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Development of HydroClimatic Conceptual Streamflow

(HCCS) model for tropical river basin

Parag P. Bhagwat and Rajib Maity
ABSTRACT
Combined processes of land-surface hydrology and hydroclimatology influence the response of a

watershed to different hydroclimatic variables. In this paper, streamflow response of a watershed to

hydrometeorological variables is investigated over a part of two tropical Indian rivers – Narmada and

Mahanadi. The proposed HydroClimatic Conceptual Streamflow (HCCS) model is able to consider the

time-varying basin characteristics and major hydrologic processes to model basin-scale streamflow

using climate inputs at a daily scale. In addition, the proposed model is able to provide additional

overall estimates of ground water recharge component and evapotranspiration component from the

entire basin. Moreover, ability to consider the time-varying watershed characteristics and

hydroclimatic inputs renders the proposed model usable for assessment of future streamflow

variation. This application is also investigated for both the study basins. In general, the

methodological approach of the proposed model can be applied to other tropical basins for daily

streamflow modelling as well as future streamflow assessment.
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INTRODUCTION
In the context of a changing climate, identification of stream-

flow response to other hydroclimatological variables is a

research challenge (Kumar & Maity ; Maity & Kashid

). Most of the existing approaches attempt to consider

and conceptualize different hydrological processes. How-

ever, time varying watershed characteristics are not

considered. As a consequence, consistency (decadal to cli-

matic scale) of the model performance is affected under a

changing climate and changing watershed characteristics

that are not accounted for. Here lies the importance of this

study since recent observation of climate change has added

a new dimension towards this overall research direction in

hydrologic modelling. The question examined was, is it poss-

ible to model watershed response as streamflow with the

simultaneous consideration of changing climate and time

varying watershed characteristics? As such, it was found

that there is a need to develop a streamflow model having

few parameters, which will be able to consider time varying

watershed characteristics and climatic inputs, and provide
better or at least comparable performance to existing

approaches.

Background and literature review

A brief review (with respect to the huge amount of literature

available) of existing approaches reveals that the hydrologi-

cal models for streamflow estimation can be grouped into

three broad categories viz: (a) physically based models, (b)

conceptual models, and (c) artificial intelligence (AI)-based

models. In physically based models, existing knowledge of

all possible hydrological processes is represented through

a set of mathematical equations. Examples of some popular

physically based models include System Hydrologique Euro-

pean (Abbott et al. a,b), Better Assessment Science

Integrating point and Non-point Sources (EPA ), Soil

and Water Assessment Tool (SWAT) (Eckhardt & Arnold

; Grizzetti et al. ), and Community Land Model

(Lawrence et al. ). However, an inability for accurate
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mathematical representation of hydrological processes con-

sidering the huge spatial variability, computational demands

and overparameterization effects, and non-availability of

required comprehensive data sets make the results of phys-

ically based models poor in many cases (Piotrowski &

Napiorkowski ; Zeng et al. ).

Conceptual models are also derived using (relatively

simpler) mathematical equations, which mainly consider

the major hydrological process of the complex hydrological

cycle, which is difficult to understand fully. However, in the

absence of complete knowledge, they may be represented in

a simplified way by means of the system concept. A system is

a set of connected parts that form the whole. By using the

system concept, effort is directed to the construction of a

model relating inputs and outputs rather than to the extre-

mely difficult task of exact representation of the system

details, which may not be significant from a practical point

of view or may not be known. Nevertheless, knowledge of

the physical system helps in developing a conceptually

clear model. The major hydrological processes considered

are mostly rainfall, evapotranspiration, infiltration, surface

runoff, etc., which have significant importance towards the

watershed output. As mentioned before, the physically

based models require a large number of data and still pro-

duce poor results due to a variety of reasons. Hence,

conceptual models are used as alternative models for water-

sheds. Some of the generally used conceptual models are the

Stanford watershed model, which is an early finding in con-

ceptual hydrological modelling by Crawford & Linsley

(), the Institute Royal Meteorology Belgium (IRMB)

model (Bultot & Dupriez ), HYDROLOG model

which was later modified by Chiew & McMahon () to

the MODifed HYDROLOG (MODHYDROLOG) model,

Hydrologiska Byråns Vattenbalansavdelning (HBV) model

which was developed at the Swedish Meteorological and

Hydrological Institute (SMHI) in 1972 (Bergström ),

and the Hydrologic Simulation Program-FORTRAN model

which is a modified version of Stanford model (Johnson

et al. ), and so on. These models are designed to

approximate the general hydrological processes, which dic-

tate the hydrological cycle. However, most of the

conceptual models consider all hydrological processes to

be lumped together, greatly simplify the hydrological pro-

cesses involved, and do not consider time-varying
properties of the watershed. As a consequence, the outcome

of such models sometimes becomes crude. Sometimes, even

the major components, such as evapotranspiration, ground

water recharge component and streamflow, are not separ-

ated from each other. Moreover, typical absence of short-

term (i.e., fortnight to seasonal) and/or long-term (i.e., deca-

dal to centennial) dynamic characteristics raise questions

against its applicability to capture the dynamic, time-varying

response of watershed to long-term climate change impact

analysis studies, which are particularly essential in a chan-

ging climate.

AI-based models are much simpler with respect to the

understanding of underlying physical processes. These

models are developed based on interrelationships between

input and output values of the concerned variables. In the

last two decades, use of AI-based models has increased due

to their lower dependence on physical understanding of the

underlying process(es) by the users, and provide quick as

well as reasonably impressive results compared with the

other two types of models discussed before. Some of the

most popular AI-based models, which are applied to hydrolo-

gicalmodelling, are based on artificial neural network (Kumar

et al. ), genetic programming (Maity & Kashid ), and

support vectormachines (SVMs).However, apart from the cri-

ticism of the ‘black-box’ nature, the performance of such

models is often found to be excellent and difficult to replicate

using other conceptual/physically based approaches. This

said, the same criticism which was mentioned in the case of

conceptual models earlier, exists for such modelling

approaches as well. That is, due to their static nature, studies

related to long-term climate change impact analysis may not

be always possible with this modelling approach.

Motivation and objectives

Specifically, this study attempts to develop a basin-scale

daily hydroclimatic streamflow model (named as HydroCli-

matic Conceptual Streamflow (HCCS) model), considering

the time-varying watershed characteristics and major hydro-

logic processes to model basin-scale streamflow using

climate inputs. The developed modelling approach is con-

ceptual in nature. Its performance is investigated for two

Indian tropical river basins. Performances of AI-based

machine learning approaches are found to overshadow the



38 P. P. Bhagwat & R. Maity | HydroClimatic Conceptual Streamflow model Journal of Water and Climate Change | 05.1 | 2014
performance of other modelling approaches. Thus, the per-

formance of the proposed model is compared with the

performance of a highly popular AI-based machine-learning

approach known as least square-support vector regression

(LS-SVR) (Suykens et al. ). Performance of the proposed

model is also compared with other popular conceptual mod-

elling approaches that are effective at daily scale in addition

to AI.

The ability to consider the hydroclimatic inputs is

expected to make the proposed HCCS model usable also

for future projected climate. Time-varying watershed charac-

teristics are considered that renders the approach dynamic,

which is found to be very useful for a changing climate con-

dition and analysis of streamflow variation under future

climate. The parameter that controls the time-varying water-

shed characteristics is conceptualized. This parameter may

be projected to the future with different assumptions on

change in watershed characteristics and may be used for

future. Thus, the specific objectives of this paper are: (1)

the development of the HCCS model considering the time

varying watershed characteristics and using climatic

inputs; (2) application of the developed HCCS model to

two Indian river basins (Mahanadi and Narmada) and inves-

tigation of their performance; (3) comparison of the

developed HCCS model with other popular conceptual

modelling approaches as well as with AI-based the LS-

SVR model; and (4) study of future streamflow variation

under projected climate during 2026–2035, 2076–2085

using the proposed HCCS model.
METHODOLOGY

HCCS model

In the proposed HCCS model, the watershed is treated as a

‘system’ that receives rainfall, processes it, and generates

streamflow as its ‘response’. The ‘response’ depends on var-

ious factors, depending on the time-dependent as well as

time-invariant characteristics of the watershed. For instance,

topology, shape of the catchment are treated as time-

invariant whereas wetness condition of watershed, rainfall

over catchment, continuous loss due to evaporation, rate

of ground water recharge, etc., are treated as time
dependent. The proposed methodology is motivated by

SACramento Soil Moisture Accounting model (Burnash

et al. ) and leaky bucket model (Huang et al. ) as

far as an initial water balance equation is concerned. How-

ever, subsequent conceptualizations differ as the major

focus of these models is on soil moisture simulation whereas

the major focus of the proposed HCCS model is on stream-

flow prediction.

