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Abstract: This study addresses a notable gap in the climate change literature by examining the
potential of artificial intelligence and machine learning (AI–ML) in urban climate change adaptation
and sustainable development across major global continents. While much attention has been given to
mitigation strategies, this study uniquely delves into the AI–ML’s underexplored role in catalyzing
climate change adaptation in contemporary and future urban centers. The research thoroughly
explores diverse case studies from Africa, Asia, Australasia, Europe, North America, and South
America, utilizing a methodological framework involving six-step and five-step models for system-
atic literature reviews. The findings underscore AI–ML achievements, illuminate challenges, and
emphasize the need for context-specific and collaborative approaches. The findings imply that a
one-size-fits-all approach is insufficient. Instead, successful adaptation strategies must be intricately
linked to the particular characteristics, vulnerabilities, and intricacies of each region. Furthermore,
the research underscores the importance of international collaboration, knowledge sharing, and
technology transfer to expedite the integration of AI–ML into climate adaptation strategies globally.
The study envisions a promising trajectory for AI–ML in the climate adaptation domain, emphasizing
the necessity for ongoing research, innovation, and practical AI–ML applications. As climate change
remains a defining challenge, this research predicts an increasingly pivotal role for AI–ML in con-
structing climate-resilient urban centers and promoting sustainable development. Continuous efforts
to advance AI–ML technologies, establish robust policy frameworks, and ensure universal access are
crucial for harnessing AI–ML’s transformative capabilities to combat climate change consequences.

Keywords: climate change consequences; climate resilience; sustainable urban development; AI–ML
technology transfer; collaborative climate adaptation efforts; policy frameworks

1. Introduction

Climate change, unequivocally recognized as one of the paramount challenges of the
21st century, has profound implications for the sustainability and resilience of urban centers
worldwide [1,2]. Climate change, driven by human activities, poses unprecedented threats
to Earth, with rising temperatures, extreme weather events, and sea-level rise being stark
manifestations. Simultaneously, urbanization is rising, with most of the global population
residing in cities. This urban expansion alters local climates, placing urban centers at the
frontline of climate impacts [1,2]. In this context, sustainable development emerges as the
imperative solution, seeking to harmonize environmental protection, economic growth, and
social equity. Combating climate change and fostering urban sustainability are increasingly
intertwined goals [3–5]. Climate scientists employ diverse methods to assess climate
change. This includes complex climate models that project future scenarios, historical data
analysis to identify trends, field studies to collect local data, proxy data for past climate
reconstructions, remote sensing via satellites, statistical analysis for trend identification,
impact assessments across sectors, emission inventories to track greenhouse gases, ocean
and atmospheric measurements, and dedicated climate observatories. These traditional
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techniques and advanced AI–ML methods are foundational in understanding climate
change [1,2]. Adopting advanced technologies, particularly AI–ML, offers a promising
avenue to address this convergence, enabling informed decisions, resilient urban planning,
and resource optimization to pursue a sustainable, climate-resilient future.

The exploration of AI–ML techniques is essential, more specifically for urban climate
change adaptation and sustainable development, due to several compelling reasons that
set it apart from traditional methods, as highlighted by Alanzi [6], Taghikhah et al. [7], Leal
Filho et al. [8], Elbeltagi et al. [9], and Kumar et al. [10]. Firstly, urban environments present
intricate and multifaceted climate challenges that demand the capability to handle complex
and diverse datasets. AI–ML excels in this regard, enabling the unraveling of intricate
relationships between urban development and climate change that traditional techniques
often struggle with. Secondly, AI–ML provides predictive capabilities critical for urban
planners and policymakers. It allows anticipation of climate-related events such as extreme
weather patterns and sea-level rise, offering insights vital for urban resilience. Furthermore,
the real-time data processing prowess of AI–ML is invaluable for urban areas where rapid
adaptation can mitigate climate change impacts. This real-time adaptability surpasses
traditional methods’ often slower and less adaptable nature. AI–ML’s adaptability extends
to customization, ensuring that climate adaptation strategies are tailored to individual
urban areas’ unique characteristics and challenges, a level of specificity that generic methods
often lack. Additionally, AI–ML optimizes resource allocation in various areas, from
energy management to disaster response, leading to more efficient and cost-effective
climate adaptation strategies. AI–ML also handles big data, a feature crucial for urban
climate change research, as cities generate vast volumes of data from sources like sensors,
satellites, and social media. Moreover, AI–ML encourages interdisciplinary collaboration
by integrating data from various fields, such as meteorology, ecology, and urban planning.
This fosters a holistic understanding of the complex interplay between climate and urban
development. Lastly, the continuous learning ability of AI–ML is vital in the context of
climate change, where conditions evolve over time. AI–ML models can adapt and enhance
their accuracy as they encounter new data, ensuring that adaptation strategies remain
up-to-date and effective [6–12]. These advantages collectively position AI–ML as a pivotal
tool in addressing the challenges posed by climate change in urban areas, making it the
method of choice for this study.

As the present understanding of climate science has evolved, extensive research efforts
have been dedicated to developing and implementing mitigation strategies to curb green-
house gas emissions (see Figure 1). Kaack et al. [13] presented a structured framework to
describe the impact of ML on greenhouse gas (GHG) emissions. They could identify crucial
areas for assessing impact and provide an understanding of how ML influences climate
change mitigation. Sain et al. [14] explored the issues related to climate change and the
utilization of fossil fuels and their effects on energy and water security. Plausible measures
for mitigation and specific associated challenges were also highlighted, with a particular
focus on Himalayan geo-hazards. Similarly, Sahil et al. [15] expounded on the significance
of AI in mitigating climate change and its potential to play a vital role in accomplishing the
Sustainable Development Goal (SDG) “Climate Action”. Kaginalkar et al. [16] provided
a perspective on the opportunity to tackle urban air quality management in the face of
air pollution and climate change. The potential of integrated technologies, including the
Internet of Things (IoT), big data, AI, smartphones, and social and cloud computing, was
emphasized for enabling data-driven, strategic, and real-time actions in governance for
mitigation and assisting citizens in making well-informed decisions. In general, all of these
aforementioned studies exhaustively explored the potential of AL-ML in mitigating climate
change consequences. However, amid this fervent discourse on mitigation, a conspicuous
lacuna persists concerning the underexplored frontier of AI–ML as potent tools for catalyz-
ing climate change adaptation within the intricate fabric of urban landscapes [8,17,18]. This
is further demonstrated in Figure 1. The manuscript thus addresses this critical knowledge
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gap by embarking on an in-depth exploration of the multifaceted potential of AI–ML in the
realm of urban climate change adaptation and sustainable development.
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Figure 1. Summary of the published research on the keywords related to “Assessing the Potential
of AI–ML in Urban Climate Change Adaptation and Sustainable Development” (Source: Google
Scholar, accessed on 13 November 2023).

