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Potential of Deep Learning in drought assessment by

extracting information from hydrometeorological

precursors
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ABSTRACT
This study explores the potential of the Deep Learning (DL) approach to develop a model for

basin-scale drought assessment using information from a set of primary hydrometeorological

precursors, namely air temperature, surface pressure, wind speed, relative humidity, evaporation,

soil moisture and geopotential height. The novelty of the study lies in extracting the information

from the hydrometeorological precursors through the efficacy of the DL algorithm, based on a

one-dimensional convolutional neural network. Drought-prone regions, from where our study basins

are selected, often suffer from the vagaries of rainfall that leads to drought-like situations. It is

established that the proposed DL-based model is able to capture the underlying complex relationship

between rainfall and the set of aforementioned hydrometeorological variables and, subsequently,

shows its promise for the basin-scale meteorological drought assessment as revealed through

different performance metrics and skill scores. The accuracy of simulating the correct drought

category, among the seven categories, is also high (>70%). Moreover, in general, the skill of any

climate model is much higher for the primary meteorological variables as compared with other

secondary or tertiary variables/phenomena, like droughts. Thus, the novelty of the proposed

DL-based model also lies in the improved assessment of ensuing basin-scale meteorological

droughts using the projected meteorological precursors and may lead to new research directions.

Key words | one-dimensional convolutional neural network (Conv1D), Deep Learning, drought,

hydrometeorology, machine learning, Standardized Precipitation Anomaly Index (SPAI)
HIGHLIGHTS

• This study explores the potential of Deep Learning (DL) approach to capture the hidden complex

hydrometeorological association.

• A DL-based model is developed for basin-scale drought assessment using the hidden complex

relationship from a set of primary hydrometeorological precursors.

• DL may be effective to use simulated primary hydrometeorological variables from climate

models to assess more complex phenomena.
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GRAPHICAL ABSTRACT
INTRODUCTION
Occurrences of droughts have a profound impact on water

stress affecting both surface and groundwater resources

causing reduced water supply and deteriorated water

quality (Mishra & Singh ; Adnan et al. ; Mukherjee

et al. ). The impact of drought is more profound in mon-

soon-dominated countries like India, where the agricultural

production heavily depends on monsoon rainfall and the

economic growth is dominantly dependent on agriculture

(FAO ). In the last five decades, India has witnessed

a drought at least once in every three years, making it one

of the most vulnerable drought-prone countries. Prolonged,

widespread and more frequent droughts have occurred in

consecutive years for the last two decades (FAO ;

World Bank ). However, droughts should not be

mixed up with aridity, which is defined as a permanent

imbalance in the water availability in a region characterized

by low average annual precipitation along with low moisture

availability and low carrying capacity of the ecosystems
://iwaponline.com/jwcc/article-pdf/12/6/2774/935272/jwc0122774.pdf
(Sanderson ; Pereira et al. ). On the other hand,

droughts are the temporary imbalance of water availability

due to prolonged below normal precipitation resulting in a

shortage of soil moisture availability and other sources of

water at a region with uncertain duration, frequency and

severity. Such uncertainties lead to difficulties in the reliable

prediction of upcoming drought status (Pereira et al. ).

The complexity associated with different types of

drought, their dynamic nature and widespread impacts

calls for an urgent need to establish early warning systems

with reliable drought prediction mechanisms for the most

vulnerable communities to be ready with a hands-on

drought mitigation plan (World Meteorological Organiz-

ation, WMO ). The probabilistic and risk-based

drought monitoring and prediction information are also

crucial for effective drought relief management throughout

an extreme event. Yet, to date, the task of developing a

reliable prediction model remains challenging due to the
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random and nonlinear nature of drought variables, complex-

ities in their origins and spatiotemporal scales of their

occurrences (Hao et al. ).

Nevertheless, the multifold socioeconomic as well as

hydroclimatological impacts of drought have led to the

development of several drought forecasting models such as

regression analysis, auto-regressive integrated moving aver-

age, Markov chain, Artificial Neural Network (ANN)

(Mishra & Desai ; Mishra et al. ; Morid et al.

; Le et al. ; Ghorbani et al. ; Khan et al. ),

Support Vector Regression (SVR) (Maity et al. ; Belay-

neh et al. ; Ganguli & Reddy ; Khan et al. ;

Pal et al. ), random forest, regressions trees (Feng

et al. ; Granata ), extreme learning machine (Deo

& Sahin ; Mouatadid et al. ), k-nearest neighbor

(Khan et al. ), gene expression programming and

tree model (Shamshirband et al. ). The outcomes from

these large varieties of drought forecasting models indicate

that the Machine Learning (ML)/artificial intelligence

approaches are gradually replacing the linear approaches,

as they cannot ideally capture the nonlinearity component

in the time series (Fung et al. ). The ML algorithms can

predict the drought events that do not have a good, straight-

forward mathematical solution capturing the white noise,

nonstationarity and nonlinearity in the time series (Fung

et al. ). These ML algorithms are also able to capture

the complex interactions involved in natural phenomena

owing to their ability to automatically learn from the

observed data (Lantz ; Sachindra & Kanae ).

However, the development of these models primarily

requires multiple trials to determine weights and biases,

run into restrictions while handling large data and consider

the drought-causing factors to be limited. Moreover, these

ML-based models suffer from overfitting in calibration,

underfitting in validation and trapping at local minima,

especially in the case of ANN and support vector machine

(Khan et al. ). These lead to a pressing need for more

advanced methods for the hydrometeorological analysis of

complex processes like extreme events including droughts.

Although in some studies, ANN is used for complex time-

series modeling with a sufficient number of hidden layers

and a specified number of units (Zhang et al. ), yet

the complex hydrometeorological phenomena, such as

droughts, summon more hidden layers leading to the
om http://iwaponline.com/jwcc/article-pdf/12/6/2774/935272/jwc0122774.pdf
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problem of non-convex optimization. The issue can be dealt

with Deep Learning (DL) algorithms with an unsupervised

greedy layer-wise training for Deep Neural Networks

(DNNs) (Hinton & Salakhutdinov ), which perform

better than conventional ML approaches by avoiding getting

stuck in the wrong local solutions (Lecun et al. ). The DL

approach is able to extract the data features from raw data

using multiple hierarchical layers (Khan & Maity ). The

ability to learn from exposure to data without any human

expertise enables it to effectively study the nonlinear,

complex and hidden information involved in hydroclimatolo-

gical processes and thus helps to develop the models at

various spatiotemporal scales (Khan & Maity ).