The HCCS model is conceptual in nature and able to

predict the daily variation of streamflow while estimating

the spatially averaged evapotranspiration loss and ground

water recharge from the entire catchment. The model is

also suitable for simulating the future streamflow variation

using such future projected climate data over the basin.

The model is described below.

The ‘System Wetness Condition’ (SWC) is a represen-

tation of the amount of water that is stored in the near-

surface strata of the watershed as depression storage, soil

water retention, reservoir storage, etc. SWC is time dependent

and is denoted as V(t), where t is the time subscript. V(t)

ranges between zero and maximum capacity of the system

wetness, Vmax, which is the maximum water holding capacity

of the watershed in the form of soil moisture at the top strata

of the soil, depression storage, reservoirs, etc. Whereas V(t)

changes at a much faster rate depending on the rainfall and

other weather conditions, Vmax also varies over time but at

a much slower pace. Vmax depends on the combination of

different types of land use land cover (LULC), such as, urban-

ization, forest cover, existence of reservoirs, etc.

Temporal change of this characteristic (Vmax) is slower

than other influencing parameters, such as, rainfall, wetness

condition (V(t)) and other weather conditions. In this mod-

elling approach, Vmax is also considered to vary over time,

which makes it suitable for application over a longer time

frame and more importantly in the changing climate. In

the application of the proposed model, it is shown that

this property changes over a multi-year scale. This is a

very important aspect to be considered in hydroclimatic

streamflow modelling to study the variation of streamflow

under projected future climate owing to changed character-

istics of watershed status.

SWC at time t, V(t) is calculated based on the water bal-

ance in the watershed. The components of the water balance

in the model are precipitation, evaporation, streamflow, and
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loss due to ground water recharge. For a watershed, the

change in SWC over time can be expressed as

dV(t)
dt

¼ P tð Þ � E tð Þ � S tð Þ �G tð Þ (1)

where V(t) is the SWC at time t expressed in terms of depth

of water per unit area of watershed, P(t) is the depth of pre-

cipitation over the watershed, E(t) is the total

evapotranspiration loss from the catchment, which is the

sum of evapotranspiration from land surface and direct

evaporation loss from depression storages, reservoirs, etc.,

S(t) represents the streamflow divided by the catchment

area of watershed, and G(t) is the loss due to deep percola-

tion that joins ground water as ground water recharge

component from the watershed.

Asmentioned earlier,Vmax is themaximum capacity of the

system wetness. Hence, V(t)/Vmax denotes dynamic condition

of the system or the proportion of SWC, a value of 0 indicates

a completely dry system and a value of 1 indicates a fully wet

system. In this proposed model, it is assumed that this pro-

portion determines system response and other components in

the water balance equation are linked with this. Physically,

this factor indicates the overall status of the watershed at

time t that controls the loss of water from the system through

various components. These are conceptualized as follows.

First, the streamflow is expected to be generated by the

system depending on its wetness condition. The generated

streamflow (per unit area of the watershed) is conceptual-

ized to have a non-linear relationship with the SWC V(t).

If non-dimensionalized with respect to their respective

maximum possible values which are denoted as Vmax

(defined earlier) and Smax, the assumption is expressed as

S tð Þ
Smax

¼ a
V tð Þ
Vmax

� �b0

(2)

whereas the conceptualization of Vmax is explained earlier,

the concept of Smax is not completely new. Rather it is ana-

logous to estimated limiting value (ELV), which is defined as

the largest magnitude possible for a hydrologic event at a

given location, based on the best available hydrologic infor-

mation (Chow et al. ). This assumption, expressed in

Equation (2), will be checked for two watersheds considered
in this study later. Equation (2) can be rearranged as follows

(for time t):

V tð Þ ¼ B S tð Þ½ �b (3)

where B ¼ Vmax=ða SmaxÞb and b¼ 1/b0.

Another major component is the loss due to evapotran-

spiration,E(t), which is estimated using the following relation:

E tð Þ ¼ Ep tð ÞV tð Þ
Vmax

(4)

where Ep(t) is the potential evapotranspiration and V(t) is the

SWC at time t. SubstitutingV(t) in Equation (4) fromEquation

(3)

E tð Þ ¼ Ep tð ÞB S tð Þ½ �b
Vmax

(5)

Potential evapotranspiration from climatic data can be

estimated using any standard method, such as the Hargreaves

method (Hargreaves et al. ; Hargreaves ) or the

Penman–Monteith method (Monteith ). The Hargreaves

method is used in this study and presented in Appendix A

(available online at http://www.iwaponline.com/jwc/005/

015.pdf).

The ground water recharge component G(t) can be

assumed to be non-linearly associated with SWC, V(t).

This is expressed as follows:

G tð Þ ¼ α V tð Þ½ �β (6)

For simplicity, β is assumed to be 1, i.e., ground water

recharge component is assumed to vary linearly with

SWC. This assumption of linearity was also made by earlier

researchers in the similar context of ground water recharge

component in the leaky bucket model (Huang et al. ).

However, it may be noted here that the development of

the subsequent equations is still possible without this

assumption. The aforementioned assumption reduces the

burden of one extra parameter only. Using Equation (3) in

Equation (6) with β¼ 1, G(t) can be expressed as

G tð Þ ¼ k S tð Þ½ �b (7)

http://www.iwaponline.com/jwc/005/015.pdf
http://www.iwaponline.com/jwc/005/015.pdf
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where k¼ α, B. From Equation (1), expressing the left hand

side with finite difference scheme, gives

V tþ 1ð Þ � V tð Þ
Δt

¼ P tð Þ � E tð Þ � S tð Þ �G tð Þ (8)

Substituting the expressions of V(t), E(t) and G(t) in

term of S(t) gives

B S tþ1ð Þf gb� S tð Þf gb
h i

Δt
¼P tð Þ�Ep tð ÞB S tð Þ½ �b

Vmax
�S tð Þ�k S tð Þ½ �b

¼>S tþ1ð Þ¼

S tð Þf gbþΔt
B

P tð Þ�Ep tð ÞB S tð Þ½ �b
Vmax

�S tð Þ�k S tð Þ½ �b
( )" #1

b
(9)

where B, b, k and Vmax are the model parameters that

characterize the basin considered in the study. All these par-

ameters may change depending on the change in watershed

condition, e.g., urbanization, deforestation, construction of

dams and reservoirs, etc.
Discussion on different model parameters

The physical analogy of different parameters used in the

model is discussed in this section.
Parameter k

The parameter k indicates the net contribution of catchment

to ground water recharge. Theoretically, this value may be

positive or negative. Spatially, surface water may contribute

to ground water at some location whereas ground water may

contribute to surface water at some other location within the

catchment. Thus, the net contribution to ground water from

entire catchment may be positive or negative. If the net con-

tribution to ground water from entire catchment is positive,

k will be positive and vice versa. This parameter is unitless.
Parameter Vmax

The parameter Vmax indicates the overall water holding

capacity of the watershed. Compared with a virgin river
basin, a basin with many dams and reservoirs is expected

to have more water holding capacity. On the other hand,

highly urbanized, deforested basins with increased paved

surfaces may exhibit low water holding capacity. Thus, for

a particular river basin this property is expected to change

depending on the status of watershed development, such

as, construction of dams and reservoirs, urbanization, defor-

estation, etc. It is expected to perceive such changes over a

multi-year scale. Thus, a proper estimation of the projected

status of this parameter should precede the estimation of

the future streamflow. This interpretation of time varying

characteristics differs, in general, from other standard con-

ceptual models. A historical analysis is carried out for two

study river basins in the next section to investigate the

change of this parameter over the last couple of decades.

