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Assessment of basin-wise future agricultural drought

status across India under changing climate

Mayank Suman and Rajib Maity
ABSTRACT
Most of the existing studies on meteorological drought suggest more intense and frequent drought

events due to changing climate. However, basin-scale assessment of future agricultural drought is

lacking due to many reasons. In this study, the intensity and frequency of future agricultural drought

(characterized by the Standardized Soil Moisture Index, SSMI) for 226 sub-basins across India are

analyzed, and vulnerable basins are identified. The prediction of the future agricultural drought status

is achieved using the wavelet-based drought temporal consequence modeling of meteorological

drought with the best performing bias-corrected Coordinated Regional Downscaling Experiment

(CORDEX) simulations, selected by Multi-Criteria Decision-Making frameworks. This study reveals a

geographically contrasting change in future agricultural drought that indicates more intense

agricultural drought in north, north-east, and central India as compared with south India. The area

under drought is also expected to increase, and about 20 and 50% of the Indian mainland is expected

to suffer from extreme (SSMI��2) and moderate (SSMI��1) agricultural drought conditions by the

end of this century. Sub-basins lying in north and central India are expected to have a longer time

under drought conditions. Thus, the findings of this study will be useful for future planning and

preparedness against agricultural productivity.

Key words | agricultural drought, climate change, Coordinated Regional Downscaling Experiment

(CORDEX), future assessment, Standardized Soil Moisture Index (SSMI)
HIGHLIGHTS

• Future agricultural drought status reveals new insights into its spatial variation.

• The concept of drought translation is a useful one for making use of the best potential of climate

model simulations.

• More intense droughts in north, north-east and central India are expected as compared with

south India.

• In future, about 20 and 50% of the area in India is expected to face extreme and moderate

agricultural droughts, respectively.
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GRAPHICAL ABSTRACT
INTRODUCTION
Agricultural drought is defined as a prolonged period of soil

moisture deficit, which affects agricultural production. For a

country like India, which is heavily dependent on agricul-

tural economy (constituting 16% of the gross domestic

product according to the Ministry of Finance, India ()),

agricultural droughts have a significant impact on its socio-

economic well-being. Hence, monitoring, assessment, and

prediction of agricultural drought are of immense impor-

tance. With prior knowledge of vulnerable regions in

terms of drought propensity, policies/plans can be devel-

oped to mitigate the adverse effects of agricultural drought.

Previous studies suggest that, in general, drought risk

has increased globally (Dai et al. ; Dai ; Vicente-Ser-

rano et al. ; Wang et al. ; Xu et al. ; Zhao et al.

). However, some studies suggest no significant or little

change in observed drought series (Seneviratne et al. ;

Sheffield et al. ; Greve et al. ). While there might

not be a consensus for the past, the research community lar-

gely agrees with the expected future changes in drought

conditions globally. With the changing climate, air tempera-

ture is expected to increase, resulting in a drying tendency

in soil moisture and stream flow (Trenberth et al. ;

Trenberth ; Annamalai et al. ) along with higher

and intense precipitation (Maity et al. a). Due to these

future changes, more intense and frequent droughts along

with an increase in the area under drought are predicted
://iwaponline.com/jwcc/article-pdf/12/6/2400/935669/jwc0122400.pdf
(Sheffield & Wood ; Dai , ; Field et al. ;

Stocker et al. ). Additionally, flash droughts (drought

events with rapid onset primarily due to intense heat waves)

are expected to become more common in the future

(Gerken et al. ; Yuan et al. ). Many regional studies

suggest that drought is expected to become more severe and

frequent, and areas under drought are expected to increase

with local variation in the future (Burke & Brown ;

Chen & Sun ; Kang & Sridhar ; Spinoni et al. ).

For instance, according to Burke & Brown (), the inten-

sity and frequency of droughts may increase over the entire

UK with regional variation, but it is difficult to ascertain

whether these changes will result from natural variability or

from the effect of the changing climate. According to Chen

& Sun (), the drought severity, frequency, and duration

are expected to increase in the future in eastern China. Simi-

larly, the severity and frequency of droughts in Europe are

expected to increase with spatio-temporal variations due to

the changing climate (Spinoni et al. ). Hence, the

spatio-temporal distribution of drought and risk, thereof, are

nonuniform with local variations under changing climate,

which, if understood well, can help in managing/mitigating

the future droughts (Thomas et al. ; Xu et al. ).