A few studies have shown that DL-based approaches

can extract more useful features from highly nonlinear phys-

ical processes involved in drought during a comprehensive

drought model development. A Deep Belief Network

(DBN) was used for short-term drought prediction in the

Huaihe River Basin of China and was found to be superior

to the standard backpropagation neural network (Chen

et al. ). Another DBN algorithm-based approach has

been implemented for the prediction of long-term (with 6-

and 12-month lead times) drought conditions using the Stan-

dardized Streamflow Index in the Upper Colorado River

Basin (Agana & Homaifar ). The results indicate the

better prediction efficiency of DL-based algorithms com-

pared with multilayer perceptron and SVR. Shen et al.

() used a DL-based model to construct a comprehensive

drought monitoring model in the Henan Province of China

considering the various hazard factors in drought develop-

ment. In another study, Kaur & Sood () used the

DNN to predict the level of drought severity for different cli-

mate blocks and different time frames with various drought

indices. The DNN also outperformed the ANN with genetic

algorithm and ANN in assessing the drought conditions. In

another study, Xu &Mo () also used DBN to predict the

Standardized Precipitation Index at different time scales.

The DBN was shown to perform better as compared with

other traditional methods. However, none of the aforemen-

tioned studies attempt to extract the information from a set

of hydrometeorological precursors for drought assessment.

This is important and beneficial because the performance

of any climate model is generally highly skillful for the

primary meteorological variables as compared with other
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secondary or tertiary variables/phenomena. Thus, drought

being a tertiary phenomenon, the ability of any climate

model to perform drought assessment is very limited. On

the other hand, while the efficient applications of DL-

based approaches have been proved, its potential for

drought assessment using the information from hydrome-

teorological precursors has yet to be measured. Herein lies

the motivation of this study. Moreover, there are practically

no such studies available in any Indian basins to the authors’

best knowledge.

The objective of the study is to develop a DL-based

model for drought assessment utilizing a set of hydrometeor-

ological precursors. We picked out two medium-sized,

rainfed river basins that are located in the central belt of

India and frequently stricken by droughts due to the vagaries

of precipitation. Further details about the study basins are

provided in the ‘Study area and data’ section. Following

that, the ‘Methodology’ section provides details on the

methodology including drought characterization, data

preparation and the proposed DL approach. Results and

related discussions are presented in the ‘Results and discus-

sion’ section along with more specific details of the DL

model. The performance of the DL-based model is also com-

pared with another popular ML-based approach, i.e., SVR,

to explore the additional benefits against an existing

approach keeping all other conditions the same. Finally,

the major findings and conclusions are drawn in the ‘Con-

clusions’ section.
Figure 1 | Location of study basins with approximate drainage network: (a) Damodar

River Basin up to Tenughat Dam (TRB) and (b) Wardha River Basin up to Upper

Wardha Dam (WRB). The basin outlets are shown as red triangles and the black

dots designate the grid points (0.1� × 0.1�) utilized for analysis. Please refer to

the online version of this paper to see this figure in colour: doi:10.2166/

wcc.2021.062.
STUDY AREA AND DATA

Two river basins lying in different climatic zones of India

with comparable catchment area, namely Damodar River

Basin up to Tenughat Dam in eastern India (TRB) and

Wardha River Basin up to upper Wardha Dam in western

India (WRB), are considered for the study (Figure 1). TRB

is a part of the Damodar River Basin with a catchment

area of 4,939 km2. The Damodar River rises in the Palamau

hills of Chotanagpur Plateau at an elevation of about

609.75 m. The river flows across two Indian states, namely

Jharkhand and West Bengal, and the dam is located at

Tenughat in Petarwar block of Bokaro district in Jharkhand.
://iwaponline.com/jwcc/article-pdf/12/6/2774/935272/jwc0122774.pdf
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The catchment comprises rough hilly areas denuded of

forest and vegetal cover and is subjected to erosion. WRB

is a part of the Godavari River Basin with a catchment

area of 4,326 km2. The Wardha River originates at Satpura

Range near Khairwani village in Multai Tehsil, Betul Dis-

trict, Madhya Pradesh at an altitude of 777 m. The Upper

Wardha Dam is built across the Wardha River, and the

catchment area is hilly and forested. The path of monsoon

depressions that originate in the Bay of Bengal descends

directly on this catchment area. Both these study basins

are located in the central belt of Indian mainland that is

prone to droughts due to the vagaries of rainfall with some

variation between eastern and western sides. It is hypothesized

that the vagaries of rainfall are forced by several hydrometeor-

ological factors in an unknown and complex way that may

vary over space. Thus, such basins provide a unique scope to

explore the potential of DL-based approaches.

All the datasets are obtained from the fifth generation of

the European Centre for Medium-Range Weather Forecasts

(ECMWF) reanalysis product (ERA5, https://www.ecmwf.

int/en/forecasts/datasets/reanalysis-datasets/era5, accessed

April 2021) for the period of 1981–2020. ERA5 provides

high-resolution estimates for a large number of atmospheric,

land and oceanic variables at various temporal scales (sub-

daily to monthly). It combines a vast amount of historical

observations into global estimates using advanced modeling

and data assimilation systems. The precipitation data are

used for the evaluation of the drought index, the details of

which are provided in the ‘Methodology’ section. The set

of hydrometeorological variables includes air temperature
Table 1 | Details of the meteorological dataset obtained from ERA5

Dataset Variables
Spatial
Resolution Ver

ERA5-Land monthly
averaged data

Total precipitation 0.1� × 0.1� Su
2-m temperature 0.1� × 0.1� 2-m
Pressure 0.1� × 0.1� Su
Evaporation 0.1� × 0.1� Su

Volumetric soil water 0.1� × 0.1� Su
10-m u-wind 0.1� × 0.1� 10
10-m v-wind 0.1� × 0.1� 10

ERA5 monthly averaged data
on pressure levels

Geopotential height 0.25� × 0.25� 1,0

Relative humidity 0.25� × 0.25� 1,0

om http://iwaponline.com/jwcc/article-pdf/12/6/2774/935272/jwc0122774.pdf
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(2 m height), surface pressure, wind speed (resultant of

zonal and meridional wind at 10 m height), relative humid-

ity, evaporation, surface soil moisture (0–7 cm) and

geopotential height. Further details of the datasets as

obtained from ERA5 are provided in Table 1. All the data-

sets are spatially averaged across the basin and converted

to a monthly scale before further processing. The grid

points lying within and in the proximity of the basin, as

shown in Figure 1, are considered.
METHODOLOGY

A flowchart summarizing the complete methodological con-

cept along with a schematic diagram showing the proposed

DL model architecture using a one-dimensional Convolu-

tional Neural Network (CNN), henceforth referred to as

the Conv1D, is shown in Figure 2. Different components of

the methodology are explained in the following subsections.

Drought characterization for Indian hydroclimatology

Standardized Precipitation Anomaly Index (SPAI) is a

generalized anomaly-based index for characterizing meteor-

ological drought in monsoon-dominated climatology

(Chanda & Maity ; Makokha et al. ; Das &

Chanda ; Maity et al. ; Monish & Rehana ).