The lack of attention to adaptation-based approaches using AI–ML methods can be
attributed to several factors. Firstly, the focus on climate change research has historically
leaned heavily towards mitigation, as the urgency to reduce greenhouse gas emissions and
curb the causes of climate change has been a primary concern. This emphasis on mitigation
strategies has overshadowed the exploration of adaptation-based approaches, leaving a
noticeable gap in the literature. Additionally, the complexity of climate adaptation presents
unique challenges that may have deterred researchers. Adaptation strategies often need
to be context-specific, considering different regions’ diverse environmental, social, and
economic conditions [19]. This complexity might have dissuaded some researchers from
delving into the application of AI–ML, which demands a nuanced understanding of these
intricacies. Moreover, another reason is the relatively recent recognition of the importance
of adaptation in climate change resilience. Mitigation efforts have traditionally received
more attention, and it is only in recent years, that the significance of adaptation, particu-
larly in urban contexts, has gained prominence. In summary, a combination of historical
research priorities, the complexity of adaptation, and a more recent acknowledgment of its
importance have resulted in a dearth of attention to adaptation-based approaches using
AI–ML methods in the existing literature. This article thus addresses a significant gap in
the existing literature concerning the application of AI–ML in the context of adaptation
and sustainable development. The study’s objective is to evaluate the potential of AI–ML
as a catalyst for climate change adaptation in both current and future urban centers. To
achieve this objective, the investigation provides a comprehensive overview of how AI–ML
can enhance cities’ capacity to adapt to climate change. The article delves into distinct
case studies that showcase various communities and organizations’ utilization of AI–ML
to support their adaptation efforts. These case studies span diverse geographic regions,
including Africa, Asia, Australasia, Europe, North America, and South America. Through-
out these case studies, the article highlights the successes and potentials of AI–ML and
meticulously delineates the limitations and challenges that must be addressed. By rigor-
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ously examining these aspects, the study contributes valuable insights into the nuanced
dynamics of implementing AI–ML solutions for climate adaptation. In conclusion, the
study synthesizes the findings from the diverse case studies to derive overarching lessons.
It emphasizes the importance of context-specific approaches and collaborative efforts in
harnessing the full potential of AI–ML for climate adaptation. Furthermore, the article
ponders the future trajectories of AI–ML in this realm, underlining the avenues for further
research, innovation, and impactful application.

2. Methodology

This study has adopted six-step and five-step models for conducting systematic liter-
ature reviews, as described by Machi & McEvoy [20] and García-Granero et al. [21] and
summarized in Table 1. The six-step model guides the systematic literature review process:
Firstly, the process commences with selecting a well-defined research topic or question
and setting the boundaries for the review. Secondly, comprehensive information gathering
involves systematic searches across various databases, libraries, and other pertinent sources.
Thirdly, a critical evaluation of the literature occurs. This phase entails assessing the quality
and relevance of the amassed materials, typically involving screening and selecting studies
according to predefined criteria. Subsequently, the selected studies undergo systematic
data analysis and synthesis to uncover trends, patterns, or key findings. Following the
synthesis, the process proceeds to conclude. In this step, the reviewer formulates con-
clusions based on the synthesized information and aligns them with the initial research
question or objectives. Ultimately, the findings are reported in a structured manner, doc-
umenting the review’s search methods, outcomes, and conclusions, thereby providing
a comprehensive account of the systematic literature review. Additionally, the five-step
model provides a structured framework for conducting a systematic literature review: To
begin, the process starts with problem formulation, where the research problem or question
is defined, thereby establishing the boundaries and focus of the review. Following this,
the literature search phase unfolds, requiring a comprehensive and systematic search to
identify pertinent literature sources. Subsequently, the model guides through the data
collection and analysis step. Here, data are gathered from the selected sources (Scopus and
Google Scholar for the present case) and rigorously analyzed to uncover patterns, themes,
or trends within the literature. As the review progresses, the synthesis and discussion
steps come into play. During this phase, the findings from the literature, discussions on
key themes, and similarities and emerging differences are summarized and synthesized.
Finally, the model concludes by drawing conclusions and providing recommendations.
Based on the synthesized literature, the study formulates conclusions and offers valuable
recommendations or implications for future research or practical applications in the field.
Thus, these structured approaches ensure a methodical and comprehensive systematic
literature review process [20,21].

Table 1. Methodological flow and criteria for evaluation of AI–ML in advancing climate change
adaptation and sustainable development.

Approaches Description

Problem Formulation

Research Problem Definition: The manuscript begins by clearly defining the research problem, which is the application of
AI–ML in urban climate change adaptation.

Scope Clarification: The scope of the study is articulated, focusing on both current and future urban centers
across different regions of the world.
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Table 1. Cont.

Approaches Description

Literature Search:

Comprehensive Searches: A systematic and thorough literature search encompasses databases, libraries, and other
relevant sources to ensure a comprehensive collection of existing literature.

Inclusivity: The literature search includes various geographical regions, including Africa, Asia,
Australasia, Europe, North America, South America, Small Islands, and Polar Regions.

Data Collection and Analysis:

Data Gathering:
The manuscript gathers data from selected case studies that illustrate the utilization of

AI–ML in climate adaptation. These case studies represent diverse geographic regions and
urban characteristics.

Data Parameters:
Specific data parameters are considered during the analysis, including successes (positive
outcomes and achievements), limitations (constraints and challenges faced), and challenges

(obstacles that must be overcome) related to the use of AI–ML for climate adaptation.

Geographic Specifics:
Geographic specifics such as the region, urban setting, and environmental context are

considered during the analysis to understand the variations and context-specific factors
influencing AI–ML applications.

Synthesis and Discussion:

Key Themes: The study synthesizes key themes and patterns from the case studies, highlighting the
contributions, innovations, and impacts of AI–ML in climate adaptation.

Similarities and Differences:
The manuscript explores the similarities and differences across the selected case studies to

provide a nuanced understanding of AI–ML applications in different regions and
urban contexts.

Contextual Factors:
Contextual factors, including geographical, urban, and environmental considerations, are
discussed to shed light on the specific conditions influencing the successes or challenges of

AI–ML in climate adaptation.

Conclusions and Recommendations:

Conclusions: The manuscript draws comprehensive conclusions based on the synthesized information,
emphasizing AI–ML as a potent catalyst for climate change adaptation in urban settings.

Recommendations:
Recommendations are provided, emphasizing the importance of context-specific

approaches tailored to different regions and the significance of collaborative efforts in
harnessing the full potential of AI–ML for climate adaptation.