This parameter has a unit of length (say m or mm).

Parameters b and B

The inverse of parameter b is the measure of degree of non-

linearity between S(t)/Smax and V(t)/Vmax as expressed in

Equation (2). Parameter B is a function of Vmax and

Smax[¼Vmax=(a Smax)
b]. While making the analogy of Smax

with ELV it should not be confused with the fact that the

value of Smax does not change over time. Rather it is expected

to be modified depending on the change in the characteristics

of the upstream catchment. This fact is not unrealistic. For

instance the chance and magnitude of flash flood increase

with increased urbanization. Thus Smax may also be subjected

to change depending on the characteristics of the upstream

catchment which is associated with the change in Vmax. How-

ever, these changes are expected in long-term temporal scale

(multi-year or decadal) depending on the rate of change in the

watershed characteristics.

Parameter estimation, validation, and future projection

Model calibration is performed using the daily streamflow,

rainfall, maximum temperature, minimum temperature, and

average temperature data. Four parameters of conceptual

rainfall-runoff model, i.e., Vmax, b, B and k, are estimated

during the model calibration period. These parameters

depend on the catchment characteristics, which influence

the system response and may also be interrelated. Thus,
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these parameters are to be simultaneously estimated during

model calibration by minimizing the mean square error

(MSE). The values of the parameters that yield minimum

mean square error (MMSE) are used as estimated par-

ameters. During both model development and testing

periods, the model performance can be investigated through

different statistics that measure the association between the

observed and predicted daily streamflow values.

To investigate the slow change in any parameter, par-

ameter estimation is carried out during a couple of years

in a decade and the analysis is repeated for successive dec-

ades in the past. The estimated parameter values for

different periods need to be investigated for possible

change over time. This change might be modelled and if

a trend is found that might be projected in future assuming

different cases of change in watershed characteristics: (1)

no further change (latest value is used for future); (2)

same trend of change projected to future; and (3) change

is slower approaching a constant (a non-linear equation

may be fitted to observed parameter values in the past
Figure 1 | Mahanadi River basin with the study area (up to Basantpur gauging station).
and projected to future). However, some of these par-

ameters may not show a liner/non-linear trend over the

historical time. If no plausible trend information is

obtained for some parameters, it is recommended to use

either average value of that parameter over the historical

period or the latest information of that parameter. This

aspect is illustrated later with respect to the study basins

considered for demonstration.
STUDY AREAS AND DATA USED

Tropical rainfed river basins in India are either east flowing

or west flowing. The performance of the proposed model is

investigated over the last couple of decades for two Indian

River basins, Mahanadi (east flowing) and Narmada (west

flowing). Upstream parts of both these basins are con-

sidered. In Figure 1 (Mahanadi) and Figure 2 (Narmada),

study areas with locations of climate stations and streamflow

gauging stations are shown. Study area considered for



Figure 2 | Narmada River basin with the study area (up to Sandia gauging station).
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Mahanadi River basin is 61,152 km2 up to Bastantpur gau-

ging station and that for Narmada River basin is

25,912 km2 up to Sandia gauging station.

Daily streamflow at Basantpur (Mahanadi River basin) is

obtained from the office of Executive Engineer, Mahanadi

Division, Central Water Commission (CWC), India. Daily

streamflow data (Jan 1, 1973 to Dec 31, 2003) are used for

this study. There is no major structure (apart from few

medium andminor reservoirs) in the catchment ofMahanadi

up to Basantpur and there are no missing streamflow data for

this basin. Streamflow data at Sandia (Narmada River basin),

operated by the Water Resources Agency, are also obtained

fromCWC for the period June 1, 1978 toMay 31, 2000. How-

ever, out of this entire duration of 23 years, streamflow data

are missing for some non-contiguous periods (total 3 years

8 months). The missing data are from Dec 1, 1987 to May

31, 1988 (6 months); Jun 1, 1993 to May 31, 1994 (1 year);

May 1–31, 1996 (1 month); Oct 1, 1996 to Nov 30, 1996 (2

months); Apr 1, 1997 to Aug 31, 1997 (5 months); Jun 1,

1998 to May 31, 1999 (1 year) and Dec 1, 1997 to May 31,
1998 (6 months). Since streamflow data are missing for

these periods, other data corresponding to these periods are

ignored from the analysis, i.e., these periods are excluded

from analysis.

For Mahanadi basin, daily gridded (1W lat × 1W long) rain-

fall data are obtained from India Meteorological

Department (IMD). There are no missing data for rainfall.

Daily temperature records (maximum and minimum) from

two stations (Raipur and Pendra Road) located in the catch-

ment (see Figure 1) are obtained from the National Climatic

Data Centre (NCDC) Climate Data Online (http://www.

ncdc.noaa.gov/cdo-web/). As per the website information,

these data are supplied by IMD to NCDC. Temperature

data are missing for some (non-contiguous) days (approxi-

mately 250 days out of 31 years). These values are

replaced by the long-term average of that date.

Daily observed rainfall and temperature data for the

Narmada basin (also obtained from IMD) are recorded at

five different stations within or around the basin. These

stations are Jabalpur, Malanjkhand, Mandla, Narshinghpur

http://www.ncdc.noaa.gov/cdo-web/
http://www.ncdc.noaa.gov/cdo-web/
http://www.ncdc.noaa.gov/cdo-web/
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and Umaria. Locations of these stations are shown in

Figure 2. For some (non-contiguous) days (approximately

150 days out of 23 years), rainfall and temperature data

are missing. These values are replaced by the average of

other surrounding stations for that date.
Table 1 | Estimated Model Parameters during Different Development Periods

Basin

Model Parameters

Name Calibration Period B b k Vmax

Mahanadi Jan 01, 1973 to Dec 31, 1980 22 0.63 0.113 214.0
Jan 01, 1984 to Dec 31, 1990 98 0.28 0.043 244.4
Jan 01, 1994 to Dec 31, 2000 48 0.54 0.080 270.3

Narmada Jun 01, 1978 to May 31, 1987 26 0.57 0.093 315.0
Jun 01, 1990 to May 31,1997 52 0.44 0.015 316.3
RESULTS AND DISCUSSION

Model calibration and testing

Parameter estimation

Model calibration is performed using the daily streamflow,

rainfall, maximum temperature, minimum temperature, and

average temperature data. Four parameters of HCCS

model, i.e., Vmax, b, B and k are estimated during model cali-

bration (model development period). As mentioned above,

an MMSE criterion is followed to estimate these parameters.

An initial guess of the range of different parameters is necess-

ary since the parameter may vary from watershed to

watershed and also from one period to another period. How-

ever, the initial guess of range should be made in such a way

that the value of estimated parameter should not lie on the

border of the selected range. It is recommended to keep

the initial guess as wide as possible at the cost of compu-

tation time. Due to the advent of fast computational

facilities, computational time is not a major issue. Thus, the

ranges of Vmax is considered to be 50–1,000 with an interval

of computation as 0.1. Similarly, ranges of b, B and k are con-

sidered to be 0.1–1, 10–200 and 0.0–0.5 with their interval of

computation as 0.01, 1 and 0.001, respectively.

Three-fold model development and testing is adopted for

the Mahanadi River basin. On the other hand, two-fold

model development and testing is adopted for the Narmada

River basin. This is based on the availability of data. For

Mahanadi, model parameters are estimated during (a) Jan

1, 1973 to Dec 31, 1980, (b) Jan 1, 1984 to Dec 31, 1990

and (c) Jan 1, 1994 to Dec 31, 2000. Models developed

over these periods are tested during (a) Jan 1, 1981 to Dec

31, 1983, (b) Jan 1, 1991 to Dec 31, 1993 and (c) Jan 1,

2001 to Dec 31, 2003, respectively. For the Narmada River

basin, June 1978 to May 1987 is used as first development

period and June 1990 to May 1997 is used as second
development period. Developed models are used for testing

during June 1987 to May 1990 and June 1997 to May 2000.