In the Indian context, the characterization of drought

has been attempted in multiple studies (Mishra & Singh

; Pai et al. ; Naresh et al. ; Ojha et al. ;
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Mishra et al. ; Thomas et al. ; Mallya et al. ;

Sharma & Mujumdar ; Zhang et al. ; Bisht et al.

). According to Mishra & Singh (), meteorological

drought in the Kansawati basin is expected to become more

severe and frequent. Pai et al. (), in their district-wise

analysis of drought conditions using the seasonal Standar-

dized Precipitation Index (SPI), found that there is spatial

variation in drought characteristics throughout India. For

instance, most districts in north and central India show an

aggravating meteorological drought condition; however,

most districts in south and west India show a decreasing

risk of meteorological drought. Naresh et al. () reported

an increase in drought severity across India using the SPI

as a meteorological drought index. An analysis of multiple

meteorological drought indices by Mallya et al. () and

an analysis of the spatial extent of concurrent meteorological

droughts and heatwaves by Sharma &Mujumdar () using

observed data suggested that, along with an increase in

drought severity and frequency across India in the past,

droughts are also becoming more regional in nature. Accord-

ing to them, the most affected regions are coastal south India,

central Maharashtra, and the Indo-Gangetic plain, all being

major agricultural areas. Zhang et al. () suggested an

increase in drought severity over the wheat-growing areas

of India and estimated its impact on wheat production.

Bisht et al. () analyzed future meteorological drought

and reported that despite a long-term increase in drought

severity and intensity across the Indian mainland, regional

variations in these drought characteristics are expected.

Most of the above-mentioned studies analyzed meteoro-

logical drought using indices, such as the SPI, the

Standardized Precipitation Evapotranspiration Index

(SPEI), and the Palmer Drought Severity Index (PDSI),

using coarse resolution data (usually from General Circula-

tion Models (GCMs)) in the future. A pan-India, basin-wise

assessment of future agricultural drought across all basins is

lacking. To address this issue, the use of finer resolution is

necessary to reveal a local variation in drought condition(s)

in a better way from many perspectives. Additionally, the

fine-resolution analysis of soil moisture deficit may help in

assessing other climatic variables, as the soil moisture is

expected to have a feedback to many climatic variables/

phenomena, such as heatwave (Hirabayashi et al. ;

D’Andrea et al. ), monsoon in Asia and Africa
om http://iwaponline.com/jwcc/article-pdf/12/6/2400/935669/jwc0122400.pdf

 2022
(Douville ), summer air temperature (Douville et al.

), and others. A large-scale assessment of agricultural

drought is also important from the food security point of

view. Thus, the objectives of this study are to analyze the

change in the intensity and frequency of future agricultural

drought across India, divided into 226 sub-basins, and to

identify the vulnerable basins/regions. The Standardized

Soil Moisture Index (SSMI) is used as the drought character-

izing index.

The rest of the article is organized as follows. In the next

section, details of the study area, showing the river basins and

sub-basins across India, and data used are presented. In the

section ‘Methodology’, details of the methodological

approach are outlined. In the subsequent ‘Results and discus-

sion’ section, the major findings of this study are presented.

Finally, the conclusions are provided in the last section.
STUDY AREA AND DATA USED

A total of 226 contiguous sub-basins that cover the entire

Indian mainland are selected as individual study areas.

These sub-basins are from 21 groups, including major

river basins, as shown in Figure 1. The area of these

sub-basins ranges from 111 to 91,268 km2, with the circu-

larity ratio ranging from 0.068 to 0.642. Most of the sub-

basins receive the maximum amount of rainfall during

the monsoon months (June–September); however, the

climatology of these sub-basins is diverse. The daily pre-

cipitation, maximum and minimum air temperature, and

total soil moisture content obtained from six CORDEX

models (Table 1) are regridded to common 0.5� (latitude)

× 0.5� (longitude) for the period 1961–2100 (1961–2005 is

termed the historical period, and future simulations for

two representative concentration pathways (RCP 8.5 and

RCP 4.5) are available for the period 2006–2100). These

CORDEX simulated variables are then bias-corrected

using the observed precipitation obtained from the India

Meteorological Department (Pai et al. ), air tempera-

ture and soil moisture reanalysis data obtained from the

European Centre for Medium-Range Weather Forecasts

Re-Analysis-5 (ERA5) (Hersbach ), respectively. The

ERA5 data are available from 1979 onward. Hence, lim-

ited by the availability of ERA5 data, the bias correction



Figure 1 | Sub-basins and major basins (and other groups of sub-basins) of India. In the legend, the major basin name is provided along with the number of sub-basins falling inside the

major basin (right column). Some coastal groups of sub-basins like 8, 9, and others (marked as --) are not part of any major basin as they directly flow into the sea in the form of

multiple small channels.