As the rainfall in India is strongly seasonal due to its mon-

soon-dominated climatology, the SPAI is used as the

drought characterization index. For a monthly scale
tical/Pressure Level Units (ERA5) Units (Converted)

rface m mm
above surface K �C

rface Pa kPa
rface m (of water

equivalent)
mm

b-surface (0–7 cm) m3/m3 –

-m above surface m/s –

-m above surface m/s –

00 hPa m2/s2

(geopotential)
m (by dividing geopotential
by gravitational constant)

00 hPa Percent (%) –

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5


Figure 2 | Methodological flowchart along with a schematic diagram showing different layers of Conv1D model architecture. Please refer to the online version of this paper to see this

figure in colour: http://dx.doi.org/10.2166/wcc.2021.062.
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analysis, the SPAI should be computed in three steps. First,

the monthly precipitation anomalies are calculated from

the raw precipitation values. The monthly anomalies are

obtained as follows:

yi,j ¼ (xi,j � �xj) (1)

where yi,j is the precipitation anomaly for the ith year and jth

time step of the year, xi,j is the precipitation value for the ith

year and jth time step of the year and �xj is the long-term

mean precipitation for the jth time step of the year. Next,

a probability distribution (parametric or nonparametric)

is fitted across the monthly anomaly series to obtain the

probability quantiles. If a nonparametric distribution is con-

sidered, then the empirical Cumulative Distribution

Function (CDF) may be obtained by using the Weibull plot-

ting position formula as follows:

p ¼ m
N þ 1

(2)

where p is the cumulative probability, m is the rank of the

dataset arranged in descending order and N is the sample

size. Finally, the quantiles obtained in the previous step

are transformed to standard normal variates (z-score),

which give the SPAI. Thus, the SPAI is obtained as follows:

z ¼ F�1(p) (3)
://iwaponline.com/jwcc/article-pdf/12/6/2774/935272/jwc0122774.pdf
where F�1(p) represents the inverse of the standard normal

distribution for a CDF value of p.

It may be mentioned here that there are several alterna-

tive indices for the characterization of droughts, such as

Palmer Drought Severity Index (PDSI) (Palmer ),

Standard Precipitation Index (SPI) (McKee et al. ),

Standardized Nonstationary Precipitation Index (SnsPI)

(Russo et al. ), Joint Deficit Index (JDI) (Kao &

Govindaraju ) and Copula-based Joint Drought Index

(CJDI) (Won et al. ). Many of these drought indices

(PDSI, JDI and CJDI) require multiple meteorological

inputs for computation. However, SPI, SnSPI and SPAI

are calculated from precipitation data only. Even among

these, the SPAI is established to be more suitable than the

SPI or SnsPI for a periodic precipitation series such as

that observed in India (Chanda & Maity ). The SPAI is

able to distinguish (statistically) similar inter-seasonal defi-

cits, which have contrasting socioeconomic implications in

a monsoon-dominated climatology (Chanda & Maity ;

Park et al. ). As the SPAI is found to be a robust meteor-

ological drought index, it is adopted in several recent studies

(Amrit et al. ; Das & Chanda ; Rehana & Monish

) and also selected in the present study.

Next, the categorical classification of droughts is done

based on the different ranges of SPAI values. These are as fol-

lows: if the SPAI value ranges between 1 and �1, i.e., �1�
SPAI� 1, it is considered as a ‘near-normal’ (N) situation. It

is characterized as ‘Moderate Drought (D0)’ and ‘Moderately

Wet (W0)’ conditions for �1.5� SPAI<�1 and 1< SPAI

�1.5, respectively. Likewise, for �2� SPAI<�1.5 and

http://dx.doi.org/10.2166/wcc.2021.062
http://dx.doi.org/10.2166/wcc.2021.062
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1.5< SPAI �2, it is categorized as ‘Severe Drought (D1)’ and

‘Severely Wet (W1)’ conditions, respectively. Finally,

‘Extreme Drought (D2)’ and ‘Extremely Wet (W2)’ con-

ditions are denoted by SPAI<�2 and SPAI> 2, respectively.

Data preparation

Entire data preparation and handling are carried out in the

scientific python development environment (Spyder) note-

book. It starts with spatially averaging the gridded datasets

across the basins following the area weightage method and

converting to a monthly scale honoring their units (Table 1).

In the proposed DL model, the values of the seven hydro-

meteorological precursors are used from three consecutive

months to simulate the rainfall values for those 3 months,

and subsequently, SPAI values are computed with the simu-

lated values of rainfall. The analysis also includes the use of

the k-fold cross-validation technique to evaluate the simu-

lation/prediction skill of the model. Accordingly, k (here k¼
5) approximately equal folds (division of the available data

length) are considered. This leads to the consideration of

approximately 80% of the data as the training set and the

remaining 20% as the testing set. The model is trained on

the four (k – 1) folds, and its performance is checked on the

remaining fold. This is repeated for all the folds.

One-dimensional CNN

The proposed DL model is based on the Conv1D model. It is

developed in the Spyder notebook using Keras library built

on the top of TensorFlow. The CNN architecture generally

comprises an input layer, an output layer and between

them, there is some arbitrary number of hidden layers. The

proposed DL model is of a sequential type that can be

used for simulation/prediction problems using one or mul-

tiple time series. A schematic diagram is shown in Figure 2.

The function of the input layer is to receive the signal

(input data) and transfer it to the hidden layer(s). Hidden

layers are the computational engine of the model. They

may have one or more Conv1D layer, max-pooling layer,

dropout layer and a flatten layer depending on the problem.

The Conv1D layer is the main building block of CNN.

It consists of one-dimensional filters/kernels to extract

features from the input signal, kernel size to specify the
om http://iwaponline.com/jwcc/article-pdf/12/6/2774/935272/jwc0122774.pdf
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length of the filter and an activation function to set a

threshold limit for the neurons. The model is trained on

the defined causal and target variables and extracts the

hidden information of the sequence. A max-pooling layer

(if used) is generally used after the convolutional layer. It

helps in reducing the dimension of the output matrix and

also the chance of overtraining. The function of the dropout

layer (if used) is to randomly assign zero weights to the

neurons of the network, which makes it less sensitive

toward smaller variation, thus improving the accuracy of

the model on unseen data (Srivastava et al. ). A flatten

layer converts the output of the convolutional/pooling/drop-

out layers to one dimension and transfers the data to the

output layer. The output layer is a fully connected dense

layer, which is connected to all the neurons of the previous

layer and is responsible for generating the output of the

model. There are several hyper-parameters that needed

to be specified to fix the model architecture. This is pro-

blem-specific, and details are provided in the ‘Results and

discussion’ section. After configuring the layers, they are

generally trained on a set of input and target data to learn

the association involved between them (Zou et al. ).