Estimated parameters for both the basins are shown in

Table 1.

For both the river basins, it is noticed that the par-

ameters vary over different periods of analysis. This issue

is investigated with respect to LULC change in the context

of future streamflow variation later. Before that, the model

performances during development and testing periods are

investigated to assess the potential of the developed model.

Model performances

Model performances are investigated for all the develop-

ment periods and the corresponding testing periods for

both the basins. Model performances are presented through

(i) time series plot of observed and predicted streamflow to

compare their correspondence, (ii) a scatter plot between

observed and predicted streamflow to compare their associ-

ation and (iii) statistical measures to quantify and assess the

potential of prediction. The statistical measures include

mean square error (MSE), correlation coefficient (CC),

and Nash-Sutcliffe efficiency (NSE).

Model performance during the three-fold development

and testing periods for the Mahanadi River is shown in

Figure 3. A comparison plot between observed and predicted

streamflow for the first model development period (Jan 01,

1973 to Dec 31, 1980) is shown in top panel of Figure 3(a).

MSE, CC and NSE values for this period are found to be

1.133, 0.93 and 0.86, respectively (Table 2). Model par-

ameters are estimated from this the period (Jan 01, 1973 to

Dec 31, 1980) and the developed model is tested during Jan

01, 1981 to Dec 31, 1983 (First model testing period). The

bottom panel of Figure 3(a) shows the comparison plots



Figure 3 | (a) Observed and predicted streamflow for first development period (Jan 02, 1973 to Dec 31, 1980) and corresponding testing period (Jan 02, 1981 to Dec 31, 1983) for Mahanadi

River Basin. (b) Observed and predicted streamflow for second development period (Jan 02, 1984 to Dec 31, 1990) and corresponding testing period (Jan 02, 1991 to Dec 31,

1993) for Mahanadi River Basin. (c) Observed and predicted streamflow for third development period (Jan 02, 1994 to Dec 31, 2000) and corresponding testing period (Jan 02,

2001 to Dec 31, 2003) for Mahanadi River Basin.

Table 2 | Model performance statistics for development and testing periods. Testing period values are shown in parentheses

Basin

Performance Statistics

Name Development Period (Testing Period) MSE CC NSE

Mahanadi Jan 01, 1973 to Dec 31, 1980 (Jan 01, 1981 to Dec 31, 1983) 1.133 (0.379) 0.93 (0.94) 0.86 (0.88)
Jan 01, 1984 to Dec 31, 1990 (Jan 01, 1991 to Dec 31, 1993) 0.546 (0.601) 0.93 (0.95) 0.87 (0.90)
Jan 01, 1994 to Dec 31, 2000 (Jan 01, 2001 to Dec 31, 2003) 0.551 (1.513) 0.94 (0.88) 0.88 (0.77)

Narmada Jun 01, 1978 to May 31, 1987 (Jun 01, 1987 to May 31, 1990) 4.43 (2.77) 0.83 (0.86) 0.69 (0.72)
Jun 01, 1990 to May 31, 1997 (Jun 01, 1997 to May 31, 2000) 4.66 (7.20) 0.90 (0.96) 0.81 (0.86)
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between observed and predicted streamflows during this

period. MSE, CC and NSE values for this period are found

to be 0.379, 0.94 and 0.88, respectively (Table 2). For the

second and third periods of analyses, plots between observed

and predicted streamflows are shown in Figure 3(b) and 3(c),

respectively, with the development period (upper) and the

testing period (lower) shown in each.

Comparison plots between observed and predicted

streamflow for Narmada River basin during Jul 01, 1978 to

May 31, 1987 (First model development period) and corre-

sponding testing period (Jun 02, 1987 to May 31, 1990) are

shown in Figure 4(a), top and bottom panel, respectively.

Similarly, the plots between observed and predicted stream-

flows during Jun 01, 1990 to May 31, 1997 (Second model

development period) and corresponding testing period

(Jun 01, 1997 to May 31, 2000) are shown in the top and

bottom panel, respectively, of Figure 4(b). In addition to

these plots, readers may refer to the scatter plots between

observed and predicted streamflow values during all the
Figure 4 | (a) Observed and predicted streamflow for the first development period (Jul 02, 19

Narmada River Basin. (b) Observed and predicted streamflow for the second develop

to May 31, 2000) for Narmada River basin.
development and testing periods. These are shown in the

supplementary document (Figures S-1–S-10, available

online at http://www.iwaponline.com/jwc/005/015.pdf).

Visual inspection of these plots reveals that the perform-

ance of the proposed HCCS model is reasonably good for

both Mahanadi and Narmada River basins. Performance

in terms of statistical measures for all pairs of development

and testing periods for both the study basins are shown pre-

viously in Table 2. The high value of NSE (range∼ 0.69–0.9)

and CC (range∼ 0.83–0.96) between observed and predicted

streamflow indicate the efficacy of the proposed model. In

some cases, slightly better values of these statistics during

the testing period as compared with the development

period may be contradictory to the usual experience. How-

ever, this is not impossible. A close inspection of observed

and predicted values for such cases during development

and testing periods reveals the existence of some very high

values in the development period. Such high values are

not present during the testing period. Thus, the model is
78 to May 31, 1987) and corresponding testing period (Jun 02, 1987 to May 31, 1990) for

ment period (Jun 02, 1990 to May 31, 1997) and corresponding testing period (Jun 02, 1997

http://www.iwaponline.com/jwc/005/015.pdf
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able to predict with slightly better accuracy during the test-

ing period.

While comparing the performance between two basins,

it is noticed that the performance of Mahanadi River basin

even better than that of the Narmada River. This is due to

the fact that the available data length is more and disconti-

nuity/missing data are less for Mahanadi basin. Thus,

availability of longer data length leads to better performance

of the proposed HCCS model.

Other outputs from HCCS model

As mentioned before, the ground water component and

evaporation components can also be estimated as other

outputs of the model. To note again, these estimates are

spatially averaged magnitudes over the entire catchment.

The daily series of these components and monthly esti-

mates (derived from the daily estimates) are shown for

Narmada River Basin for the period Jun 1987 to May

1990 (Figure 5). These estimates for Mahanadi River

Basin for the period Jan 1981 to Dec 1983 are shown in

Figure 6. Figures for the rest of periods are shown in
Figure 5 | Daily (top) and monthly (bottom) evapotranspiration (left) and ground water (right) c
Figures S-11–S-13 (available online at http://www.

iwaponline.com/jwc/005/015.pdf). Though these estimates

are not compared with the observed values (due to non-

availability), seasonality in those estimated is visible and

matches with the nature of Indian hydroclimatology.

However, some observations may appear contrary to the

general experience. For instance, in 1987, the actual eva-

potranspiration value in October (14.15 mm) is more

than that in June (4.06 mm) and July (6.31 mm) for Nar-

mada. It is due to the notably different SWC (V(t)) for

these months. As mentioned in the Methodology section,

actual evapotranspiration E(t), is conceptualized as a

function of potential evapotranspiration (Ep(t)) and V(t).

For instance, V(t) was found to be very low in July due

to the sustained low rainfall. In June (just previous

month), total observed rainfall (56.7 mm) was much

lower (55%) than that is observed normally (mean¼
122.3 mm). Thus, even if the total observed rainfall in

July (299.0 mm) was near normal (mean¼ 278.3 mm),

E(t) was found to be low.

It may be further noted that the values of ground water

component and evaporation components seems to
omponent for Narmada River basin for the period Jun 1987 to May 1990.

http://www.iwaponline.com/jwc/005/015.pdf
http://www.iwaponline.com/jwc/005/015.pdf


Figure 6 | Daily (left) and monthly (right) evapotranspiration and ground water (right) component for Mahanadi River basin for the period Jan 1981 to Dec 1983.
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correspond well with each other. As reported in Equation

(4), actual evapotranspiration is conceptualized as a function

of potential evapotranspiration and SWC. Whereas ground

water recharge is conceptualized as a non-linear function

of SWC (Equation (6)). Thus, the correspondence between

these two outputs is indeed due to the model structure. It

was also mentioned earlier that the parameter β in Equation

(6) is assumed to be 1, i.e., ground water recharge component

is assumed to vary linearly with SWC. Thus, as can be

noticed from Equation (6), non-linearity can be invoked at

the cost one additional parameter. This may result in the

non-linear association between these model outputs.