Future Trajectories: The study explores the future trajectories of AI–ML in urban climate adaptation,
underlining potential avenues for further research, innovation, and practical applications.

In the present research, both the six-step and the five-step methodological frameworks
are used, devising a robust structure for investigating the role of AI–ML in climate change
adaptation within urban environments (see Figure 2). Following the six-step model, the
study began by precisely defining the research problem, addressing the critical gap in the
existing literature regarding the application of AI–ML in climate change adaptation. This
initial step established the research’s scope and focus. Subsequently, a comprehensive
literature search was conducted, aligning with the model’s second step, to identify and
gather relevant sources systematically. This phase involved exhaustive searches across
databases, libraries, and other sources to ensure inclusivity. As per the five-step model, the
research study transitioned to the data collection and analysis phase, drawing data from
carefully selected sources. This stage facilitated the identification of patterns, trends, and
key findings within the literature. Moving forward, the synthesis and discussion step al-
lowed for the summarization and synthesis of findings, fostering discussions on significant
themes and disparities. By integrating these two models, the study meticulously evaluated
distinct case studies spanning diverse geographic regions, illustrating the application of
AI–ML in climate change adaptation. It highlighted successful implementations and criti-
cally assessed limitations and challenges, aligning with the six-step model’s emphasis on
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assessing the quality and relevance of gathered literature. Ultimately, this research synthe-
sis enabled the drawing of comprehensive conclusions about the potential of AI–ML as a
catalyst for climate change adaptation in urban centers. The study stressed the significance
of context-specific approaches and collaborative efforts, aligning with the five-step model’s
emphasis on offering recommendations and implications for future research and practice.
In conclusion, the systematic application of these models ensured the study’s scientific
rigor. It contributed valuable insights into the complex dynamics of implementing AI–ML
solutions for climate adaptation, underlining the avenues for future research and impactful
applications in urban sustainability. These detailed considerations align with the systematic
and rigorous approach used in this investigation to assess the potential of AI–ML in urban
climate change adaptation and sustainable development (see Table 1 and Figure 2).
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Figure 2. Flow diagram of the procedure for review of the literature regarding “Assessing the Potential
of AI–ML in Urban Climate Change Adaptation and Sustainable Development” (Sources for methods
adopted for methodology, as shown, include—Machi & McEvoy [20] and Garcia-Granero et al. [21]).

3. Case Studies of AI–ML in Climate Change Adaptation—Global Perspective
3.1. Africa

The African continent holds immense significance in climate change impact, risk, and
adaptation studies. Its vulnerability to climate change is heightened due to its socioeco-
nomic structure, which relies heavily on agriculture and natural resources. From savannas
to rainforests, diverse ecosystems harbor unique biodiversity and provide vital ecosys-
tem services. Additionally, Africa’s geographical diversity offers a microcosm of climate
variability, making it a valuable laboratory for studying climate change’s diverse impacts.
Comprehensive research informs global climate models, and guides targeted adaptation
and mitigation strategies crucial for a sustainable future [8,22–24]. These are also supported
by the IPCC [1,2]. Rapid population growth, existing food security, and water scarcity
challenges underscore the urgency of understanding the role of AI–ML applications in
climate change adaptations.
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In the context of climate change adaptation in Africa, one compelling case study
from Egypt will be assessed here to illuminate the transformative potential of AI–ML
technologies. Elbeltagi et al. [9] offer valuable insights into the precise estimation of
evapotranspiration (ET), a critical factor for effective agricultural water management in
water-stressed developing countries amidst climate change (see Figure 3). Specifically,
the case study focuses on forecasting vapor pressure deficit (VPD), a key parameter in-
fluencing ET calculation. The study encompasses eight distinct regions within Egypt,
namely Dakahliyah, Gharbiyah, Kafr Elsheikh, Dumyat, Port Said, Ismailia, Sharqiyah,
and Qalubiyah, each facing unique climatic challenges. To tackle this complex task, six
ML algorithms were employed: linear regression (LR), additive regression trees (ART),
random subspace (RSS), random forest (RF), reduced error pruning tree (REPTree), and
Quinlan’s M5 algorithm (M5P). The random forest (RF) model emerged as the frontrunner,
exhibiting exceptional performance during the training and testing. Its impressive statistics,
including a high correlation coefficient (CC = 0.9694), low error rates (mean absolute error
(MAE) = 0.0967 and root mean square error (RMSE) = 0.1252), and relative error percentages
(relative absolute error (RAE) = 21.7297 and root relative squared error (RRSE) = 24.0356),
demonstrated its robustness in VPD forecasting. The study’s findings highlight the RF
model as a powerful tool for hydro-climatological studies and the modeling of VPD in
Egypt and in analogous African urban environments. The study’s predictive capabilities
enable future climate magnitudes to be anticipated, providing a valuable resource for
authorities and policymakers as they navigate specific pathways toward climate adaptation
in urban centers across the continent.
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3.2. Asia

The Asian continent plays a pivotal role in climate change impact, risk, and adaptation
studies for several compelling reasons. Its remarkable diversity encompasses many ecosys-
tems, making it a microcosm of global climate change effects. The vast population relying
heavily on agriculture underscores the importance of understanding how changing climate
alters food security and water resources. Rapid urbanization and economic growth make
Asian cities particularly vulnerable to climate-related challenges. Coastal communities face
rising sea levels and extreme weather events. Additionally, Asia’s role in the global carbon
cycle and its growing economies emphasize the need to investigate how climate change
affects ecosystems and carbon sequestration. Comprehensive research here informs global
climate knowledge and guides targeted strategies for mitigation and adaptation, ensuring
a sustainable future for Asia and the world [25–30]. These are also supported by IPCC [1,2].
Exploring the applications of AI–ML might be a way forward in devising climate change
adaptation measures.