Training involves the tuning of several hyper-parameters to

minimize the error (loss). The error is measured in several

ways, namely Mean Squared Error (MSE), Mean Absolute

Error (MAE) and log loss. Once the model is trained, it is

used to generate output from the unseen/testing data. A

more detailed background on the one-dimensional convolu-

tional network can be found in Kiranyaz et al. ().

Model parameters/configuration

Several combinations of layers were evaluated with different

sets of model hyper-parameters (such as filter size, number

of filters, dropout percentage and number of hidden

layers) and optimization hyper-parameters (such as batch

size, activation function, number of epochs, learning rate,

loss function, momentum and decay rate) so as to ascertain

the best possible model configuration. The finalized archi-

tecture of the Conv1D model comprises six layers

(Figure 2), whose configurations are discussed below.

The prepared dataset of seven precursors (also known as

input features) along with long-term mean rainfall (hence, a

total of eight features) is fed as input to the first Conv1D
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layer. The input shape consists of three time-steps (months)

along with their respective values of the eight features

arranged in two-dimensional matrix form. The first convolu-

tional layer comprises 124 filters, filter/kernel size 1, stride

1, Glorot uniform kernel initializer (aka Xavier uniform

initializer) and Rectified Linear Unit (ReLU) activation

function. The convolutional filters help to identify and

excerpt the hidden information in the input data. After

achieving the threshold value assigned by the ReLU acti-

vation function, the output of the layer moves to the next

unit of the model. Subsequently, two more convolutional

layers are added to the model having the same configuration

as that of the first Conv1D layer. After providing three

Conv1D layers, a flatten layer is added to the model to

reshape the multidimensional input received from the pre-

vious Conv1D layer to one dimension. Followed by the

flatten layer, the output layer is added comprising three neur-

ons and a linear activation function. These three neurons are

meant for the simulated rainfall values for three months.

Based on the above architectural configuration and by

several trials, a batch size of 375 and 200 epochs (without

shuffling) were selected for training the model. The model

architecture uses the MAE to calculate the loss and an effi-

cient Adam version of stochastic gradient descent with a

learning rate of 0.0001, momentum rate of 0.9 and decay

rate of 1 × 10�7, which are adopted for the best possible con-

figurations (Kingma & Ba ). After successful completion

of training, the performance of the model was assessed on

the testing dataset. The model configuration is kept

unchanged across different folds during k-fold cross-vali-

dation. To ensure neither overfitting nor underfitting, it is

recommended to observe that the loss (MAE) obtained

from the training and testing data are more or less the same.

Comparison with other approaches

The proposed DL-based model is compared with another

popular ML approach, i.e., SVR, which is recurrently used

in the field of hydrology (Maity et al. ; Achieng ;

Qasem et al. ; Maity et al. ; Pal et al. ). The

SVR model is developed using the scikit-learn library in

the spyder notebook with the same proportion of training

and testing dataset, and using 5-fold cross-validation, the

same as in the case of the DL-based model. The SVR is a
://iwaponline.com/jwcc/article-pdf/12/6/2774/935272/jwc0122774.pdf
supervised ML algorithm, which uses a nonlinear mapping

function to map the input features to the target variable.

In this study, two regularization parameters, Gamma (γ)

and cost function (C) of Radial Basis Function (RBF)

are tuned by trial and error to optimize the SVR model

(γ¼ 1 × 10�5 and C¼ 1,500). The RBF is a nonlinear optim-

ization function, which is commonly used in SVR (Choy &

Chan ). More details on SVR can be found in the litera-

ture (Drucker et al. ; Choy & Chan ; Maity et al.

).
Performance evaluation for drought assessment

Once the simulated rainfall values are obtained from the DL

model, the SPAI values are computed outside the DL

domain, followed by categorical classification of droughts

according to the method explained earlier in the ‘Drought

characterization for Indian hydroclimatology’ section.

The performance of the proposed DL model in simulating

SPAI values is assessed through three standard statistical

performance metrics, namely Correlation Coefficient

(CC) (Pearson & Henrici ), Root-Mean-Square

Error (RMSE) (Chai & Draxler ) and Nash–Sutcliffe

Efficiency (NSE) (Nash & Sutcliffe ). If XO¼ observed

value, XP¼ predicted/simulated value, σO¼ standard

deviation of observed value, N¼ number of data points,

XO ¼ 1
N

XN

i¼1
XO and XP ¼ 1

N

XN

i¼1
XP, then CC, RMSE

and NSE may be determined as follows:

CC ¼
PN

i¼1 [(XO �XO)(XP �XP)]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 (XO �XO)

2 PN
i¼1 (XP �XP)

2
q (4)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
(XO �XP)

2

r
(5)

NSE ¼ 1�
PN

i¼1 (XP �XO)
2

PN
i¼1 (XO �XO)

2 (6)
The simulation skill is determined through k-fold (here,

k¼ 5) cross-validation, and the average values of aforemen-

tioned metrics across all k-folds are obtained for training

and testing periods.
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Next, the performance of the DL model in simulating

the drought category is verified by compiling a typical c × c

contingency table (here, c¼ 7), where the frequencies of

observations and simulations are binned in relevant cells

as illustrated in Figure 3. In this table, nij denotes the

number of observations in category i that have been simu-

lated as category j, NOi denotes the total number of

observations (marginal) in category i, NSj denotes the total

number of simulations (marginal) in category j and N is

the total number of observations/simulations. Ideally, a per-

fect forecasting system would only have entries along the

diagonal of the contingency table, with all of the other

cells being empty (¼0). To quantify the performance of the

model in the case of such multi-category simulations, three

standard statistical measures are used, namely accuracy,

Kuipers Skill Score (KSS) and Heidke Skill Score (HSS).

The relevant equations of these three performance measures

are shown in Figure 3 in reference to the typical c × c contin-

gency table. The accuracy indicates the overall fraction of

the simulations in the ‘correct’ category. Its value ranges

between 0 and 1, where 1 indicates the perfect score. On

the other hand, the skill represents the accuracy of a

model performance against a base model performance that

is random or simple to produce or already be available to

users. The KSS and HSS both measure the fraction of cor-

rect simulations after eliminating those simulations, which

would be correct purely due to random chance. The
Figure 3 | A typical c × c contingency table and the mathematical formulations of three perfo

paper to see this figure in colour: http://dx.doi.org/10.2166/wcc.2021.062.

om http://iwaponline.com/jwcc/article-pdf/12/6/2774/935272/jwc0122774.pdf
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estimation of randomness (expressed by the denominator)

is different in these two skill scores. Theoretically, KSS

may range between �1 and 1, where 0 indicates no skill

and the perfect score is 1. Similarly, the theoretical range

of HSS is (�∞, 1], where 0 indicates no skill and the perfect

score is 1.
RESULTS AND DISCUSSION

At the outset, the SPAI values obtained from the spatially

averaged ERA5 reanalysis precipitation data are compared

with that of the observed precipitation data (Pai et al.