While comparing these estimates between two basins, it

is observed that, in general, the evapotranspiration is less

in Narmada than Mahanadi. This is due to a combined

effect of low SWC (Vt) and meteorological conditions

responsible for potential evapotranspiration. On the other

hand, ground water recharge component varies over differ-

ent time periods both for Narmada and for Mahanadi.

SWC (Vt) is responsible for this as conceptualized in the

methodology, resulting in time-varying recharge amount.
Relationship between S(t) and V(t)

As explained in the Methodology, that the streamflow (per

unit area of the watershed), S(t) is conceptualized to have

a non-linear relationship with the SWC, V(t). In this section,

model generated V(t) and observed streamflow values (S(t))

are analyzed to investigate this issue. Different plots are pre-

pared for Narmada and Mahanadi River basin. Percentage

explained through a non-linear curve of form, y¼ a xb is

computed, and displayed in those figures. Figure 7 shows

such plots for Narmada basin during model development

and testing periods. Similar plots for the Mahanadi River

basin are shown in Figure 8. It can be observed that for

most of the cases, the best fit non-linear curves can explain,

on an average 93% (range 74–98%) of the association

between observed S(t) and model generated V(t). For Maha-

nadi River basin, the percentage explained by the non-linear

curve is even better than that observed for Narmada River.

This is perhaps due to the existence of a reservoir (Bargi)

that started operating in 1990 inducing the effect of

human operation. However, a sort of generalization on the



Figure 7 | Relationship between observed S(t) and modeled V(t) for Narmada River basin during different periods.
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nature of this curve for both the basins can be made.

Towards this, a linear equation between observed S(t) and

model generated V(t) was also derived (not shown in

figures). It is observed that the percentage of association

captured by the linear equation drops to as low as 58%

(range 58–77%). This confirms the assumption of a non-

linear relationship between streamflow and SWC made in

the Methodology.

The equations for the best-fit non-linear curves are

shown in the respective plots. The coefficients are expected

to be similar to the estimated parameters. By comparing the

equations of the best-fit curves with the Equation (3) in the

Methodology, the multiplying constants and the powers

are the estimates of B and b, respectively. By comparing

them with the values shown in Table 1, it is noticed that

the estimated parameters and these values are fairly close

to each other.
Comparison of performances of proposed HCCS model

with other models

HCCS model performance is compared with other con-

ceptual models that are effective at daily scale. These

are Australian Water Balance Model (AWBM) (Boughton

; Boughton & Carroll ), Sacramento model (Bur-

nash et al. ), SIMplified HYDrolog (SIMHYD)

(Porter ; Porter & McMahon , ), Soil Moist-

ure Accounting and Routing (SMAR) model (O’Connell

et al. ) and Tank Model (Sugawara ; Sugawara

et al. ). Details of these models and its software pack-

age one can be found from Rainfall Runoff Library (RRL)

(available at http://www.toolkit.net.au/Tools/RRL). The

performances of these models are shown in Table 3a

along with their parameter values for the study period

(presented in the supplementary document in Tables

http://www.toolkit.net.au/Tools/RRL
http://www.toolkit.net.au/Tools/RRL


Figure 8 | Relationship between streamflow S(t) and modeled V(t) for Mahanadi River basin.
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S1–S5, available online at http://www.iwaponline.com/

jwc/005/015.pdf). It is noticed that the performances of

all these models are inferior (if not remarkably inferior

in some cases) to the proposed HCCS model.
It is worthwhile to mention here (based on the literature

review) that the performance of AI-based machine learning

approaches are found to overshadow the performance of

other modelling approaches. Thus, the performance of the

http://www.iwaponline.com/jwc/005/015.pdf
http://www.iwaponline.com/jwc/005/015.pdf
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proposed model is also compared only with a highly popular

AI-based machine learning approach known as LS-SVR

(Suykens et al. ). The streamflow is expressed in the

same way (divided by the catchment area) as in the HCCS

model to facilitate the performance comparison. Rainfall,

maximum temperature, minimum temperature, and lagged

streamflow values are used as input data. Streamflow of

the current day is considered as the output. It is established

by Bray & Han () that SVM-based approaches with nor-

malized input data outperform those with non-normalized

input data. Therefore, the data are normalized and finally

the model outputs are back-transformed to their original

range by denormalization. The normalization (also back-

transformation) is done using (Samsudin et al. ),

yi ¼ 0:1þ Si
1:2 max Sið Þ (10)

where yi are the normalized data for ith day, Si is the

observed value for ith day and max(Si) is the maximum of

all Si (during the model development period).

The LS-SVR model has two parameters (regularization

parameter, γ, kernel parameter, σ) to be determined. These

parameters are interdependent, and their (near) optimal

values are often obtained by a trial and error method. The

grid search method is used to find the optimum parameters

of LS-SVR. The CC is used for selecting the best performing

model parameters. Different statistical measures are used to

evaluate the performance of the model during development

and testing period.

Both the study areas are explained in detail above. Training

and testing data forMahanadiRiver basin are fromperiod Jan1,

1973 to Dec 31, 1995 and Jan 1, 1996 to Dec 31, 2003, respect-

ively, and for Narmada River basin, they are Jun 1, 1978 toMay

31, 1995 and Jun 1, 1995 to May 31, 2000, respectively.

The performance of both study areas is assessed with the

remaining testing data points. Model performance statistics

are obtained between observed and modeled river flow

values during training and testing period. The combination

that yields comparable performance during training and

testing period is selected, which ensures the optimum par-

ameter values without the fear of overfitting. The values of

γ and σ2 for which the difference between the training and

testing period performances is minimum, are identified. It
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is found from that the best combination of γ and σ2 is 1 and

0.36, respectively, for the Mahanadi River basin. Similarly,

for the Narmada River basin the best combination of γ

and σ2 is 25 and 0.36, respectively.

Model performance during the training and testing period

is assessed in terms of aforementioned statistical measures

and shown in Table 3b. Comparison figures between observed

and predicted streamflows are shown in the supplementary

document (Figures S-14–S-17, available online at http://

www.iwaponline.com/jwc/005/015.pdf) for both the river

basins. Fair correspondence between observed and predicted

river flow values is found. In low and medium range of flow

values, the correspondence is found to be better. Different

statistical measures like CC, MSE, and NSE are used to deter-

mine the performance of the developed LS-SVR model.

Values of MSE, CC and NSE for Mahanadi River basin are

1.333, 0.89 and 0.79, respectively, during the training period,

and are 1.011, 0.85 and 0.73, respectively, during the testing

period (Table 3b). Similarly, for the Narmada River basin,

these values are found to be 4.545, 0.86 and 0.75 (training),

and 9.901, 0.86 and 0.70 (testing), respectively.

These performance measures are compared with the

performance of the proposed HCCS model. Average NSE

for the proposed HCCS model for Mahanadi river is found

to be 0.87 whereas the same for LS-SVR (even using a

longer data length) is 0.79. Similarly, the CC and MSE are

also found to be better in case of HCCS model than that

of LS-SVR for both Mahanadi and Narmada rivers. Only

in the case of first development period (Jun 01, 1978 to

May 31, 1987) and testing (Jun 01, 1987 to May 31, 1990)

for Narmada river, performance of HCCS model was

found to be less than that of LS-SVR while considering CC

and NSE values. Again, MSE is better for HCCS model

than LS-SVR for this set of development and testing periods.
Table 3b | Performances of LS-SVR during training period and testing period (within

parentheses)

River Basin
MSE Training
(Testing)*

CC Training
(Testing)*

NSE Training
(Testing)*

Mahanadi 1.333 (1.011) 0.89 (0.85) 0.79 (0.73)

Narmada 4.545 (9.901) 0.86 (0.86) 0.75 (0.70)

* For Mahanadi: Training period – Jan 1, 1973 to Dec 31, 1995; Testing period – Jan 1, 1996

to Dec 31, 2003.