In assessing the potential of AI–ML in urban climate change adaptation and sustainable
development, Kumar et al. [10] examined a groundbreaking case study to determine the
interlinkages between changing climate and vector-borne disease in South Asia, particularly
Bihar, a state in northern India (see Figure 4). This case study addressed the critical issue of
Visceral leishmaniasis or Kala-azar (KA), a vector-borne disease with a high mortality rate,
making it one of the deadliest parasitic diseases globally. South Asia, with India at its core,
bears the brunt of KA cases, with Bihar alone accounting for over half of the Indian cases.
Climate change vulnerabilities have been suspected as a driving force behind KA outbreaks,
necessitating the development of effective epidemic prediction systems that can account for
changing climate impacts. Coherently, a radial basis function (RBF) kernel-based support
vector regression (SVR) model, termed RBF-kernel-based-SVR, was developed for the most
affected endemic districts of Bihar. The results unveiled that temperature, wind speed,
rainfall, and population density significantly contributed to KA outbreaks, underscoring
the influence of climatic factors on disease dynamics. Multiple linear regression (MLR)
and multilayer perceptron (MLP) models were also developed and compared with the
RBF-kernel-based-SVR model to provide a comprehensive perspective. Encouragingly,
the RBF-kernel-based-SVR model demonstrated superior performance, exhibiting a high
correlation coefficient (CC = 0.82), low root-mean-square error (RMSE = 12.20), and a
robust Nash–Sutcliffe efficiency (NSE = 0.66). This study’s implications are far-reaching,
recommending using the RBF-kernel-based-SVR model as a swift and efficient tool for
detecting KA cases, particularly in regions with limited data availability. Such AI–ML
models are promising for public health authorities to monitor KA spread, comprehend
the climate impacts on outbreaks, and ensure timely and effective healthcare services in
urban settings.

3.3. Australasia

With its extraordinary ecological diversity, Australasia is a critical focal point for
climate change impact, risk, and adaptation studies. Its unique mix of ecosystems, from
tropical rainforests to arid deserts, provides invaluable insights into climate change effects
on diverse landscapes. Coastal communities face growing vulnerabilities due to rising
sea levels and extreme weather events. Australasia’s pivotal role in the global carbon
cycle through vast forests necessitates researching how climate change affects carbon
sequestration. Moreover, the region’s growing population and urbanization highlight the
urgency of understanding climate impacts on cities [29,31,32]. These are also supported by
the IPCC [1,2]. There is a need to acquire global climate knowledge and inform targeted
strategies for mitigation and adaptation, securing a sustainable future for Australasia and
beyond in the context of AI–ML-based approaches.
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In the Australasian context, where wildfires are intrinsic components of ecosystems
and hold profound significance in indigenous lore, the dynamic challenges posed by climate
change have mandated a thorough reassessment of conventional wildfire management
methodologies. Taghikhah et al. [7] undertake an exhaustive review to scrutinize the
paradigm-shifting potential of AI–ML in confronting these evolving predicaments. Notably,
AI’s engagement in bushfire management, dating back to the 1990s with the inception of
neural networks and expert systems, has laid the groundwork for remarkable progress.
The integration of cutting-edge satellite technologies, exemplified by NASA’s TERRA,
AQUA, and GOES, has amplified wildfire surveillance capabilities. AI’s contributions to
weather forecasting and climate modeling have also refined fire weather predictions to
unprecedented accuracy. The widescale adoption of a data-centric framework, character-
ized by machine learning models, is now standard practice within contemporary bushfire
management. The spectrum of AI–ML applications in Australasia includes predictive
modeling, encompassing the assessment and cartography of bushfire vulnerability, thus
affording the latitude for proactive fire management strategies. Furthermore, AI is pivotal
in formulating efficacious fuel treatment systems, guided by identifying variables with
robust associations to wildfires, including environmental and socioeconomic determinants.
Moreover, AI–ML contributes to delineating spatial patterns in wildfire occurrences, facili-
tating location-specific management interventions. A couple of applications in this regard
include (a) the “An Eye on Recovery” project, a collaboration between WWF-Australia
and Conservation International, which uses sensor cameras to monitor wildlife recovery
after wildfires. This initiative deploys 600 cameras in areas affected by severe bushfires,
shedding light on post-fire animal repopulation; (b) a fire-prone area “Citizen Science App”
driven by AI that offers rapid and accurate fire forecasting, aiding targeted interventions
and enhancing community responses. These applications represent future directions for
AI in environmental management and climate adaptation. Evidence synthesis leads to
an unequivocal assertion: AI–ML is a transformative force in Australasian wildfire man-
agement. It manifests as a data-driven, prognostic paradigm uniquely poised to grapple
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with the escalating complexities precipitated by climate change. In the region’s vanguard
of sustainable urban development and climate adaptation endeavors, AI–ML proactively
empowers governing bodies to safeguard lives, property, and the environment, aligning
seamlessly with their objectives.

3.4. Europe

Europe’s significance in climate change impact, risk, and adaptation studies is undeni-
able. It grapples with rising temperatures, shifting precipitation patterns, and increasingly
extreme events. These challenges vary across the continent, affecting diverse ecosystems
from the Arctic to the Mediterranean. The intricacies of these impacts necessitate compre-
hensive research. Europe’s historical, cultural, and economic diversity further highlights
the urgency of understanding climate change’s ramifications. From coastal vulnerabilities
to changes in agriculture and energy demands, Europe’s experiences resonate globally. In-
depth studies have contributed to a broader understanding of climate dynamics [29,33–35];
also supported by the IPCC [1,2]), thereby paving the way to design targeted mitigation
and adaptation strategies by utilizing the benefits of AI–ML applications and guiding
Europe toward a more sustainable and resilient future.

Integrating innovative technologies such as AI–ML offers a transformative approach to
climate change adaptation. Given this, Alanzi [6] extensively examined the functionalities
and effectiveness of mobile health apps during the COVID-19 pandemic. The study applied
a lens similar to that of using AI–ML in climate change adaptation strategies across Asia,
Europe, and North America. Alanzi [6] reviewed apps such as COVID Symptom Study
and NHS COVID-19 from the United Kingdom; Mawid, Tabaud, Tawakkalna, and Sehha
from Saudi Arabia; Aarogya Setu from India; TraceTogether from Singapore; COVID Safe
from Australia; Immuni from Italy; and COVID Watch and PathCheck SafePlaces from the
United States of America. Like mobile health apps that harnessed Bluetooth, GPS, AI, and
ML to bolster remote healthcare delivery during the pandemic, AI–ML can enhance climate
change adaptation efforts. In Alanzi’s study [6], certain mobile health apps like Arogya
Setu and PathCheck demonstrated the potential for comprehensive services by combining
self-assessment, consultations, support, and information access in a single application.
While mobile health apps primarily focused on contact tracing for COVID-19, AI–ML in
climate change adaptation addresses challenges like environmental monitoring, extreme
weather event prediction, and resource allocation. The absence of all-encompassing mobile
health apps underscores the need for integrated solutions, mirroring the requirement for
unified AI–ML applications that cater to the complex demands of climate adaptation. This
transition towards integrated, multi-functional applications aligns with the evolution of
technology’s role in addressing pressing global challenges.