Table 1 | Details of different CORDEX simulation outputs used in this study

S. No. RCM Used GCM forcing Spatial resolution Institute

1 REMO2009 MPI-ESM-LR 0.5� latitude × 0.5� longitude MPI-CSC

2 RegCM4 CNRM-CM5 50 km × 50 km IITM

3 RegCM4 CSIRO-Mk3.6.0 50 km × 50 km IITM

4 RegCM4 IPSL-CM5A-LR 50 km × 50 km IITM

5 RegCM4 MPI-ESM-MR 50 km × 50 km IITM

6 RegCM4 GFDL-ESM2M 50 km × 50 km IITM

All models provide simulations for both RCP 4.5 and RCP 8.5 scenarios.

MPI-CSC, Climate Service Center, Max Planck Institute for Meteorology; IITM, Indian Institute of Tropical Meteorology.
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is carried out using the data for the period 1979–1995, and

the performance of bias correction is tested for the period

1996–2005. The calibrated bias-correction technique is then

used to bias-correct the future CORDEX simulations

(2006–2100) for both RCPs. For modeling the temporal con-

sequences of predictor drought indices (either of the SPI or

SPEI), the data from the period 1979–1999 are used for cali-

brating the model performance. The rest of the historical

period (i.e., 2000–2005) is used for testing the model per-

formance. The calibrated model is used for predicting the
://iwaponline.com/jwcc/article-pdf/12/6/2400/935669/jwc0122400.pdf
status of agricultural drought for the future period (2006–

2100) for both RCPs.
METHODOLOGY

The methodological overview is shown in Figure 2. The

methodology can be divided into five modules: (i) bias-cor-

rection of precipitation, temperature, and soil moisture

obtained from CORDEX simulation and estimation of



Figure 2 | Methodological overview. The left margin shows the different modules of the methodology. The solid and dashed arrow lines show the transfer of data and information (ranking

of CORDEX models in this case), respectively, between the operations.
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evapotranspiration, (ii) selection of the best performing

CORDEX model based on its skill to simulate sub-basin pre-

cipitation, (iii) drought characterization using the bias-

corrected data from the selected model, (iv) modeling of

the temporal consequences of meteorological drought over

agricultural drought, and (v) frequency and trend analysis

of agricultural drought. It should be noted that a major

issue with assessing the future status of agricultural drought

is the comparatively high uncertainty associated with soil

moisture estimates from the GCM/Regional Climate

Model (RCM) (Stevens & Bony ; Lauer et al. ;

Sharma et al. ). In this study, agricultural drought is

modeled using bias-corrected soil moisture values from the

best performing CORDEX model and the concept of the
om http://iwaponline.com/jwcc/article-pdf/12/6/2400/935669/jwc0122400.pdf
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temporal consequences of meteorological drought (obtained

from the meteorological variables with comparatively less

uncertainty). Different modules of the methodology are dis-

cussed in subsequent subsections.

Bias-correction of CORDEX simulation outputs

Future CORDEX simulated precipitation, soil moisture, and

near-surface air temperature are used for characterizing

meteorological drought, agricultural drought, and esti-

mation of evapotranspiration, respectively. However, the

CORDEX simulations may have bias, and the bias charac-

teristics are not expected to be the same/similar for all

variables. For instance, the bias characteristics differ from
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the variable(s) with many zero values (such as precipitation)

to other variables, such as air temperature and soil moisture,

that do not have any specific repetitive value. Hence, a suit-

able bias-correction approach should be utilized depending

upon the variable being bias-corrected.