) over the two study basins. The scatter plots are

shown in Figure 4 for both the study basins. The CC is

found to be 0.71 for TRB and 0.68 for WRB. Given the limit-

ations of any reanalysis product, such correspondence with

the observed data can be considered as good. The proposed

DL-based model is trained and tested based on its efficacy to

capture the rainfall variation using the hydrometeorological

precursors. It was targeted to consider as many months as

possible simultaneously so as to avoid running the model

for each month separately and at the same time not to be

burdened by an increased computational effort. We found

that the model is able to consider three consecutive

months with comparable accuracy for all the months and

at a reasonable computational effort. Henceforth, in general,
rmance metrics, namely accuracy, KSS and HSS. Please refer to the online version of this

http://dx.doi.org/10.2166/wcc.2021.062
http://dx.doi.org/10.2166/wcc.2021.062


Figure 4 | Scatter plots between SPAI values calculated from observed precipitation data and that from ERA5 reanalysis precipitation data for (a) TRB and (b) WRB study basins. Please refer

to the online version of this paper to see this figure in colour: http://dx.doi.org/10.2166/wcc.2021.062.
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these 3 months are designated as 1st, 2nd and 3rd months in

the following discussion.

Model performance in capturing the drought status

To assess the potential of the proposed DL-based model to

capture the drought status in terms of SPAI, the observed

and simulated rainfall values are converted to SPAI indices.

Figure 5 presents the comparisons between the observed

and simulated values of SPAI through time-series (left) and

scatter plots (right) for TRB. The same for WRB is presented

in Figure 6. In these figures, only the cases of the 1st months

are shown, and the testing periods (all 5-fold cases) are

shown separately within the continuous time series for an

easy comparison. A visual inspection reveals that the predic-

tions are promising in terms of direction, i.e., below- or

above-normal (D or W, as per the categorization explained

before), as well as the magnitude of SPAI. This is true for

all the folds for both the study basins. More specifically, in

the case of TRB, the performances of the model for all the

folds, except the 1st fold, are good, as all the peaks are cap-

tured almost accurately both in training and testing periods.

In the case of WRB, a comparable performance is noticed

for all 5 folds. This indicates the reliable potential of the

DL-based model in the basin-scale drought assessment

using information from a set of primary hydrometeoro-

logical precursors. Comparable performances are noticed
://iwaponline.com/jwcc/article-pdf/12/6/2774/935272/jwc0122774.pdf
for the 2nd and 3rd months as well. Though the figures are

not included owing to space limitations, the performances

of the simulations for all three consecutive months are quan-

tified through aforementioned performance metrics, i.e., CC,

RMSE and NSE. These values for all the folds and for both

the basins are summarized in Tables 2 and 3. A graphical

presentation is also shown in Figure 7. The average perform-

ance of the DL-based model during the training period

ranges between 0.78–0.84 (CC), 0.58–0.65 (RMSE) and

0.58–0.67 (NSE), and that for the testing period ranges

between 0.70–0.77 (CC), 0.58–0.70 (RMSE) and 0.43–0.56

(NSE). Comparable performances during the training and

testing periods indicate the proper training of the model

without overtraining or undertraining. A comparison

between two study basins indicates a marginally better per-

formance in the case of TRB as compared with WRB.

Moreover, the performances are comparable for all three

consecutive months that indicate the ability of the model

to simulate drought status for all 3 months simultaneously.

As mentioned before, the DL-based model performance

is also compared against another popularly used ML

approach, i.e., SVR, keeping all other conditions the same.

The results are presented in the same tables and figure,

i.e., Tables 2 and 3 and Figure 7, for an easy side-by-side

comparison. The higher potential of the DL-based model

is clearly established for all the cases. It is true for both

the study basins. However, one point is to be mentioned

http://dx.doi.org/10.2166/wcc.2021.062
http://dx.doi.org/10.2166/wcc.2021.062


Figure 5 | Model performance in drought identification for TRB considering Conv1D model. Observed and simulated (1st month) SPAI values are shown through time-series (left) and

scatter plots (right) for all 5 folds. Training and testing periods are shown in the time-series plots for different folds. In the scatter plots, the x-axis and y-axis represent the

observed and simulated SPAI values, respectively. The solid black lines show the 45� line (line of perfect simulation), and the other two lines show best-fit lines for the scatter

plots. Please refer to the online version of this paper to see this figure in colour: http://dx.doi.org/10.2166/wcc.2021.062.
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Figure 6 | Same as Figure 5, but for the WRB study basin. Please refer to the online version of this paper to see this figure in colour: http://dx.doi.org/10.2166/wcc.2021.062.
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Table 2 | Fold-wise comparison of performance metrics between observed and simulated SPAI during training (trn) and testing (tst) periods obtained by DL and SVR models in 1st, 2nd and 3rd months for the TRB study basin

Study basin: TRB

Fold Model

Correlation coefficient RMSE NSE

1st month 2nd month 3rd month 1st month 2nd month 3rd month 1st month 2nd month 3rd month

trn tst trn tst trn tst trn tst trn tst trn tst trn tst trn tst trn tst

Fold 1 DL 0.84 0.74 0.85 0.76 0.84 0.79 0.59 0.72 0.54 0.67 0.55 0.63 0.66 0.50 0.71 0.55 0.70 0.61
SVR 0.78 0.70 0.79 0.66 0.77 0.68 0.63 0.82 0.62 0.86 0.64 0.85 0.60 0.49 0.62 0.43 0.60 0.45

Fold 2 DL 0.83 0.67 0.84 0.69 0.84 0.71 0.59 0.76 0.59 0.75 0.58 0.73 0.67 0.34 0.67 0.35 0.68 0.43
SVR 0.77 0.66 0.76 0.70 0.77 0.65 0.67 0.72 0.65 0.63 0.67 0.74 0.59 0.41 0.62 0.55 0.59 0.42

Fold 3 DL 0.83 0.72 0.84 0.71 0.84 0.68 0.58 0.70 0.57 0.71 0.57 0.74 0.68 0.46 0.69 0.43 0.69 0.38
SVR 0.78 0.62 0.80 0.69 0.79 0.66 0.66 0.76 0.63 0.68 0.65 0.71 0.61 0.37 0.64 0.47 0.62 0.43

Fold 4 DL 0.81 0.80 0.83 0.79 0.83 0.76 0.60 0.65 0.60 0.67 0.58 0.72 0.63 0.63 0.64 0.60 0.66 0.55
SVR 0.78 0.73 0.79 0.71 0.78 0.76 0.65 0.73 0.64 0.75 0.65 0.69 0.60 0.53 0.61 0.51 0.61 0.58

