. 4  Average values (fold1 to fold5) of the performance metrics 
obtained for multi-step-ahead (1-day to 10-day lead) daily maximum 
temperature prediction during training and testing period for Jaipur 

city using (a) hybrid Conv1D-LSTM, (b) LSTM, (c) Conv1D, (d) 
MLP and (e) SVR models. The error bar shows the range of metric 
values obtained across different folds (5 folds)
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Table 3  Same as Table 2 
but metrics obtained during 
prediction of maximum 
temperature at lead time of 
10 day

City hybrid
Conv1D-
LSTM

LSTM Conv1D MLP SVR

Tr Ts Tr Ts Tr Ts Tr Ts Tr Ts

Agartala 0.88 0.86 0.89 0.85 0.89 0.85 0.89 0.85 0.84 0.84
1.52 1.64 1.44 1.69 1.47 1.69 1.51 1.70 1.72 1.74
0.77 0.73 0.79 0.71 0.79 0.71 0.77 0.71 0.71 0.70

Aizawl 0.88 0.86 0.89 0.85 0.89 0.86 0.89 0.86 0.85 0.85
1.57 1.70 1.50 1.75 1.52 1.74 1.55 1.75 1.77 1.79
0.78 0.73 0.80 0.72 0.79 0.72 0.78 0.72 0.71 0.70

Bengaluru 0.89 0.87 0.90 0.86 0.90 0.86 0.9 0.86 0.84 0.84
1.33 1.44 1.24 1.49 1.26 1.45 1.28 1.47 1.56 1.57
0.78 0.74 0.81 0.73 0.81 0.74 0.80 0.73 0.70 0.70

Bhopal 0.92 0.91 0.93 0.90 0.93 0.90 0.93 0.90 0.89 0.89
2.12 2.32 2.04 2.37 2.05 2.36 2.14 2.43 2.49 2.52
0.85 0.82 0.86 0.81 0.86 0.81 0.85 0.80 0.79 0.78

Bhubaneswar 0.86 0.84 0.87 0.83 0.87 0.83 0.88 0.84 0.81 0.81
1.63 1.73 1.57 1.79 1.58 1.78 1.57 1.78 1.87 1.89
0.74 0.71 0.76 0.69 0.76 0.69 0.76 0.69 0.66 0.65

Chandigarh 0.94 0.93 0.94 0.93 0.95 0.93 0.95 0.93 0.92 0.92
2.22 2.41 2.18 2.46 2.16 2.45 2.30 2.56 2.57 2.60
0.89 0.86 0.89 0.86 0.89 0.86 0.88 0.85 0.85 0.84

Chennai 0.90 0.88 0.91 0.87 0.91 0.88 0.91 0.87 0.86 0.86
1.49 1.60 1.39 1.66 1.43 1.62 1.46 1.66 1.73 1.75
0.80 0.77 0.83 0.75 0.82 0.77 0.81 0.76 0.73 0.73

Dehradun 0.93 0.92 0.93 0.91 0.93 0.91 0.93 0.91 0.91 0.91
2.12 2.30 2.09 2.35 2.06 2.35 2.19 2.43 2.44 2.46
0.86 0.84 0.87 0.83 0.87 0.83 0.85 0.82 0.82 0.82

Gandhinagar 0.91 0.89 0.91 0.88 0.91 0.89 0.91 0.88 0.87 0.87
1.90 2.06 1.85 2.10 1.83 2.08 1.88 2.12 2.19 2.21
0.82 0.78 0.83 0.78 0.83 0.78 0.82 0.77 0.76 0.75

Gangtok 0.88 0.86 0.90 0.85 0.89 0.86 0.89 0.86 0.85 0.85
1.71 1.84 1.61 1.92 1.65 1.88 1.68 1.90 1.94 1.96
0.78 0.74 0.80 0.72 0.79 0.73 0.79 0.72 0.71 0.71