In the case of precipitation, a copula-based bias-correc-

tion approach (Maity et al. ) is applied. The copula-

based bias-correction technique is used due to its benefit

in the context of zero-inflated precipitation series. This

method does not suffer from some of the shortcomings

faced by many of the existing bias-correction techniques,

such as empirical- or distribution-based Quantile Mapping

(QM) and linear or nonlinear transfer function. Examples

of such shortcomings include correcting bias in the first-

or second-order statistics only, ignoring zero values,

unable to preserve the shape of the probability distribution

of the precipitation including zero values, etc. The copula-

based bias-correction approach was formulated to achieve

better results than other methods, as this approach properly

considers the significant percentage of zero values. The

bias-correction approach employs bivariate-copula func-

tions for modeling the relationship between observed and

CORDEX simulated precipitation with proper consideration

to zero precipitation values.

QM is used for correcting bias for variables like air temp-

erature and soil moisture. This mapping technique is used for

bias-correcting the variables not having many zero values,

because it considers all statistical moments in simulated

data in bias correction (Thrasher et al. ), and hence, it

gives satisfactory results at reasonable computational require-

ments compared with other alternatives. In the case of daily

near-surface air temperature records, the maximum air temp-

erature and diurnal temperature range (the difference of the

daily maximum and minimum air temperature) are bias-cor-

rected using QM. The daily minimum air temperature is

obtained as the difference of the bias-corrected daily maxi-

mum air temperature and the bias-corrected diurnal

temperature range. This scheme of bias-correcting daily mini-

mum air temperature ensures that the daily minimum air

temperature is always less than the daily maximum air temp-

erature and is recommended (Thrasher et al. ). QM

corrects the bias based on the assumption of stationarity of

the probability distribution of the observed and simulated

values of the same variable in the future. During the
://iwaponline.com/jwcc/article-pdf/12/6/2400/935669/jwc0122400.pdf
calibration of the QM method, the cumulative probability

function for both observed data and simulated values is ascer-

tained, which is deemed the same for the future period. For

bias-correcting a simulated value from the future, the value

is converted to nonexceeding quantile (or reduced variate)

using the corresponding calibrated distribution. The bias cor-

rection is then carried out by using this reduced variate

against the calibrated distribution of the observed data.

Hence, the bias-corrected value (~S) for a simulated variable

(say S) using QM is expressed as follows:

~S ¼ F�1
o (Fs(S)) (1)

where Fo and Fs are the calibrated cumulative distribution

functions for the observed data and simulated values,

respectively.
Selection of the best performing CORDEX model

Bias correction cannot be considered as a solution to

inadequate modeling of climatic systems by climate

models (Maraun et al. ). For instance, many RCMs

(including CORDEX models) are not able to reproduce

seasonality well, and some RCM models also show a drizzle

effect (i.e., very low rainfall simulation for dry days;

Schmidli et al. ; Fowler et al. ; Christensen et al.

; Teutschbein & Seibert ; Elía et al. ). Hence,

even after the bias correction, not all CORDEX simulations

have the same skill. Before hydrological modeling, an analy-

sis of the relative skill of the CORDEX model and the

selection of the best model based on the skill can be helpful.

The relative skills of multiple CORDEX models are quanti-

fied by using the Multi-Criteria Decision-Making (MCDM)

methods of outranking nature, such as Compromise

Programming (CP) (Kumar ; Raju et al. ) and

Preference Ranking Organization METHod of Enrichment

Evaluation-2 (PROMETHEE-2; Brans et al. ; Kumar

; Pomerol & Barba-Romero ; Raju & Kumar ).

For the application of these MCDM methods, multiple per-

formance statistics are calculated for historical CORDEX

simulations by comparing them with the observed data.

The MCDM methods utilize these performance statistics

for making decisions.
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Compromise programming

CP ranks different CORDEX simulations based on the dis-

tance of their performance statistics from the best possible

values of performance statistics. The distance measure for

a CORDEX simulation is defined as follows:

Lp(m) ¼
Xs

i¼1

wp
i j f�i � fi(m)jp

" #1
p

(2)

where subscript i ∈ {1, 2, . . . , s} and s is the total number of

performance statistics. The f�i and wi are the best value and

weight of ith performance statistics, respectively; fi(m) and

Lp(m) are the values of ith performance statistics and the dis-

tance measure for mth CORDEX simulation with parameter

p. In this study, p ¼ 2, and hence, L2 distance measure (or the

weighted Euclidean distance) has been used. The weight for

performance statistics is estimated using the entropy

method, as discussed in the subsequent section.