Fold 5 DL 0.83 0.81 0.84 0.81 0.82 0.78 0.65 0.69 0.61 0.63 0.61 0.67 0.58 0.56 0.63 0.62 0.64 0.58
SVR 0.77 0.71 0.78 0.75 0.79 0.76 0.66 0.72 0.65 0.68 0.65 0.67 0.60 0.51 0.61 0.56 0.61 0.57

Average DL 0.83 0.75 0.84 0.75 0.83 0.74 0.60 0.70 0.58 0.69 0.58 0.70 0.65 0.50 0.67 0.51 0.67 0.51
SVR 0.78 0.68 0.78 0.70 0.78 0.70 0.66 0.75 0.64 0.72 0.65 0.73 0.60 0.46 0.62 0.51 0.61 0.49
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Table 3 | Fold-wise comparison of performance metrics between observed and simulated SPAI during training (trn) and testing (tst) periods obtained by DL and SVR models in 1st, 2nd and 3rd months for the WRB study basin

Study basin: WRB

Fold Model

Correlation coefficient RMSE NSE

1st month 2nd month 3rd month 1st month 2nd month 3rd month 1st month 2nd month 3rd month

trn tst trn tst trn tst trn tst trn tst trn tst trn tst trn tst trn tst

Fold 1 DL 0.76 0.69 0.81 0.78 0.81 0.76 0.66 0.79 0.59 0.69 0.59 0.71 0.55 0.47 0.64 0.60 0.64 0.58
SVR 0.73 0.60 0.76 0.64 0.76 0.56 0.68 0.86 0.65 0.84 0.64 0.91 0.52 0.36 0.57 0.41 0.57 0.32

Fold 2 DL 0.79 0.70 0.83 0.74 0.82 0.80 0.65 0.73 0.59 0.66 0.59 0.59 0.60 0.38 0.67 0.50 0.66 0.60
SVR 0.72 0.66 0.73 0.71 0.75 0.77 0.71 0.70 0.70 0.66 0.69 0.61 0.52 0.43 0.53 0.50 0.55 0.58

Fold 3 DL 0.77 0.70 0.83 0.78 0.83 0.79 0.66 0.76 0.58 0.64 0.58 0.63 0.57 0.42 0.67 0.59 0.67 0.59
SVR 0.66 0.63 0.69 0.61 0.66 0.55 0.76 0.79 0.73 0.82 0.76 0.85 0.44 0.37 0.48 0.32 0.43 0.26

Fold 4 DL 0.78 0.69 0.84 0.72 0.84 0.70 0.65 0.71 0.57 0.70 0.56 0.71 0.60 0.42 0.69 0.43 0.70 0.43
SVR 0.71 0.65 0.71 0.70 0.70 0.63 0.73 0.71 0.72 0.69 0.74 0.73 0.50 0.42 0.50 0.46 0.48 0.38

Fold 5 DL 0.78 0.70 0.82 0.77 0.81 0.77 0.64 0.78 0.60 0.69 0.61 0.69 0.58 0.45 0.63 0.57 0.62 0.57
SVR 0.70 0.58 0.73 0.61 0.71 0.54 0.70 0.86 0.68 0.84 0.70 0.90 0.49 0.33 0.53 0.37 0.50 0.28

Average DL 0.78 0.70 0.83 0.76 0.82 0.77 0.65 0.76 0.58 0.67 0.59 0.67 0.58 0.43 0.66 0.54 0.66 0.56
SVR 0.70 0.63 0.72 0.65 0.72 0.61 0.72 0.79 0.70 0.77 0.71 0.80 0.50 0.38 0.52 0.41 0.51 0.36

2787
R.

M
aity

et
al. |

Potentialof
D
eep

Learning
in

drought
assessm

ent
Journ

alof
W
ater

an
d
C
lim

ate
C
h
an

ge
|
12.6

|
2021

Downloaded from http://iwaponline.com/jwcc/article-pdf/12/6/2774/935272/jwc0122774.pdf
by guest
on 02 February 2022



Figure 7 | Average CC, RMSE and NSE, along with range bars at the top, show the maximum to minimum value, across different folds for drought category identification for both the study

basins using DL and SVR models for 1st, 2nd and 3rd months. Please refer to the online version of this paper to see this figure in colour: http://dx.doi.org/10.2166/wcc.2021.062.

2788 R. Maity et al. | Potential of Deep Learning in drought assessment Journal of Water and Climate Change | 12.6 | 2021

Downloaded from http://iwaponline.com/jwcc/article-pdf/12/6/2774/935272/jwc0122774.pdf
by guest
on 02 February 2022

http://dx.doi.org/10.2166/wcc.2021.062
http://dx.doi.org/10.2166/wcc.2021.062


2789 R. Maity et al. | Potential of Deep Learning in drought assessment Journal of Water and Climate Change | 12.6 | 2021

Downloaded from http
by guest
on 02 February 2022
here. SVR needs to be trained for each month separately,

while the DL-based model is able to provide the output for

all three consecutive months simultaneously. Thus, compu-

tational effort is less in the case of the DL-based approach.

The effectiveness of the DL-based approach in analyzing

and capturing the upcoming drought status with higher

efficacy may be attributed to the convolutional feature of

Conv1D, i.e., each layer contains a set of filters whose

parameters need to be learned and the neurons are

connected to the local region instead of being connected

to all the neurons of the previous layer (Haidar & Verma

).

Model performance in drought category identification

While the overall prediction performance reflects the model

ability over the entire range, it will be interesting to inspect

the performances for different drought categories. Thus, the

potential of the proposed DL model is also assessed by

examining its skill to accurately simulate the category.

Toward this, two-way (here, 7 × 7) contingency tables are

prepared between observed and simulated drought cat-

egories. Referring to Figure 3, the number in the cell, nij in

the contingency table, refers to the number of drought

events falling in the ith observed and jth simulated cat-

egories. Such contingency tables are prepared for all the

folds separately for both training and testing periods to cal-

culate the performance metrics, i.e., accuracy, KSS and

HSS, evaluated as per the mathematical formulations pro-

vided in Figure 3. These values for both the study basins

and for all three consecutive months are reported in

Table 4. For comparison, results from the SVR model are

also shown in this table. The average values across the

folds are also shown in this table in the last row.

As a first observation, the results indicate that the per-

formance of both the models (DL and SVR) is much

better than an unskilled random performance. In fact, the

performances are very good, considering that the accuracy

is almost always greater than 0.7 and KSS/HSS is much

higher than random performance (≫0). The performances

are more or less uniform across different folds and across

two study basins. A graphical presentation of performances,

summarizing all the folds, along with the range is shown in

Figure 8 for three consecutive months and both the study
://iwaponline.com/jwcc/article-pdf/12/6/2774/935272/jwc0122774.pdf
basins, separately. Separate plots are also shown in the

same figure for SVR models as well. Overall, it is noticed

that the performances during training and testing periods

are comparable with marginally better performance in train-

ing periods. However, a relative comparison clearly favors

the DL-based model. In many cases, the improvement is

as much as 100% in the case of the DL-based model as com-

pared with the SVR model, particularly in cases of skill

scores (KSS and HSS). This indicates a robust, consistent

and improved performance of the proposed DL-based

model. The performances are also comparable for all three

consecutive months that reaffirm the ability of the model

to simulate drought categories for all 3 months simul-

taneously. In a nutshell, the observation of the tables and

figures, representing the skill scores, indicates the potential

of the DL-based model in extracting the drought status

from hydrometeorological precursors.