Guwahati 0.88 0.86 0.89 0.85 0.89 0.85 0.89 0.85 0.84 0.85
1.71 1.84 1.62 1.92 1.67 1.90 1.71 1.91 1.92 1.94
0.77 0.73 0.79 0.71 0.78 0.72 0.77 0.71 0.71 0.70

Hyderabad 0.90 0.89 0.91 0.88 0.91 0.88 0.91 0.88 0.85 0.85
1.75 1.88 1.65 1.94 1.66 1.93 1.72 1.95 2.18 2.19
0.81 0.78 0.83 0.77 0.83 0.77 0.82 0.77 0.71 0.71

Imphal 0.85 0.82 0.87 0.80 0.86 0.82 0.86 0.82 0.80 0.80
1.77 1.92 1.67 2.02 1.72 1.96 1.74 1.96 1.99 2.01
0.72 0.66 0.75 0.63 0.73 0.65 0.73 0.65 0.65 0.63

Itanagar 0.86 0.83 0.87 0.82 0.87 0.83 0.87 0.83 0.83 0.83
1.89 2.04 1.81 2.12 1.84 2.09 1.88 2.11 2.07 2.09
0.73 0.68 0.75 0.66 0.75 0.67 0.74 0.66 0.68 0.67

Jaipur 0.93 0.92 0.94 0.92 0.94 0.92 0.94 0.92 0.91 0.91
2.22 2.41 2.18 2.45 2.18 2.46 2.29 2.55 2.56 2.59
0.87 0.85 0.88 0.84 0.88 0.84 0.86 0.83 0.83 0.82

Kohima 0.85 0.83 0.86 0.81 0.86 0.82 0.86 0.82 0.81 0.81
1.85 2.01 1.77 2.08 1.80 2.04 1.82 2.06 2.05 2.07
0.72 0.67 0.75 0.64 0.74 0.65 0.73 0.65 0.66 0.64
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automatic weather station (AWS) observations, at 1-day 
lead. Hence, for a comparison, with the proposed hybrid 
Conv1D-LSTM, we reviewed and borrowed the perfor-
mance of the weather apps in forecasting maximum tem-
perature from the aforesaid literature. The analysis in 
Thomas et al. (2016) was carried out into two parts: (i) Pan 
India Average analysis and (ii) Regional (zonal) analysis. 
A summary of the performance of the weather apps for 
each of these cases is as follows:

 (i) Pan-India average analysis: Table 5 shows the result 
of an analysis, carried out by the authors for a period 
of 120 days (June to September 2012) between the 
synoptic observations and the three weather apps viz. 
RTWS, AccuWth, and WUnd, in terms of two sta-
tistical metrics (CC and RMSE). It is observed that 
AccuWth attains the highest CC and lowest RMSE, 
i.e., 0.8 °C and 2.81 °C respectively, followed by 
WUnd (0.78 and 2.85  °C) and RTWS (0.76 and 

Table 3  (continued) City hybrid
Conv1D-
LSTM

LSTM Conv1D MLP SVR

Tr Ts Tr Ts Tr Ts Tr Ts Tr Ts

Kolkata 0.87 0.86 0.88 0.85 0.89 0.85 0.89 0.85 0.83 0.83

1.65 1.74 1.60 1.79 1.58 1.78 1.60 1.80 1.88 1.90

0.76 0.73 0.78 0.72 0.78 0.72 0.78 0.72 0.69 0.68
Lucknow 0.93 0.92 0.94 0.92 0.94 0.92 0.94 0.92 0.91 0.91

2.17 2.32 2.14 2.40 2.12 2.40 2.24 2.49 2.54 2.57
0.87 0.85 0.88 0.84 0.88 0.84 0.86 0.83 0.82 0.82

Mumbai 0.87 0.84 0.88 0.83 0.88 0.84 0.88 0.83 0.80 0.80
1.35 1.47 1.31 1.52 1.30 1.51 1.31 1.52 1.66 1.66
0.75 0.71 0.77 0.69 0.77 0.69 0.77 0.69 0.63 0.63