3.5. North and South America

North America’s significance in climate change studies is multifaceted. It witnesses
rising temperatures, shifting precipitation patterns, and intensifying heat extremes. These
changes impact agriculture, water resources, and coastal communities. North America’s
diverse landscapes, from the Arctic to arid regions, provide valuable insights into climate
change’s varied effects. Its vast population and economic importance amplify the urgency
for research. Furthermore, it plays a pivotal role in the global carbon cycle. Understanding
these impacts is vital for informed decision-making, from urban planning to conservation
efforts. Studying North America’s climate change impacts is crucial for understanding
global climate and developing effective mitigation and adaptation strategies [29,36–38]).
These are also supported by the IPCC [1,2]. Hence, exploring AI–ML-based applications
may open up new research areas when devising climate change adaptations.

South America is a crucial focal point for climate change impact studies. Its vast eco-
logical diversity, ranging from the Amazon rainforest to arid regions, presents a microcosm
of climate change effects. Understanding these impacts is vital for global climate predic-
tions. Additionally, South America’s population heavily relies on agriculture and natural
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resources, making it highly vulnerable to shifts in climate impact drivers. Investigating
these changes is essential for food security and ecological health. Coastal communities
face risks from sea-level rise and extreme weather events, demanding resilience strategies.
South America’s unique ecosystems, economic significance, and climate variability make
it integral to global climate research and adaptation efforts [29,39–41]. These are also
supported by the IPCC [1,2]. Hence, exploring the AI–ML applications in combating the
negative influence of changing climate may yield new sustainable pathways.

Within the framework of assessing the potential of AI–ML in urban climate change
adaptation and sustainable development, it is vital to draw upon the insights of the investi-
gation by Leal Filho et al. [8]. Their extensive research centered on the synergy between AI
and the broader domain of climate change research, specifically emphasizing AI’s invalu-
able role in advancing climate change adaptation efforts. In exploring AI–ML’s applications
in climate adaptation, their comprehensive approach sheds light on the multifaceted ways
AI can underpin climate change research in various regions and contribute significantly to
enhancing climate change adaptation strategies. A striking revelation from their research
underscores the enthusiastic embrace of decision trees (DTs) and AI as indispensable tools
for fortifying climate change adaptation efforts, particularly in North America and South
America. Their appealing results, reflected by the resounding agreement of 80% of North
American and 75% of South American respondents, underscores these technologies’ critical
nature and frequent application. The success of these technologies in these continents is
closely tied to the presence of robust infrastructure that facilitates their effective deploy-
ment. Conversely, a different narrative emerges in the context of African respondents,
with some indicating limited use of DTs and AI within their climate adaptation arsenal.
This comparatively subdued enthusiasm for harnessing DTs and AI in addressing climate
change adaptation in Africa can be attributed to the deficiency of the essential infrastructure
required to support the application of these technologies. Consequently, this divergence
in technological adoption presents an opportunity for technology developers to provide
additional support to African nations, thereby closing the technology gap and invigorating
more comprehensive climate change adaptation endeavors.

4. Results and Discussion

This section follows the “Synthesis and Discussion” part of the methodological frame-
work, as described in Table 1, for all of the case studies discussed for different continents
and beyond.

4.1. Africa

Climate change adaptation presents a pressing challenge for urban environments
across the African continent, as has been highlighted in varying studies [1,2,8,22–24]. In
this context, the integration of AI–ML technologies offers transformative potential. This
assessment delves into a compelling case study from Egypt, underscoring the broader
implications for urban climate change adaptation and sustainable development across
Africa. More specifically, the case study by Elbeltagi et al. [9] focuses on precise ET
estimation, a critical factor for effective agricultural water management, particularly in
water-stressed developing countries (see Table 2). The significance of this case study extends
beyond Egypt and resonates with urban environments throughout Africa. It highlights the
transformative potential of AI–ML technologies in addressing climate change adaptation
and sustainable development challenges. The RF model’s predictive capabilities offer a
valuable resource for authorities and policymakers, enabling them to anticipate future
climate patterns and navigate specific pathways toward climate adaptation in urban centers
across the continent. Unique challenges and opportunities mark the African context of
climate change adaptation. AI–ML technologies, as showcased in the Egyptian case study,
hold promise for bolstering sustainable development and resilience in the face of climate
change. This case study underscores the need for systematic application and further
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research on AI–ML in urban climate change adaptation across Africa, emphasizing the
urgency of addressing climate challenges with innovation and precision.

Table 2. Characterization of climate change adaptation research using artificial intelligence (AI) and
machine learning (ML) concepts.

Research Study Site Climate
Disaster Sector(s) AI–ML

Approaches
Applications
and Benefits

Challenges to
Overcome
and Scope

Elbeltagi
et al. [9]

Egypt, a
transconti-

nental
country

under Africa
and Asia

Irrigation
water scarcity

due to
altering vapor

pressure
deficit

Agriculture
LR, ART, RSS,
RF, REPTree,

and M5P

The study
demonstrated its

potential for precise
evapotranspiration
estimation, which is

crucial for
agricultural water

management in
water-stressed

regions, thereby
highlighting AI–ML’s

benefit in aiding
policy-makers in
targeted climate

adaptation efforts.

Vapor pressure
deficit modeling

faces critical
challenges. Ensuring
historical data access

is essential,
particularly in

data-scarce regions.
Selecting the right

algorithm for specific
applications

demands careful
consideration.

Implementing these
models into

operational systems
is complex but vital

for maximizing
AI–ML benefits.

Kumar
et al. [10]

Muzaffarpur
and Saran

districts from
India under
South Asia

Kala-azar
diseases

outbreaks
Health

RBF-kernel-
based-SVR,
MLR, and

MLP

Combining these
approaches allowed
for a comprehensive

analysis of
climate–disease

relationships,
ultimately benefiting

disease prediction
and public health
decision-making.

Challenges in RBF-
kernel-based-SVR:
Model complexity,
hyperparameter

tuning, data scaling,
data availability.
MLR: Linearity,

multicollinearity,
outliers, overfitting.

MLP: Model
complexity,

hyperparameter
tuning,

preprocessing, data
quantity, resources,

interpretability.
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Table 2. Cont.

Research Study Site Climate
Disaster Sector(s) AI–ML

Approaches
Applications
and Benefits

Challenges to
Overcome
and Scope

Taghikhah
et al. [7]

Australia
under

Australasia

Catastrophic
forest fires Environment

An Eye on
Recovery

Project and
Citizen

Science App

Case studies
demonstrate AI’s

policy influence and
wildfire control.

AI-driven models
and fire prediction

apps indicate future
AI applications.

User-centric design,
regulations, ethics,

literacy, and
understanding

interdependencies
are essential for AI’s

influential
sustainability role.

Leveraging AI for
climate resilience
presents diverse
challenges, from

ethical concerns to
regulatory

frameworks and user
trust. Investigating

the interplay of
psychological,
sociological,

organizational, and
economic factors,

enhancing AI literacy,
and promoting

resource efficiency
are key to harnessing

AI’s potential.