Next, all the testing period performances are considered

to prepare the contingency tables. This helps to assess the

model testing performance for the assessment of drought

categories throughout the time period of analysis as a testing

period only. However, this exercise is carried out only for

the DL-based model, as the performance of SVR is already

proved to be inferior. Secondly, the performance during

the training period is kept aside while preparing the contin-

gency tables, which will anyway be better than that during

the testing period. Thus, the contingency tables only

for the DL-based model and only for the performance

during the testing period are shown in Tables 5 and 6 for

TRB and WRB, respectively. In the case of TRB, almost

every event is predicted accurately at least in the broad cat-

egories of dry and wet events. The total of nine extreme

drought events occurred in the five testing folds. Out of

these, two events are correctly identified as the extreme

ones (D2), four events are identified as severe droughts

(D1) and the rest are identified as moderate (D0) and

near-normal (N) each. Overall, a heavy forward diagonal

of these contingency tables indicates the correctness of

drought category identification. In fact, 334 out of 470

(71%) categories are accurately simulated in the case of

TRB, and 351 out of 470 (75%) categories are accurately

simulated in the case of WRB. Performance metrics (accu-

racy, KSS and HSS) are also computed for these overall

contingency tables. For TRB, accuracy, KSS and HSS are



Table 4 | Fold-wise comparison of performance measures between observed and simulated drought category during training (trn) and testing (tst) periods in 1st, 2nd and 3rd months for

both the study basins (TRB and WRB) by Conv1D (bold font) and SVR models

Fold Performance measures

TRB WRB

1st month 2nd month 3rd month 1st month 2nd month 3rd month

trn tst trn tst trn tst trn tst trn tst trn tst

Fold 1 Accuracy 0.72 0.76 0.76 0.74 0.75 0.75 0.78 0.77 0.78 0.69 0.77 0.66
0.72 0.71 0.74 0.74 0.72 0.74 0.75 0.67 0.75 0.66 0.75 0.66

KSS 0.42 0.49 0.49 0.37 0.48 0.46 0.50 0.46 0.53 0.32 0.51 0.31
0.34 0.20 0.37 0.27 0.33 0.31 0.21 0.12 0.24 0.10 0.21 0.09

HSS 0.45 0.48 0.53 0.39 0.51 0.46 0.52 0.52 0.54 0.36 0.52 0.34
0.40 0.24 0.44 0.31 0.40 0.35 0.28 0.17 0.32 0.14 0.29 0.13

Fold 2 Accuracy 0.74 0.68 0.74 0.70 0.75 0.73 0.76 0.80 0.78 0.75 0.76 0.81
0.71 0.73 0.73 0.77 0.75 0.71 0.72 0.71 0.74 0.74 0.73 0.73

KSS 0.43 0.36 0.45 0.39 0.47 0.44 0.51 0.55 0.55 0.42 0.52 0.60
0.30 0.28 0.34 0.33 0.39 0.22 0.17 0.16 0.20 0.24 0.17 0.19

HSS 0.46 0.36 0.48 0.40 0.50 0.45 0.52 0.59 0.55 0.45 0.52 0.62
0.35 0.34 0.34 0.33 0.39 0.22 0.24 0.23 0.28 0.32 0.23 0.26

Fold 3 Accuracy 0.72 0.69 0.76 0.70 0.76 0.66 0.78 0.73 0.80 0.76 0.79 0.80
0.71 0.67 0.73 0.69 0.72 0.70 0.73 0.73 0.74 0.74 0.74 0.71

KSS 0.41 0.40 0.48 0.44 0.49 0.29 0.55 0.38 0.59 0.47 0.60 0.61
0.30 0.16 0.34 0.21 0.32 0.18 0.24 0.20 0.28 0.22 0.27 0.12

HSS 0.43 0.41 0.52 0.44 0.52 0.30 0.56 0.42 0.60 0.50 0.59 0.61
0.35 0.21 0.40 0.27 0.39 0.24 0.31 0.28 0.35 0.30 0.34 0.18

Fold 4 Accuracy 0.74 0.68 0.76 0.75 0.76 0.71 0.77 0.71 0.78 0.75 0.77 0.71
0.70 0.66 0.70 0.66 0.74 0.70 0.72 0.73 0.72 0.73 0.72 0.73

KSS 0.42 0.37 0.45 0.49 0.47 0.45 0.51 0.42 0.55 0.49 0.53 0.43
0.25 0.20 0.35 0.22 0.32 0.33 0.23 0.09 0.24 0.19 0.23 0.14

HSS 0.45 0.39 0.50 0.52 0.51 0.46 0.54 0.39 0.57 0.46 0.55 0.40
0.31 0.24 0.42 0.26 0.39 0.38 0.30 0.13 0.32 0.25 0.30 0.18

Fold 5 Accuracy 0.73 0.72 0.74 0.75 0.74 0.71 0.77 0.74 0.78 0.76 0.77 0.75
0.72 0.64 0.73 0.68 0.72 0.66 0.72 0.75 0.73 0.74 0.72 0.74

KSS 0.42 0.44 0.44 0.49 0.44 0.37 0.49 0.47 0.52 0.47 0.50 0.45
0.26 0.21 0.31 0.30 0.26 0.26 0.20 0.22 0.23 0.20 0.21 0.21

HSS 0.44 0.48 0.46 0.52 0.46 0.42 0.53 0.46 0.55 0.49 0.52 0.46
0.33 0.26 0.37 0.35 0.33 0.30 0.27 0.29 0.31 0.26 0.28 0.28

Average Accuracy 0.73 0.71 0.75 0.73 0.75 0.71 0.77 0.75 0.78 0.74 0.77 0.75
0.71 0.68 0.73 0.71 0.73 0.70 0.73 0.72 0.74 0.72 0.73 0.71

KSS 0.42 0.41 0.46 0.44 0.47 0.40 0.51 0.45 0.55 0.43 0.53 0.48
0.29 0.21 0.34 0.26 0.33 0.26 0.21 0.16 0.24 0.19 0.22 0.15

HSS 0.45 0.42 0.50 0.45 0.50 0.42 0.53 0.48 0.56 0.45 0.54 0.49
0.35 0.26 0.39 0.30 0.38 0.30 0.28 0.22 0.31 0.25 0.29 0.21
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computed as 0.75, 0.47 and 0.48, respectively.