New Delhi 0.94 0.93 0.95 0.93 0.95 0.93 0.95 0.93 0.92 0.92
2.27 2.43 2.22 2.48 2.21 2.51 2.40 2.64 2.63 2.67
0.89 0.87 0.89 0.87 0.89 0.86 0.88 0.85 0.85 0.85

Panaji 0.87 0.83 0.88 0.82 0.88 0.82 0.88 0.82 0.75 0.75
1.12 1.27 1.06 1.32 1.10 1.29 1.10 1.31 1.49 1.50
0.75 0.68 0.78 0.65 0.76 0.67 0.76 0.66 0.56 0.55

Patna 0.93 0.92 0.93 0.91 0.93 0.91 0.93 0.91 0.90 0.90
1.93 2.06 1.87 2.13 1.88 2.13 1.97 2.20 2.29 2.31
0.86 0.84 0.87 0.83 0.87 0.83 0.85 0.82 0.80 0.80

Raipur 0.92 0.91 0.93 0.90 0.93 0.90 0.93 0.90 0.88 0.88
1.97 2.12 1.88 2.18 1.88 2.16 1.94 2.21 2.38 2.40
0.84 0.82 0.86 0.81 0.86 0.81 0.85 0.80 0.77 0.77

Ranchi 0.91 0.90 0.92 0.89 0.92 0.89 0.92 0.89 0.87 0.87
1.95 2.08 1.86 2.15 1.88 2.16 1.91 2.20 2.29 2.32
0.83 0.80 0.84 0.79 0.84 0.79 0.84 0.78 0.76 0.76

Shillong 0.87 0.84 0.89 0.83 0.87 0.84 0.88 0.84 0.83 0.83
1.71 1.85 1.59 1.94 1.67 1.90 1.69 1.9 1.92 1.95
0.75 0.70 0.78 0.67 0.76 0.69 0.76 0.69 0.68 0.67

Shimla 0.93 0.92 0.94 0.92 0.94 0.92 0.94 0.92 0.91 0.91
2.17 2.36 2.09 2.41 2.10 2.40 2.24 2.50 2.47 2.50
0.87 0.84 0.88 0.84 0.88 0.84 0.86 0.83 0.83 0.83

Srinagar 0.95 0.94 0.95 0.94 0.95 0.94 0.95 0.94 0.94 0.94
2.36 2.57 2.33 2.60 2.31 2.63 2.59 2.84 2.63 2.66
0.90 0.88 0.90 0.88 0.91 0.88 0.88 0.86 0.88 0.87

Thiruvananthapuram 0.81 0.78 0.84 0.76 0.83 0.77 0.83 0.77 0.75 0.74
0.98 1.04 0.89 1.08 0.93 1.05 0.93 1.06 1.11 1.12
0.64 0.60 0.71 0.57 0.68 0.59 0.69 0.58 0.55 0.54
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2.89 °C). Apart from the comparison with synoptic 
observations, pan India analysis of the aforemen-
tioned three weather apps was also carried out with 
AWS observations (Table 5). In case of comparison 
with AWS, the RTWS attains the highest CC, i.e., 
0.71 followed by WUnd (0.57) and AccuWth (0.37), 

whereas the lowest RMSE, i.e., 4.42 °C is achieved 
by WUnd followed by RTWS (4.88 °C) and Accu-
Wth (8.67 °C).

 (ii) Regional analysis: In case of the regional analysis, 
the AWS data was not available in sufficient quantity, 
as reported in the literature. Therefore, the regional 
analysis was performed only using synoptic obser-
vations. Table 6 shows the zone wise (central, east, 
south, northwest, west, and northeast) efficacy of the 
three weather apps with synoptic observation records 
in terms of the two statistical metrics viz. CC and 
RMSE. It is observed that the AccuWth is the best-
performing app for the central and northwest region 
(CC: 0.83 and 0.81, RMSE: 2.33 °C and 2.98 °C, 
respectively), followed by the RTWS (CC: 0.62 
and 0.70, RMSE: 3.56 °C and 4.21 °C) and WUnd 
(CC: 0.61 and 0.34, RMSE: 4.44 °C and 4.92 °C). 
Likewise, for the east region, the WUnd is found to 
have the highest CC (0.67) followed by the AccuWth 
(0.61) and RTWS (0.41), and with respect to RMSE, 
AccuWth is having the lowest value (2.29 °C) fol-