Preference Ranking Organization METHod of
Enrichment Evaluation-2

PROMETHEE-2 ranks different alternatives (CORDEX

simulations in this study) based on the preference/criterion

function. It has been employed to rank GCMs (Raju &

Kumar ). The preference function (denoted by

Pi(mj, mk)) utilizes the pairwise difference in the ith

performance measure (denoted by di(mj, mk)) between two

CORDEX simulations (denoted by mj and mk). There are

six types of preference functions, namely, (i) usual criterion,

(ii) quasi criterion, (iii) linear preference with no indifferent

area, (iv) linear preference with indifferent area, (v) level

criterion, and (vi) Gaussian criterion. In this study, the

usual criterion function is utilized to rank the CORDEX

simulation. Using the usual criterion function, the prefer-

ence function for different performance measures and

pairs of CORDEX models are expressed as follows:

Pi(mj, mk) ¼ (di(mj, mk)> 0) (3)
The preference functions for different performance

measures are weighted-averaged to obtain the multicriteria
om http://iwaponline.com/jwcc/article-pdf/12/6/2400/935669/jwc0122400.pdf
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preference index for a pair of CORDEX models, I(mj, mk),

I(mj, mk) ¼

Ps
i¼1

wiPi(mj, mk)

Ps
i¼1

wi

(4)

where wi is the weight for the ith performance measure, and

s is the number of performance measures used. The weight

for different performance measures can be estimated using

their entropy, as discussed in the next section. It should be

noted that the model mj is better than mk pairwise if

I(mj, mk)> I(mk, mj). In the case of multiple CORDEX

models, the mean net difference of I(mj, mk) and

I(mk, mj), known as the outranking index (denoted by

ϕ(mj) for the jth model), is used for ranking.

ϕ(mj) ¼

PN
k¼1;k≠j

(I(mj, mk)� I(mk, mj))

N � 1
for j ∈ {1, 2, . . . , N}

(5)

where N is the total number of CORDEX simulations being

compared. The CORDEX simulation having the highest

ϕ(mj) is considered to be the best among the options.
Entropy method for weighting performance statistics

In the MCDM methods for ranking CORDEX simulation,

the relative weights for different performance measures

are calculated by the entropy of performance measures

(i.e., the amount of information present in the performance

measures). Before calculating the entropy, the perform-

ance measures are normalized using their sum to reduce

the effect of scale, if any. If fij denotes the value of the ith

performance measure for the jth model, then the normal-

ized performance measure for the model is expressed as

follows:

f0ij ¼
fijPN

j¼1
fij

(6)

where N is the number of CORDEX simulations. The nor-

malized values of the performance measures lie between 0
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and 1. It should be noted that the entropy can be calculated

only for the performance measures that are positive or

zero. Based on this criterion, four performance measures

are selected to rank the CORDEX simulations on the

basis of their skill, namely, R2, TSS, MAE, and uRMSE.

All of these performance measures are positive and lower

bounded by 0. The R2 is the fraction of variance of the

observed variable explained by using the modeled/simu-

lated variable. For the best performing model, R2 will be

1. TSS was proposed by Taylor (), with an assumption

that a skillful model should be able to accurately simulate

both the amplitude and the pattern of variability. Hence,

TSS considers both the linear correlation and the ratio of

variance and is expressed as follows:

TSS ¼ 4(1þ r4)

(σ̂f þ 1=σ̂f)
2(1þ r0)

4 (7)

where r and r0 are the Pearson’s Correlation Coefficient

and the maximum Pearson’s Correlation Coefficient poss-

ible, given the climatic variation between the modeled/

simulated variable and the observations. σ̂f represents the

ratio of the standard deviation of the modeled and

observed values of the variable. The TSS ranges between

0 and 1 (the best possible model). The uRMSE is the

Root Mean Square Error (RMSE) between the ‘deviation

from respective mean’ series of the observed and mod-

eled/simulated variable. The MAE is the average of

absolute deviation between the observed and modeled/

simulated variable. The measures of error, both uRMSE

and MAE, are lower bounded by zero (the best performing

model) and have no upper bound.

Using the normalized performance measures, the

entropy of the ith performance measure (denoted as Ei) is

calculated as (notations explained earlier):

Ei ¼ � 1
ln(N)

XN
j¼1

f0ij ln ( f0ij) (8)

For a performance measure with high entropy, the uncer-

tainty is also high, and it should have less weightage. The

degree of diversification of the information provided by the

ith performance measure (Di) is calculated as (1� Ei).