Alanzi [6]

Saudi Arabia,
Singapore,
and India

under Asia;
Italy and the

UK under
Europe; the
USA under

North
America

COVID-19
outbreak and

climate
Health

Mobile Apps
on COVID-19

for Out-
break Control

This study examined
the efficacy of free

mobile health
applications used

during the COVID-19
outbreak in various

countries. It
identified key

functionalities, such
as contact tracing,

self-assessment, and
appointment

booking, focusing on
GPS and Bluetooth

technology. Few apps
integrated

multiple features.

Challenges in this
study encompass
ensuring global

relevance, dealing
with data privacy

and user experiences,
navigating regulatory

differences,
addressing technical

complexities,
ensuring data

security,
accommodating

cross-cultural
diversity, and

managing resource
demands. These

challenges are pivotal
in effectively

deploying integrated
mobile health
applications,

supporting their
potential in

healthcare services.
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Table 2. Cont.

Research Study Site Climate
Disaster Sector(s) AI–ML

Approaches
Applications
and Benefits

Challenges to
Overcome
and Scope

Leal Filho
et al. [8]

Asia, Europe,
Australasia,
and North
America

Water mis-
management

(also in
agriculture)
and wildfire

Natural
resources

AI in general
and Digital

Technologies
(DTs)

in specific

The study analyzes
disparities, improves

infrastructure,
addresses privacy
and risk concerns,

supports education
and research,

enhances resilience,
aids post-COVID-19
recovery, and ensures

systematic
deployment. It also
fosters research for

climate change
mitigation, offering a

comprehensive
toolset for

sustainable
environmental
management.

Regional disparities
in AI adoption

complicate achieving
equitable application.
Infrastructure gaps in

less-developed
regions hinder

integration.
Overcoming fears

and resistance to AI
is crucial,

necessitating
effective education.
Implementing AI

systematically across
diverse regions with

varying readiness
levels is complex.
Addressing these

challenges is
essential for effective
and equitable AI–ML

adaptation to
climate change.

4.2. Asia

Urban centers across Asia face multifaceted challenges in adapting to the impacts
of climate change, as has been highlighted in varying studies [1,2,25–30]. Like Africa,
integrating AI–ML technologies can offer transformative potential in the Asian context.
This assessment explores an enlightening case study from South Asia, specifically Bihar,
India, shedding light on broader implications for urban climate change adaptation and
sustainable development across the continent. The case study by Kumar et al. [10] delves
into the critical issue of Visceral leishmaniasis, a deadly vector-borne disease (see Table 2).
With a significant burden in India, particularly Bihar, South Asia faces the brunt of KA cases.
This study sought to understand the interplay between changing climate patterns and the
dynamics of vector-borne diseases, focusing on Bihar, India. The case study’s findings have
far-reaching implications for urban centers in Asia grappling with vector-borne diseases
and the influence of climate change. The RBF-kernel-based-SVR model offers a swift and
efficient tool for detecting KA cases, particularly in regions with limited data availability.
This AI–ML model holds promise for public health authorities to monitor disease spread,
understand the climate impacts on outbreaks, and ensure timely and effective healthcare
services in urban settings. The case study from Bihar, India, exemplifies the transformative
potential of AI–ML in addressing vector-borne diseases aggravated by climate change. Its
implications extend beyond Bihar, offering a model for urban climate change adaptation
and sustainable development across Asia. AI–ML technologies are vital in understanding
complex climate–disease relationships and developing effective strategies for resilient
urban centers in the face of climate change.

4.3. Australasia

Australasia’s unique ecological makeup, where wildfires are intrinsic components of
ecosystems and hold profound significance in indigenous lore, necessitates reevaluating tra-
ditional wildfire management and other climatic disasters in the face of climate change, as
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has been highlighted in varying studies [1,2,29,31,32]. Coherently, Taghikhah et al. [7] shed
light on the transformative potential of AI–ML in addressing the evolving challenges of
bushfire management. AI’s involvement in bushfire management has laid the groundwork
for remarkable progress in confronting wildfires. Contemporary bushfire management
revolves around a data-centric framework characterized by machine learning models that
have become standard practice. Thus, AI–ML is at the heart of proactive fire management
strategies in Australasia. It is pivotal in predictive modeling for bushfire vulnerability
assessment and cartography and delineating spatial patterns in wildfire occurrences, al-
lowing for location-specific management interventions. The “An Eye on Recovery” project
and “Citizen Science App” applications represent future directions for AI in environmental
management and climate adaptation (see Table 2). Evidence synthesis underscores AI–ML
as a transformative force in Australasian wildfire management. Moreover, AI–ML identifies
and mitigates urban heat islands, enhances infrastructure resilience, and aids in emergency
response and evacuation planning by analyzing historical and real-time weather data. It
optimizes natural resource management, particularly in regions prone to water scarcity,
and streamlines waste management and recycling efforts. AI–ML also plays a pivotal role
in developing sustainable, low-emission innovative transportation systems while contin-
uously monitoring urban air quality and providing alerts and recommendations during
deteriorations. These nuanced applications demonstrate AI–ML’s potential to address
specific climate challenges, fostering more resilient and sustainable Australasian cities.

4.4. Europe

In the European context, AI–ML presents a transformative approach to urban climate
change adaptation and sustainable development, as exemplified by Alanzi’s [6] extensive
study of mobile health apps during the COVID-19 pandemic and as underlined by other
studies [1,2,29,33–35]. This analysis expands to consider AI–ML’s remarkable potential in
climate adaptation across Europe, Asia, and North America. The study scrutinized various
mobile health apps rooted in AI and ML and demonstrated their capability to deliver com-
prehensive services, combining self-assessment, consultations, support, and information
access. This experience underlines the pressing need for integrated AI–ML applications
capable of addressing the multifaceted demands of climate adaptation. This European and
other continental perspective underscores a transition towards integrated, multi-functional
applications, echoing the evolving role of technology in tackling global challenges. In
essence, the integration of AI–ML technology unveils transformative opportunities for
climate adaptation, akin to its role in healthcare during the pandemic. The continent is at
the forefront of urban sustainability and climate resilience, empowered by AI–ML’s capacity
to safeguard lives, property, and the environment in the face of climate change. Europe’s
strong commitment to sustainability and climate action, combined with the multifaceted
applications of AI–ML, positions the region at the forefront of global climate change combat
efforts. These technologies empower data-driven decision-making, resource allocation
optimization, and environmental impact reduction, fostering more resilient, adaptive, and
sustainable urban environments across the continent.