* For Narmada: Training period – Jun 1, 1978 to May 31, 1995; Testing period – Jun 1, 1995

to May 31, 2000.
Thus, in brief, while comparing the performance of the pro-

posed HCCS model (Table 2) with other conceptual models

(Table 3a) and LS-SVR (Table 3b), overall it is found that the

performance of the proposed HCCS model is better.
FUTURE STREAMFLOW VARIATION

It was mentioned earlier that in the proposed approach,

time-varying watershed characteristics are considered that

render the approach dynamic. Moreover, ability to consider

the hydroclimatic inputs (rainfall, maximum temperature,

minimum temperature, and average temperature) is useful

for studying the change in streamflow under projected

future climate. Thus, the proposed HCCS model is used

for future climate study. The same watersheds are con-

sidered for this purpose to compare the current streamflow

variation with the future streamflow variations over different

months in the year.

Temporal change in maximum system wetness capacity

(Vmax) and other parameters

Temporal change of Vmax is a very important aspect to be

considered in hydroclimatic modelling to study the variation

of streamflow under a changing climate and also the chan-

ging characteristics of watershed. Maximum system

wetness capacity (Vmax) and its variation over time are the

unique characteristics of a particular watershed. As men-

tioned before, this concept is based on the physical

properties and their change due to a combination of

human activities (urbanization, deforestation, construction

of reservoirs, etc.) and the effect of climatic change over

the basin. To investigate this aspect with respect to the

observed changes in the basin for a physical explanation,

LANDSAT data are obtained from Earth Science Data

Interface (ESDI) at the Global Land Cover Facility (avail-

able at http://glcfapp.glcf.umd.edu:8080/esdi/). Though

good quality images are not available before 2000 at a con-

tinuous interval, analysis is carried out with the images

that are available during some of the years over different

study periods. Having this limitation on data availability,

changes in LULC over the study basins are investigated.

Three major categories, namely vegetation (forest,

http://www.iwaponline.com/jwc/005/015.pdf
http://www.iwaponline.com/jwc/005/015.pdf
http://glcfapp.glcf.umd.edu:8080/esdi/
http://glcfapp.glcf.umd.edu:8080/esdi/


Table 5c | Land use and land cover change matrix in Narmada basin (up to Sandia)

between 1972 and 1990. Cell description as per Table 5a

Area (km2) in Area (km2) in the year of 1990
the year of 1972 Vegetation Water Body Settlement

Vegetation 21,219 (88.31%) 557 (2.32%) 2,251 (9.37%)

Water Body 437 (83.24%) 73 (13.90%) 15 (2.86%)

Settlement 1,312 (72.45%) 79 (4.36%) 420 (23.19%)

Table 5b | Land use and land cover change matrix in Mahanadi basin (up to Basantpur)

between 1990 and 2000. Cell description as per Table 5a

Area (km2) in Area (km2) in the year of 2000
the year of 1990 Vegetation Water Body Settlement

Vegetation 41,277 (78.38%) 1,938 (3.68%) 9,450 (17.94%)

Water Body 518 (35.41%) 673 (46.00%) 272 (18.59%)

Settlement 4,163 (59.28%) 146 (2.08%) 2,714 (38.64%)
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agriculture, grassland, etc.), water body and settlement, are

considered to be able to make a physical analogy with

change in Vmax. Results are shown in Table 4 for both the

basins. A little perturbation of total area in different years

is due to some unclassified pixels, which can be ignored.

Further, the conversion of a particular class to another

class is also shown in Tables 5a and 5b (for Mahanadi),

and Tables 5c and 5d (for Narmada).

Each cell of Tables 5a–d indicates the magnitude change

from LULC type shown in row name to the type shown in

column heading for that cell. Changes in different LULC

classes are clearly noticed and a possible link with the

change in the parameter Vmax is indicated. Vmax is supposed

to increase (decrease) with the increase (decrease) in area

under the water body. On the other hand, Vmax is supposed

to decrease due to conversion of land from vegetation or

water body to settlement. However, if the land under veg-

etation converted into a water body (due to inundation of
Table 4 | Change in LULC over for the study basins

Area (km2) in the year of
Basin name Description 1972* 1990* 2000*

Mahanadi Vegetation 52,505 52,665 45,957
Water Body 1,473 1,463 2,758
Settlement 7,026 7,023 12,435

Narmada Vegetation 24,038 22,978 21,172
Water Body 525 709 774
Settlement 1,812 2,689 4,430

*Image dates for the study area in Mahanadi basin.

1972: Image dates – Dec 15, 1972 (1 block); Dec 16, 1972 (3 blocks); Dec 17, 1972 (1 block);

Nov 21, 1975; Jan 08, 1977; Feb 27, 1973; .

1990: Image dates – Nov 10, 1990 (3 blocks); Nov 17, 1990 (3 blocks).

2000: Image dates – Nov 20, 2000 (1 block); Dec 15, 2000 (2 blocks); Dec 09, 2001 (2

blocks); Nov 11, 1999 (1 block);.

*Image dates for the study area in Narmada basin.

1972: Image dates – Dec 16, 1972; Dec 17, 1972; Nov 30, 1972; Feb 02, 1973 (1 block each).

1990: Image dates – Nov 21, 1989 (1 block); Nov 17, 1990 (2 blocks) .

2000: Image dates –Dec 29, 2000; Nov 20, 2000; Dec 09, 2001 (1 block each).

Table 5a | LULC change matrix in Mahanadi basin (up to Basantpur) between 1972 and

1990. Each cell indicates the magnitude (percentage) change from LULC

type shown in row name to the type shown in column heading for that cell

Area (km2) in Area (km2) in the year of 1990
the year of 1972 Vegetation Water Body Settlement

Vegetation 47,902 (91.26%) 814 (1.55%) 3,774 (7.19%)

Water Body 460 (31.23%) 449 (30.48%) 564 (38.29%)

Settlement 4,153 (59.11%) 200 (2.85%) 2,673 (38.04%)

Table 5d | Land use and land cover change matrix in Narmada basin (up to Sandia)

between 1990 and 2000. Cell description as per Table 5a

Area (km2) in Area (km2) in the year of 2000
the year of 1990 Vegetation Water Body Settlement

Vegetation 19,161 (83.41%) 485 (2.11%) 3,327 (14.48%)

Water Body 331 (46.69%) 279 (39.35%) 99 (13.96%)

Settlement 1,675 (62.31%) 10 (0.37%) 1,003 (37.31%)
vegetation behind the newly constructed reservoir), Vmax is

expected to increase. For Mahanadi, significant increase in

the water body is observed from 1990 to 2000 (almost

89%). There is a decrease in vegetation by 6,700 km2 out

of which almost 2,000 km2 is converted to water body.

These changes cause increase in Vmax. A gradual increase

(77% over a 30-year period) in settlement was also found

that might cause a decrease in Vmax. A combination of all

these effects results in an overall increase in Vmax.

On the other hand, change in water body at Narmada

basin from 1972 to 1990/2000 is due to construction of

the Bargi Dam in 1989–90. As a result, Vmax is supposed

to increase. However, at the same time, significant increase

in settlement (144% over 30 years) and decrease in veg-

etation cause Vmax to decrease. As a combined outcome,

Vmax remains almost same (Table 1). Thus, Vmax reflects a

combined response of all types of LULC changes.
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For other parameters (B, k and b), we have not found

any plausible trend, though fluctuations are observed. A

slight decreasing trend in k can be attributed to the decrease

in vegetation which contributes maximum percentage of the

total basin area. Further, increase in settlement also sup-

ports the decreasing trend of k. However, fluctuations are

also observed in k as in other parameters (B and b) without

any noticeable trend. Thus, the latest values of these par-

ameters are used for the future. Use of latest value for

some parameters may have an effect on the uncertainty in

the streamflow estimate for the future time. However, maxi-

mum uncertainty may occur at a daily scale, that is, the day-

to-day variation of streamflow, which is not the goal of this

part of the analysis. For future time, we have shown a

month-wise variation of streamflow, averaged over a

decade (2026–2035 and 2076–2085). This may also not be

free from the uncertainty; however, the effect might be less

crucial than that at a daily scale.