It is also noticed that the model performance is com-

paratively low for higher extreme categories, i.e., D2 and

W2, as compared with lower extreme categories, such as

D1, D0, W0 and W1. However, in general, drought cat-

egories and wet categories are identified with almost equal
om http://iwaponline.com/jwcc/article-pdf/12/6/2774/935272/jwc0122774.pdf
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skill. In other words, there is no selective bias toward any

side of extremes. Regarding higher extreme categories,

these are also captured by the DL-based model for many

cases but not as excellently as lower extremes. This might

be justifiable in the context of the tendency of the model

to capture the central values by default. Higher extremes

always need more accurate model performance and may



Figure 8 | Average accuracy, KSS and HSS, along with range bars at the top, show the maximum to minimum value, across different folds for drought category identification for both the

study basins using DL and SVR models for 1st, 2nd and 3rd months. Please refer to the online version of this paper to see this figure in colour: http://dx.doi.org/10.2166/wcc.

2021.062.
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Table 5 | Contingency table for the observed and simulated drought category for the TRB

study basin considering all the testing periods in different folds so as to con-

sider the entire time period of analysis as testing period only

Drought
category

Simulated

D2 D1 D0 N W0 W1 W2 Sum

O
bs
er
ve

d

D2 2 4 2 1 0 0 0 9
D1 1 10 6 7 1 0 0 25
D0 1 1 13 21 3 0 0 39
N 0 1 12 279 19 4 0 315
W0 0 0 1 24 16 5 1 47
W1 0 0 0 4 8 11 1 24
W2 0 0 0 0 5 3 3 11
Sum 4 16 34 336 52 23 5 470

Table 6 | Same as Table 5 but for the WRB study basin

Drought
category

Simulated

D2 D1 D0 N W0 W1 W2 Sum

O
bs
er
ve

d

D2 5 1 4 0 0 0 0 10
D1 2 2 10 4 0 0 0 18
D0 0 4 18 17 0 0 0 39
N 0 0 12 295 14 3 1 325
W0 0 1 1 12 20 6 0 40
W1 0 0 0 3 9 7 1 20
W2 0 0 0 1 6 7 4 18
Sum 7 8 45 332 49 23 6 470
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be controlled by more number of factors in much more com-

plex ways. In other words, the higher the extremes the more

complexity is involved. Thus, the model performs marginally

weaker for the higher extremes.

Summarizing the results, the superiority of DL algor-

ithms over traditional ML models in foreseeing the

drought status can be emphasized. Similar findings were

indicated in the recent literature as well (e.g., Reichstein

et al. ; Xiao et al. ; Dikshit et al. ). Our analysis

of comparing the DL-based model with the SVR model

reaffirmed the same in the case of drought assessment.

However, despite its better performance, only a handful of

studies have used the DL algorithm for assessing the

droughts across the globe, as discussed before (Chen et al.

; Agana & Homaifar ; Shen et al. ). For the

Indian subcontinent also, the drought study using DL is

rare, and as of now, there are no studies for the study

basins considered in this study. Next, the method of

extracting the information from the hydrometeorological
om http://iwaponline.com/jwcc/article-pdf/12/6/2774/935272/jwc0122774.pdf
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precursors for drought assessment may lead to a new

research direction, and the potential of DL algorithms may

be beneficially used. Furthermore, the study basins used in

this study are located in the drought-prone regions in

India. The suitability of the DL model application can also

be justified with the results obtained from contingency

tables, where most of the drought and wet events are charac-

terized accurately for both the basins. Overall, the DL-based

model exhibits reliable potential in extracting the drought

status from hydrometeorological precursors. It is true that

a large data requirement for proper training is a limitation

for its applicability to the data-scarce regions. Thus, the

spatial transferability of the DL-based approaches may be

another future research direction.
CONCLUSIONS

This study explores the potential of the DL-based model

(here, Conv1D) for basin-scale drought assessment using

the complex association between rainfall variation and

hydrometeorological precursors. The performance of the

proposed model is evaluated at two river basins in India,

namely Damodar River Basin up to Tenughat Dam in east-

ern India (TRB) and Wardha River Basin up to upper

Wardha Dam in western India (WRB). Being located in

the drought-prone central belt of India, these basins are fre-

quently stricken by droughts due to vagaries of precipitation.

The potential of the DL-based model is used to extract the

information from a set of hydrometeorological precursors,

namely air temperature, surface pressure, wind speed, rela-

tive humidity, evaporation, soil moisture and geopotential

height for the assessment of drought status, characterized

through SPAI. The following conclusions are drawn from

the study:

• DL has the potential to successfully capture the complex

relationship between different hydrometeorological pre-

cursors and rainfall variation. Simultaneous modeling

of 3 months is possible with a suitable model architecture

that can be run with standard computing facility yielding

reasonable accuracy.

• Findings of this study emphasize that the potential of the

DL-based approach to extract the hidden complex
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hydrometeorological association will be highly beneficial

because, in general, climate model-simulated rainfall esti-

mates are of inferior quality than other meteorological

simulations, and on the other hand, the observed records

of meteorological variables are either not available or

sparsely available at many places over India.

• Demonstration with droughts in this study, however,

using reanalysis products of hydrometeorological vari-

ables, shows the efficacy of the DL-based model. It may

be noted that drought characterization adds another

level of nonlinearity with respect to rainfall deviations

from long-term mean. We used SPAI as a drought charac-

terization index and different statistical performance

measures (CC, RMSE, NSE, accuracy, KSS and HSS)

that confirm a well correspondence between the

observed and modeled SPAI values for both study basins.

• A comparison against another popularly used ML

approach, i.e., SVR, clearly favors the DL-based model.

Though all the conditions were kept same as that in the

DL-based model, SVR needs to be trained for each

month separately, while the DL-based model is able to

provide the output for all three consecutive months sim-

ultaneously. Thus, computational ease also favors the

DL-based approach, and the superiority of DL algorithms

over traditional ML models in assessing the drought

status is established.

• The method of information extraction from the hydrome-

teorological precursors for drought assessment using the

potential of the DL-based method may lead to a new

research direction. Demonstration with two study

basins, located in the drought-prone central belt of

India, indicates the promise of the DL-based model, as

most of the drought and wet events are characterized

accurately for both the basins.
Findings of this study also lead to a possible scope for

future research to utilize the potential of climate models in

simulating/predicting the primary hydrometeorological vari-

ables and, thereafter, to utilize the potential of DL to assess

the status of secondary/tertiary hydrometeorological vari-

ables. In general, a proper training of such models needs a

large amount of data, which is a shortcoming. To utilize

the potential of such models in data-scarce regions, the
://iwaponline.com/jwcc/article-pdf/12/6/2774/935272/jwc0122774.pdf
spatial transferability of aforementioned models needs to

be explored. This is kept as a future scope of this study.
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