Table 4  Proposed model potential to foresee heat days of heatwave events occurred during the period 2012–2020, across cities at different lead 
time (1-day to 7 day)

City Total no. of heat days occurred during 
several heat wave events (2012–2020)

Number of heat days captured by the proposed hybrid model (Conv1D-LSTM)

1-day lead 2-day lead 3-day lead 4-day lead 5-day lead 6-day lead 7-day lead

Agartala 9 5 2 3 1 0 0 0
Aizawl 12 8 6 4 6 4 3 1
Bhopal 27 30 21 23 20 19 15 16
Bhubaneshwar 8 7 6 5 2 2 2 1
Chandigarh 45 48 42 35 27 30 26 19
Dehradun 44 50 46 40 38 28 33 27
Gandhinagar 19 25 14 11 13 10 6 8
Gangtok 6 6 2 1 1 1 0 0
Guwahati 8 6 6 5 2 2 0 0
Hyderabad 22 20 18 15 13 12 11 11
Imphal 51 42 33 31 29 30 28 27
Itanagar 41 46 41 36 37 32 27 25
Jaipur 70 77 57 36 28 29 26 27
Kohima 60 44 32 27 24 22 17 14
Kolkata 7 9 3 2 2 3 2 2
Lucknow 38 36 27 23 22 23 21 21
Mumbai 3 2 3 2 0 0 0 0
New Delhi 28 27 23 21 16 14 17 10
Patna 17 14 13 10 9 6 7 5
Raipur 12 12 11 21 8 7 7 2
Ranchi 24 16 14 13 14 11 6 7
Shillong 15 11 7 12 9 7 3 4
Shimla 34 36 29 20 22 17 17 13
Srinagar 15 17 13 11 15 9 7 2
Total 615 594 469 407 358 318 281 242

Table 5  All India performance measure of forecast of daily maxi-
mum temperature between the weather apps and observed records 
(Thomas et al. 2016)

Data sources Statistical measure

Observed records Forecast by 
weather apps

Coefficient of 
correlation

Root mean 
square error

Synoptic observations RTWS 0.76 2.89
AccuWth 0.80 2.81
WUnd 0.78 2.85

AWS observations RTWS 0.71 4.88
AccuWth 0.37 8.67
WUnd 0.57 4.42
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lowed by WUnd (3.02 °C) and RTWS (4.01 °C). In 
case of the south and the west region, the best per-
forming apps are WUnd (CC: 0.55, RMSE: 3.0 °C) 
and AccuWth (CC: 0.51, RMSE: 2.57 °C), respec-
tively, followed by the (in same order) AccuWth (CC: 
0.35, RMSE: 3.01 °C) and RTWS (CC: 0.29, RMSE: 
2.58 °C) and WUnd (CC: 0.50, RMSE: 2.67 °C) and 
RTWS (CC: 0.35, RMSE: 2.96 °C). Finally, the com-
parison is made for the northeast Indian region. How-
ever, in case of northeast region, the forecast from the 
AccuWth was not available. So, comparison is made 
with RTWS and WUnd apps only. It is observed that 
WUnd is having better performance as compared to 
the RTWS (CC: 0.50 and 0.41, RMSE: 3.10 °C and 
3.24 °C, respectively).

Summarizing the aforesaid discussion, it may be noted 
that the performance of the three weather apps viz. Accu-
Wth, RTWS, and WUnd, varies from region to region. 
However, it is to be observed that the best performance of 
these weather apps (i.e., RMSE = 2.29 °C and CC = 0.83) 
is far less as compared to the best and even with the worst 
performance of the proposed hybrid DL model. The range 
of RMSE and CC values are 0.68 to 1.43 °C and 0.98 to 
0.91 as obtained from the proposed hybrid DL–based model 
(Table 2). Thus, for 1-day lead, the performance of the pro-
posed hybrid Conv1D-LSTM model is remarkably superior 
as compared to all three popular weather apps in forecasting 
maximum daily temperature.