4.5. North and South America

Drawing on the insights from Leal Filho et al. [8] and others, the paramount role
of AI–ML in urban climate change adaptation across North and South America is mani-
fest [1,2,29,36–41]. Their extensive study elucidates how AI can act as a linchpin in climate
change research and the fortification of adaptation strategies across diverse regions. Within
this expansive landscape, DTs and AI emerge as pivotal instruments. Notably, the research
showcases the fervent endorsement of these technologies in North and South America,
where an impressive 80% and 75% of respondents, respectively, unequivocally acknowl-
edge their indispensable status and frequent application. The prevailing success of DTs and
AI in these continents is closely intertwined with robust infrastructure, which seamlessly
facilitates their effective deployment, empowering urban centers to navigate the challenges
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posed by a changing climate. However, the narrative shifts when exploring the context of
African respondents. A different tale unfolds, marked by the palpable restraint in embrac-
ing DTs and AI as integral components of their climate adaptation toolbox. This restrained
application can primarily be ascribed to the insufficiency of the requisite infrastructure to
utilize these transformative technologies fully. This divergence in technological adoption
serves as a clarion call to technology developers, urging them to actively bridge the tech-
nology gap in African nations. Such efforts promise to invigorate more comprehensive
climate change adaptation endeavors and nurture sustainable urban development more
equitably and globally. In sum, this comprehensive analysis underscores the indispensable
role of AI–ML as a catalyst for climate change adaptation in the urban landscapes of North
and South America. It vividly exemplifies how these technologies, coupled with robust
infrastructure, can empower regions to navigate the multifaceted challenges of climate
change. However, it also serves as a poignant reminder of the pressing need for equitable
access to these transformative tools globally, underlining the imperative for all nations to
harness the potential of AI–ML in their journey toward sustainable urban development
and climate resilience.

5. Lessons Learned and Future Potential

Lessons from AI–ML in African climate adaptation reveal the need for robust infras-
tructure, equitable tech access, localized solutions, capacity building, and international
collaboration. A multi-sectoral approach is vital, and policy frameworks are essential for
responsible AI–ML use. Quality data and data management are fundamental for model
accuracy. AI–ML’s future in tackling climate change in Africa is promising. Lessons learned
suggest that African nations should focus on localized AI–ML solutions, partnerships,
and capacity building. Infrastructure investment is essential, as is promoting data quality
through sharing. Expanding AI–ML beyond climate adaptation to various sectors is wise,
and robust policy and regulation are crucial. The potential for AI–ML in Africa is significant,
offering a potent tool for climate resilience and sustainable urban development.

For the Asian continent, insights underscore the importance of tailoring AI–ML so-
lutions to address the diverse climate challenges in Asia. Additionally, capacity building
is vital to empower Asian nations with the skills needed for effective AI–ML implemen-
tation. Integrating AI–ML across health, agriculture, and disaster management sectors
enhances resilience. Collaborative efforts and technology transfer can expedite AI–ML
adoption, while robust policy frameworks ensure the responsible and effective use of
AI–ML technologies. High-quality, accessible data are fundamental, and investment in data
collection and management is crucial to enhance AI–ML accuracy. Furthermore, optimizing
renewable energy integration through AI–ML can contribute to sustainable development.
These strategies pave the way for a promising future in which AI–ML is a powerful tool in
combatting climate change and building resilient urban centers across Asia.

Australasia has recognized the value of AI–ML in wildfire management. AI has signif-
icantly improved wildfire surveillance and prediction, enhancing fire weather forecasting
and proactive fire management. The use of AI–ML for environmental monitoring, such as
tracking wildlife recovery after wildfires and offering rapid and accurate fire forecasting,
has been a successful approach. These applications highlight the potential for AI–ML to
contribute to broader environmental management efforts. Furthermore, Australasia has
leveraged AI–ML to engage citizens in climate adaptation. Initiatives like the “Citizen
Science App” that offers rapid and accurate fire forecasting demonstrate the potential for
technology to involve the public in climate adaptation and response efforts. Expanding AI–
ML beyond wildfire management to areas like health, agriculture, and disaster management
enhances resilience and sustainability. Developing comprehensive policy and regulatory
frameworks addressing data privacy and ethics is essential to ensuring responsible AI–ML
use. International collaboration offers knowledge exchange and resource pooling oppor-
tunities to accelerate AI–ML integration into climate adaptation. Continued investment
in data collection and sharing improves data quality and model accuracy. Sustainable
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agriculture, aided by AI–ML, enhances food security and environmental sustainability.
These strategies position Australasia for climate resilience and sustainable development in
a changing climate.

The European continent has gleaned crucial lessons from applying AI–ML techniques
in combating climate change consequences. These insights emphasize the significance of
data-driven climate adaptation, enabling precise predictions of extreme weather events,
sea-level rise, and temperature changes. Moreover, the effective use of AI–ML to identify
and mitigate urban heat islands has been recognized, emphasizing strategies like increasing
green spaces and optimizing building design. Energy efficiency is another critical facet,
with smart grids and predictive models reducing carbon emissions. Sustainable transporta-
tion has been improved through AI–ML’s traffic flow optimization and eco-friendly options
promotion. Furthermore, AI–ML optimizes natural resource management, enhances waste
management and recycling, and continuously monitors air quality for public health pro-
tection. Integration into renewable energy systems and cross-sectoral applications is the
future scope, emphasizing the importance of robust policy frameworks, international
collaboration, data management, sustainable agriculture, and improved natural disaster
response. These lessons and prospects are pivotal in enhancing European climate resilience
and sustainability.

Both North and South American continents recognize the value of AI–ML in climate
change adaptation, particularly DTs and AI, as crucial tools for adaptation efforts. The
success of AI–ML in these regions is closely tied to their robust technological infrastructure.
However, this success highlights technology adoption disparities, as some regions, like
parts of Africa, experience limited AI–ML adoption due to infrastructure deficiencies. This
variation underscores the global need for equitable access to technology to effectively
address climate change adaptation challenges. Looking ahead, North and South America’s
future scope involves expanding AI–ML applications to diverse sectors linked to climate
change, including health, agriculture, and disaster management. To ensure responsible
AI–ML use, comprehensive policy and regulatory frameworks are crucial, addressing
data privacy, ethics, and standards. Collaboration with international organizations, data
enhancement, and optimizing renewable energy integration complete the envisioned path
toward enhanced climate resilience and sustainable development across the continents.