As stated above, we were not able to provide a theoretical

argument better than this due to much less information on

LULC during the analysis period and lack of time synchroni-

zation between analysis periods and date of the satellite

image. Secondly (not an argument though), even if it was

possible to develop a theoretical relationship with improved

LULC information, that may not be useful in the context of

future assessment for which future information on LULC is

required, which might be very tricky, if not impossible since

LULC map is not available for future time. Thus, a trend

line approach is adopted to project Vmax into the future,

which is discussed in the subsequent sections.

Optimum data length to estimate Vmax

First, the optimum length of data needed to get a more or less

stable estimate of Vmax is investigated. This is carried out by

estimating the value of the parameter over a variable length

of data (3–20 years). Estimated values of Vmax are plotted

against the data length. Figure 9 shows the variation of Vmax

values with respect to the data length for Narmada (top

panel) and Mahanadi (bottom panel) basin, respectively.

Vmax is estimated deterministically, not probabilistically.

Since Vmax is not estimated probabilistically, it is not possible

to show whether the values are statistically different or not.

Rather the trend of the change in Vmax, shown in Figure 9,
can be tested for statistical significance. The trend being

non-linear, is tested at logarithmic scale and null hypothesis

of not having any trend (zero slope) is comfortably rejected

with very low p-values (∼10�6–10�7). Construction of the

Bargi dam was completed in 1989–90 that leads to 13/14

year data period and beyond in Figure 9. This is shown in

this figure, which reflects a very small jump in Vmax value

from 15 to 17 years of data length. It is necessary to note

that the gross storage capacity (GSC) of Bargi 392 McM.

Let us take a typical value of Vmax¼ 200 mm. In volumetric

unit (multiplied with catchment area), this leads to 5,182

McM. This means the construction of Bargi dam adds only

a small part to Vmax (7.6%). As indicated in the discussion

on model parameters above, the concept of Vmax reflects the

combined effect of the entire catchment, in which reservoirs

are only a part of it. For instance, urbanization and deforesta-

tion lead to a decrease in Vmax. Thus, Vmax reflects a combined

response of all such changes, which was also explained above

with respect to the LULC change.

It can be seen from Figure 9 that the estimate of Vmax gets

more or less stable as the data length increases for both the

river basins. For Narmada, the estimate remains more or

less the same for data length greater than approximately 7

years whereas the same for Mahanadi River basin is observed

for a data length approximately 5 years. To investigate the

temporal change in Vmax, considered data length should not

be too short to obtain a wrong (noisy) estimate and also,

should not be too lengthy to miss the meaningful temporal

trend/pattern, if any. Considering this, a data length of succes-

sive 5 to 10-year periods can be considered to assess the

change of Vmax over time.

Temporal change in Vmax

Estimates of Vmax for successive 5-year periods (with one or

two periods of different lengths) are obtained for both the

basins. Results for Narmada River basin is shown in

Figure 10. Similar analysis is performed for Mahanadi

River basin and shown in Figure 11. In general, it is

observed from these figures that these estimates show an

overall gradual increase in Vmax. A smooth variation of

Vmax over time is observed in case of Narmada River basin

whereas high fluctuations are noticed for the Mahanadi

River basin.



Figure 9 | Variation of Vmax values with respect to the data length for Narmada River (top) and Mahanadi River (bottom).
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Linear as well as logarithmic trend lines for the histori-

cal change in the estimates of Vmax are also shown in

Figures 10 and 11. For Narmada, linear trend line is

described by the following equation:

Vmax ¼ 26:3Xþ 233:7 (11)
and the equation for best-fit logarithmic trend line is found to be

Vmax ¼ 59:5 ln Xð Þ þ 254:1 (12)

where X is expressed as

X ¼ Mid year� 1st Mid yearð Þ
5

þ 1 (13)



Figure 10 | Change of Vmax over time for Narmada River fitted with linear and logarithmic trend lines. Here X ¼ Mid year� 1st Mid yearð Þ=5þ 1 and 1st Mid year for this case is 1979.5.

Refer text for the explanation for three projected lines.

Figure 11 | Change of Vmax over time for Mahanadi River fitted with linear and logarithmic trend lines. Here X ¼ Mid year� 1st Mid yearð Þ=5þ 1 and 1st Mid year for this case is 1976.5.

Refer text for the explanation for three projected lines.
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‘Mid year’ in Equation (13) is the middle of the period

for which an estimate of Vmax is required. For instance,

1978 is the ‘Mid year’ for the period 1976–1980 and

2030.5 is the ‘Mid year’ for the period 2026–2035. ‘1st Mid

year’ for Narmada (as seen from Figure 10) is 1979.5.
Similarly, for Mahanadi River, linear trend line is described

by

Vmax ¼ 32:01Xþ 140:2 (14)
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and the equation for best-fit logarithmic trend line is found

to be

Vmax ¼ 78 ln Xð Þ þ 168:7 (15)

where X is expressed similarly as shown in Equation (13)

and ‘1st Mid year’ for Mahanadi (as seen from Figure 11)

is 1976.5.

For the linear trend line, the changes in the future may

follow three possible paths. These are: (i) remain constant

(line 1 – untouched henceforth); (ii) increase with the

same linear trend observed in the past (line 2 – business-

as-usual scenario); and (iii) increase at a faster rate than

that observed in the past (line 3 – intense water manage-

ment/utility activity in terms of construction of reservoirs).

These are also shown in Figures 10 and 11. It might be

very difficult to quantify the growth rate of the trend line

without linking it to the policy makers’ decision for the

basin. For instance, higher demand of water may lead to

construction of new reservoir, which will increase the

water storage capacity for the basin. Thus, it is very difficult

to quantify this rate. However, if an overall trend of change

is found for the entire catchment that can be projected in

future with specific assumptions. Here we demonstrate the

future projection by adopting a logarithmic trend line that

makes an assumption of a continuous increase over time

but at a slower rate as time passes by. Please note that a log-

arithmic growth rate (and no change also) is used in the

analysis; continuous rate of increase in not adopted. The log-

arithmic growth rate is estimated from the historical trend as

explained before. On the other hand, a logarithmic trend

line indicates a continuous increase over time but at a

slower rate in the future.

Future climate data – PRECIS data

Daily rainfall and temperature data (maximum and mini-

mum) for future climate of both river basins are obtained

from the Indian Institute of Tropical Meteorology (IITM),

Pune. For this study, averaged data over two future periods

(2026–35 and 2076–85) are used to analyze the future

streamflow scenario for both study basins.

These data were generated using the widely popular

Hadley Centre’s high resolution Regional Climate Model
(RCM), known as PRECIS (Providing REgional Climates

for Impact Studies) (Jones et al. ). PRECIS simulations

corresponding to the IPCC-SRES A1B emission scenario are

carried out for a continuous period of 1961–2098. The base

line period considered is from 1961 to 1990. As is well

known, RCMs dynamically downscale global model simu-

lations to superimpose the regional details of specific

regions of interest. Analysis is carried out at the Indian Insti-

tute of Tropical Meteorology (IITM), Pune, to develop the

high-resolution climate change scenarios for impact assess-

ment studies (Krishna Kumar et al. ). While carrying

out a rigorous analysis, they found that the model shows

reasonable skill in simulating the monsoon climate over

India.