We could not compare the performance of the proposed 
hybrid DL–based model at higher lead times, i.e., 2 to 
10 days in advance, as the forecasted values are not avail-
able for the aforementioned weather apps. The performance 
metrics are also not reported in any literature to our best 
knowledge. However, from Table 3, it can be noticed that 
the average testing performance (averaged across five folds) 
of the proposed model, at all twenty-eight cities at 10-day 
lead (maximum lead time), in terms of CC and RMSE, is in 
the range of 0.78 to 0.95 and 1.04 to 2.57 °C, respectively. 
Moreover, the model performance in foreseeing heat days 
is also reasonably good (i.e., efficiencies at 1-, 2-, 3-, 4-, 

5-, 6-, and 7- day lead are approximately 92%, 76%, 66%, 
58%, 51%, 46%, and 40%, respectively) as shown in Table 4. 
Thus, overall, it can be concluded that the performance of 
the proposed hybrid Conv1D-LSTM model is better even at 
higher lead times as compared to the weather apps. However, 
it is subjected to be proved if either the forecast results or 
performance metrics are available from any source.

6  Conclusions

This study presents the potential of a DL-based hybrid 
Conv1D-LSTM model, for multi-step-ahead (1-day to 
10-day) prediction of daily maximum temperature and 
thereafter exploring its potential to foresee the upcoming 
heatwave events. It is found that the proposed DL-based 
hybrid model has the potential to learn the hidden complex 
non-linear relationship efficiently between different vari-
ables within a hydroclimatic system. Therefore, it can be 
successfully used in hydroclimatic modelling for prediction, 
a couple of days in advance. The performance of hybrid 
Conv1D-LSTM model for prediction of multi-step-ahead 
maximum temperature is better than other DL and ML-based 
models, such as LSTM, Conv1D, MLP, and SVR. Among 
the existing models, the performance of the Conv1D and 
LSTM model is observed to be better than the MLP and 
SVR model at most of the cities. The proposed DL-based 
hybrid Conv1D-LSTM model along with LSTM, Conv1D, 
and MLP is able to provide the prediction all the lead times 
(1-day to 10-day in advance) simultaneously, which is not 
possible with SVR. In general, the performance of all the 
models, including hybrid Conv1D-LSTM, gradually reduces 
as the prediction lead time increases from 1-day to 10-day in 
advance. However, the benefit of the hybrid Conv1D-LSTM 
model was better realized for the higher lead times as com-
pared to other models. The proposed model was also able to 
predict the heat days with 92% accuracy at 1-day lead with 
only 5% of error. Although, the accuracy of the model was 
reduced to 50% at 5-day lead time. Furthermore, the effi-
cacy obtained from the proposed model was also compared 
with three popular weather apps forecasting result which 

Table 6  Regional performance 
measure of forecast of daily 
maximum temperature between 
the weather apps and synoptic 
observed records (Thomas et al. 
2016)

Region RTWS AccuWth WUnd

CC RMSE CC RMSE CC RMSE

Central 0.62 3.56 0.83 2.33 0.61 4.44
East 0.41 4.01 0.61 2.29 0.67 3.02
South 0.29 2.58 0.35 3.01 0.55 3.00
Northwest 0.70 4.21 0.81 2.98 0.34 4.92
West 0.35 2.96 0.51 2.57 0.50 2.67
Northeast 0.41 3.24 NA NA 0.50 3.10

960 M. I. Khan, R. Maity



1 3

was published in Thomas et al. 2016 in terms of statistical 
metrics and was found much better.

Thus, results obtained from this study can be helpful in 
making some promise to foresee the heatwave events. Thus, 
timely warning will be very useful to the community to 
avert heat wave–related ill effects. The precise prediction 
of maximum temperature is also expected to be helpful in 
agriculture and irrigation scheduling, running various agro-
based models to monitor agricultural activities and climate 
change study.
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