Small islands hold a distinct and critical position in climate change impact studies.
They often serve as early indicators of global climate trends due to their vulnerability to
rising sea levels, extreme weather events, and coastal erosion—moreover, small islands
house unique ecosystems and biodiversity hotspots. Understanding how climate change
affects these environments is crucial for conservation efforts. Lastly, these islands often face
water scarcity and agricultural challenges, highlighting the need for adaptation strategies
to secure livelihoods and ecosystems. Small islands play a pivotal role in advancing
climate science and adaptation practices. Hence, studying the applications of AI–ML-based
climate change adaptation approaches in these regions may provide insights into broader
climate dynamics.

Polar regions are critical in climate change studies due to their unique responses to
global warming. The Antarctic Peninsula’s significant warming and the Arctic’s rapid
changes provide crucial data for climate modeling. These regions are early warning systems
for the planet’s broader climate shifts, like small islands. The melting polar ice contributes
to rising sea levels, impacting global coastlines. Moreover, polar ecosystems store vast
amounts of carbon, from ice sheets to permafrost. Understanding their vulnerability and
carbon dynamics is vital for climate mitigation. Lastly, studying polar regions helps predict
extreme weather patterns and informs adaptation strategies, making them indispensable
for comprehensive climate research. Thus, AI–ML-based climate change adaptation ap-
proaches may be one of the approaches that can be explored for polar regions in the
present context.

The findings collectively contribute to the understanding of AI–ML applications in
diverse geographic contexts, offering insights into climate adaptation strategies, technology
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integration, and the importance of collaborative, region-specific approaches, as summa-
rized below:

• In Africa, lessons underscore the necessity of robust infrastructure and equitable tech-
nology access for effective climate adaptation in Africa, emphasizing the importance
of localized AI–ML solutions tailored to diverse climate challenges and the vital role of
capacity building and international collaboration in empowering nations for effective
AI–ML implementation.

• In Asia, tailoring AI–ML solutions to diverse climate challenges, crucial capacity
building, and integration across sectors enhance resilience by empowering nations
with the skills needed for effective AI–ML implementation.

• In Australasia, AI–ML is employed for comprehensive wildfire management, enhanc-
ing surveillance, prediction, and public engagement, extending to environmental
monitoring and tracking wildlife recovery after wildfires, with initiatives like the
“Citizen Science App” showcasing the potential for technology to engage the public in
climate adaptation.

• In Europe, AI–ML supports data-driven climate adaptation, predicting extreme weather,
addressing sea-level rise, and mitigating urban heat islands through strategies like
green space. It also enhances energy efficiency with smart grids and predictive models,
reducing carbon emissions and improving sustainable transportation.

• Success in North and South America with AI–ML is closely linked to robust technologi-
cal infrastructure, underlining global disparities in technology adoption and emphasiz-
ing the importance of ensuring equitable access for effective climate change adaptation.

• Small islands, vulnerable and with unique ecosystems, serve as early indicators of
global climate trends. Addressing water scarcity and agricultural challenges through
AI–ML is crucial for securing livelihoods and ecosystems on these islands.

• Polar regions, crucial in climate change studies, provide essential data for climate
modeling and monitoring. Understanding vulnerability and carbon dynamics in polar
ecosystems contributes to climate mitigation strategies.

The lessons learned from the extensive exploration of AI–ML applications in urban
climate change adaptation and sustainable development underscore the transformative
potential of these technologies. Navigating the intricate challenges posed by climate change
reveals that the development of AI and ML is pivotal in enhancing urban resilience and
shaping the business models of key industry players. These can include diverse stake-
holders, such as technology companies specializing in AI and ML solutions for climate
resilience, environmental consulting firms, urban planning and development agencies,
governmental bodies, and corporations involved in sustainable practices. Recognizing
the symbiotic relationship between technological advancements and strategic business
approaches is crucial for fostering a sustainable future. The analysis sheds light on the
successes and potentials of AI–ML, providing a foundation for understanding the interplay
between technology, industry dynamics, and climate resilience. Through continued innova-
tion, collaboration, and strategic policy formulations, the full potential of AI–ML can be
harnessed to build climate-resilient urban centers and foster sustainable development in
the years to come.

6. Conclusions

In conclusion, this study has significantly contributed to addressing a crucial gap in
existing climate change literature by exploring the potential of AI–ML in urban climate
change adaptation and sustainable development across diverse continents. While mitiga-
tion strategies have garnered considerable attention, this research uniquely delves into the
underexplored domain of leveraging AI–ML to catalyze climate change adaptation in both
current and future urban centers. The exploration of case studies spanning Africa, Asia,
Australasia, Europe, North America, and South America has shed light on the successes,
potentials, limitations, and challenges of AI–ML applications. The study underscores the
importance of context-specific approaches and collaborative efforts in fully harnessing the
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potential of AI–ML for climate adaptation. Successful AI–ML applications, as emphasized,
are intricately linked to understanding the unique characteristics and challenges of individ-
ual regions. Moreover, the study highlights the imperatives of international collaboration,
knowledge sharing, and technology transfer to expedite the global integration of AI–ML
into climate adaptation strategies. Regarding the limitations, this study concentrated on the
role of AI–ML in urban climate change adaptation, offering a comprehensive overview but
lacking an in-depth exploration of specific AI–ML models or techniques, which could limit
the technical analysis. There may be a potential geographic bias in the case studies and
examples, as one case study was focused on each continent, potentially neglecting unique
challenges and opportunities in less-represented areas of the same continent. This presents
an avenue for future researchers to emphasize context-specific investigations coherently
with the current study objectives.

Moving forward, the study envisions a trajectory for AI–ML in the climate adapta-
tion domain and emphasizes the need for continued research, innovation, and impactful
application of AI–ML techniques. Given that climate change remains a defining chal-
lenge, the study asserts that AI–ML will increasingly play a pivotal role in constructing
climate-resilient urban centers and promoting sustainable development. Consequently, the
study calls for sustained efforts to advance AI–ML technologies, establish robust policy
frameworks, and ensure equitable access to these tools globally. This imperative not only
harnesses the transformative power of AI–ML to confront the consequences of climate
change but also lays the foundation for a more sustainable and resilient future for all. In
light of these findings, policymakers are urged to consider the nuanced dynamics outlined
in this study when formulating climate adaptation policies. The context-specific nature
of successful AI–ML applications highlights the importance of tailoring strategies to the
unique challenges faced by individual regions. Furthermore, the emphasis on international
collaboration suggests that policymakers should actively engage in knowledge-sharing ini-
tiatives and support technology transfers to ensure the effective integration of AI–ML into
climate adaptation efforts worldwide. The study’s call for ongoing research and innovation
underscores the need for policymakers to prioritize investments in AI–ML technologies
and support initiatives that advance their application in climate adaptation. By doing so,
policymakers can position their jurisdictions at the forefront of resilient and sustainable
urban development in the face of climate change challenges.
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