Specific to the study basins, the correspondence is

checked between observed and modelled (PRECIS) rainfall,

maximum and minimum temperature at monthly scale over

the study basins during the historical period of analysis

(Narmada basin: July 1978 to May 2000; and Mahanadi

basin: January 1973 to December 2003). Correlation coeffi-

cient (r) and index of agreement (d1) (Willmott et al. )

are computed to assess the correspondence. These statistics

are expressed as

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Pi � �P
� �

Oi � �O
� �s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Pi � �P
� �2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
Oi � �O
� �2s (16)

d1 ¼ 1�

Pn
i¼1

Pi �Oij j
Pn
i¼1

Pi � �O
�� ��þ Oi � �O

�� ��� � (17)

r varies from �1 to þ1; �1 indicates negative association, 0

indicates no association and þ1 indicates positive associ-

ation. d1 varies from 0 to 1; 0 indicates complete

disagreement and 1 indicates perfect agreement. Results

are shown in Table 6. It is noticed that the observed and

PRECIS data for all the variables correspond very well to

each other. Among the three variables, minimum tempera-

ture is found to be the best in terms of both CC and

degree of agreement. Rainfall is found to have a higher

degree of agreement as compared with maximum tempera-

ture in both the basins.



Table 6 | Correspondence between observed and modeled (PRECIS) data over the study

basins during the historical period of analysis (Narmada basin –July 1978 to May

2000 and Mahanadi basin – January 1973 to December 2003)

Statistics

Basin Name Variable r d1

Mahanadi Rainfall 0.74 0.69
Max. temperature 0.79 0.63
Min. temperature 0.93 0.83

Narmada Rainfall 0.77 0.72
Max. temperature 0.82 0.64
Min. temperature 0.94 0.78

Figure 12 | Possible future monthly streamflow variation using ‘no further change’ (top)

and ‘logarithmic growth’ (bottom) condition for Narmada River.
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Streamflow scenario under future climate

Possible future streamflow variation using two possible

cases, namely ‘no further change’ and ‘logarithmic

growth’, for both the basins are investigated and analyses

are carried out at daily scale. However, daily results are con-

verted to monthly as it is more meaningful than daily

variation for future periods (after 20 or 70 years) and then

change in Vmax for Narmada and Mahanadi River basin is

analysed and, based on the ‘best fit line’, the Vmax values

are projected for both basins. The projected Vmax values

are used to model future streamflow generation. Other par-

ameters like b, B and k are kept constant, as observed in

the last decade training period. Results are reported separ-

ately in the following sections.
Narmada River basin

In ‘no further change’ condition, the same Vmax values are

considered, i.e., Vmax for Narmada River basin is 316.3 mm

for both future periods (2026–35 and 2076–85). Another poss-

ible condition is ‘logarithmic growth’ where Vmax varies in a

logarithmic scale. In this case, the Vmax values for the Nar-

mada River basin are 397.39 mm for 2026–35 and

435.62 mm for 2076–85. These are computed using Equation

(12). Monthly variations of streamflow for the Narmada River

basin are shown in Figure 12 for ‘no further change’ and ‘log-

arithmic growth’ conditions, respectively.

Average month-wise variations of streamflow values are

shown for the past two decades (1978–1989 and 1990–2000)

as well as future two decades (2026–2035 and 2076–2085)

for comparison. Though there is not much difference for
both the possible conditions, i.e., for ‘no further change’

and for ‘logarithmic growth’ conditions, it is found that

streamflow magnitudes are going to increase in comparison

to the past observations, particularly for monsoon periods.

Also for the post-monsoon period, the streamflow is going

to increase marginally.

Mahanadi River basin

For the Mahanadi River basin similar analysis is per-

formed. Two possible future conditions (‘no further

change’ and ‘logarithmic growth’) are analyzed. The results

are shown in Figure 13 for ‘no further change’ and ‘logar-

ithmic growth’ conditions. In ‘no further change’ condition,

the same Vmax values (270.3 mm) are considered for both

future periods (2026–35 and 2076–85). For ‘logarithmic

growth’ conditions, Vmax values are computed using

Equation (15). Vmax values are obtained as 360.53 mm for

2026–35 and 408.71 mm for 2076–85. Figure 13 shows

the comparison between four periods – past two decades



Figure 13 | Possible future monthly streamflow variation using ‘no further change’ (top)

and ‘logarithmic growth’ (bottom) condition for Mahanadi River.
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(1978–1989 and 1990–2000) as well as future two decades

(2026–2035 and 2076–2085). For Mahanadi River basin

also, streamflow magnitudes are found to increase for

future time periods. It is further observed that these

increased magnitudes are high particularly for the months

of June to August.

These observations indicate that in the near future, mon-

soon is going to be more concentrated over fewer months. In

general, it is found that streamflow is going to increase for

the monsoon period for both the study areas. Thus, specific

measures may be required in order to control streamflow in

future. Implication of the temporal redistribution of stream-

flow magnitude lies in modification of water management,

hydraulic design practices, etc. Since the monsoon stream-

flow increases and non-monsoon streamflow decreases,

higher volume of storage requirement might be necessary

in future in order to meet the required demand. Design prac-

tices for different hydraulic structures should be suitably

revised in order to avoid natural hazards due to extreme

streamflow during monsoon months.
Generalization for other tropical river basins

The methodology, being general and having some potential

aspects, can be applied to any other tropical watersheds. It

is recommended to have a good representative rainfall, temp-

erature and streamflow time series for the study basin. Model

parameters are to be obtained from this historical infor-

mation to capture the watershed characteristics. Watershed

characteristics can be more accurately represented through

the parameters if the streamflow series consists of all possible

flow ranges depicting all possible conditions that are

expected to be available in a reasonably long period of data

set. A long period of information will also ensure the rep-

resentation of the gradual change in parameters for the

study basin over the successive period of 5–10 years. Thus,

aminimumof 30 years of data is recommended. Once the his-

torical trends of different parameters are obtained, these are

to be projected to the future time of interest. Since, different

watershed might have gone through different process of

LULC change, each watershed will have a unique signature

in the trend of parameter values over the historical period.

Thus, the trend has to be uniquely determined for individual

watersheds. These are some of the important aspects in gen-

eralizing the approach, presented in this paper, for other

tropical basin.
SUMMARY AND CONCLUSIONS

Recent observations on the impacts of climate change

motivate to develop a basin-scale streamflow model having

few parameters, which will be able to consider time varying

watershed characteristics and climatic inputs, and provide

better or at least comparable performance to that of AI-

based approaches. In this paper, HCCS is developed consid-

ering the time varying watershed characteristics and using

climatic inputs. Performance of the proposed HCCS model

is investigated over last couple of decades for two Indian

river basins, Mahanadi and Narmada. Ability to consider

the time-varying watershed characteristics and hydrocli-

matic inputs renders the proposed model usable for

assessment of future streamflow variation. The HCCS

model is also applied to study future streamflow variation

for both the basins.
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The specific conclusions from this study are as follows.

The proposed HCCS model is able to consider the time-

varying watershed characteristics and major hydrologic pro-

cesses to model basin-scale streamflow using climate inputs.

Performance of the proposed HCCS model is found to be

impressive for both the study basins considered in the

study. While comparing the performance of the proposed

HCCS model with the performance of other popular con-

ceptual models and with LS-SVR (one of the popular AI-

based machine learning approaches), it is found that the

overall performance of HCCS model is better in general

and remarkably better in some cases.

In addition, the proposed model is also able to provide

additional overall (spatially averaged) estimates of ground

water recharge component and evapotranspiration com-

ponent from the entire catchment. Though these estimates

are not compared with the observed values (due to non-

availability), seasonality in these estimated is visible which

matches with the reality for Indian hydroclimatology.

The proposed HCCS model is also suitable for future

streamflow modelling with projected climate data. The pro-

posed HCCS model is used to model future streamflow

variation utilizing the projected climate data (PRECIS

data) during two future periods from 2026–2035 and

2076–2085 using two possible cases related to watershed

characteristic changes, namely, ‘no further change’ and ‘log-

arithmic growth’. Compared with historical observation, it is

observed that the streamflow magnitudes are going to

increase during early monsoon months and marginally

increase or remain almost same during the late monsoon

and non-monsoon months.

The methodology, being general and having some poten-

tial aspects, can be applied to any other tropical watersheds.

However, the methodology needs a good representative

rainfall, temperature and streamflow time series, consisting

of all possible flow ranges, for estimation of parameters

during calibration.
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