Hence, for a performance measure with high entropy, the
://iwaponline.com/jwcc/article-pdf/12/6/2400/935669/jwc0122400.pdf
degree of diversification of information will be low. The

weight of the ith performance measure is expressed as:

wi ¼ DiPs
i
Di

(9)

where s is the total number of performance measures used.

High weightage, as calculated above, means low relative

uncertainty, and hence, higher importance (as compared

with others) for the performance measure.
Drought characterization using bias-corrected CORDEX

output

Drought can be characterized on a long- or short-temporal

scale. As the primary objective of this study is to predict

the status of agricultural drought, a short-term drought

characterization for the 3-month averaging period is carried

out. This short duration is well-suited for analyzing agricul-

tural drought as crops are planted and rotated seasonally

(∼3 months in India). The drought is characterized using

the standardized index. In this study, the SPI and SPEI are

used for meteorological drought quantification. Similarly,

the SSMI is used for characterizing agricultural drought.

These standardized indices are mathematically consistent

with each other, which is desirable in a study involving

their inter-relation. The methodology for calculating the

SPI and SSMI is discussed in Maity et al. (b).

The SPEI is the standardized index similar to the SPI,

with the difference that instead of monthly precipitation,

monthly water deficit or climatic water balance is used for

calculating the index (Vicente-Serrano et al. ; Beguería

et al. ). Monthly climatic water balance is the difference

between monthly precipitation and potential evapotran-

spiration (PET) (i.e., the difference between available

water and atmospheric evaporation demand); hence, it

should be a more reliable measure for drought. However,

the use of monthly climatic water balance gives rise to an

additional issue as values less than zero are possible.

Hence, a three-parameter log-logistic distribution is used

instead of a two-parameter gamma distribution (as in the

case of the SPI). As the SPEI is derived from monthly cli-

matic water balance, it is a more desirable drought index
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in a warming world (Vicente-Serrano et al. ; Beguería

et al. ; Hernandez & Uddameri ; Liu et al. ).

Multiple methodologies exist for estimating PET, such

as Penman–Monteith (Liu et al. ; Feng et al. ),

Thornthwaite (Hernandez & Uddameri ; Feng et al.

), Hargreaves (Hargreaves ; Oguntunde et al. ;

Spinoni et al. ), Artificial Intelligence-based models

(Ghorbani et al. ) and others. Of these methods, the

Penman–Monteith method is considered the most accurate;

however, this method is data-intensive (Bisht et al. ).

The Thornthwaite method is considered inferior to both

the Penman–Monteith and Hargreaves methods (Bandyo-

padhyay et al. ), and it requires monthly mean

temperature for estimating PET. The Hargreaves method uti-

lizes the daily maximum, minimum, and average near-

surface air temperature, and solar declination for the area

to estimate PET. In this study, the PET (say ETo in mm/

day) is estimated using the Hargreaves method as follows:

ETo ¼ 0:0023 × Ra(Tavg þ 17:8)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Tmax � Tmin)

p
(10)

where Tmax, Tmin, and Tavg are the maximum, minimum, and

average daily air temperature, respectively in �C; Ra is extra-

terrestrial radiation (radiation received on the top of the

atmosphere) expressed in mm/day. Ra at a location with lati-

tude l (in radian) is estimated as follows:

Ra ¼ 0:408
118rd
π

[ω sin (l) sin (Sd)þ cos (l) cos (Sd) sin (ω)]

ω ¼ arccos (� tan (Sd) tan (l))

Sd ¼ Ma sin
2π
365

(d� 80)
� �

rd ¼ 1þ (1=30) cos
2πd
365

� �
(11)

where Sd, rd, and Ma are the solar declination in degrees for

the dth day of the year, the relative distance between the

Earth and the Sun for the dth day of the year, and the

mean axial tilt of the Earth (taken as 23.43673�), respect-

ively. It should be noted that the relative temporal

estimation of PET is used when it is included in the drought

index (SPEI); hence, the method used for the estimation of

PET is not crucial (Vicente-Serrano et al. , ).
om http://iwaponline.com/jwcc/article-pdf/12/6/2400/935669/jwc0122400.pdf
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Modeling of the temporal consequences of

meteorological drought

It is established that droughts translate from one type to

another (Maity et al. b; Suman & Maity ; Shamshir-

band et al. ). For instance, meteorological drought

(rainfall deficit) may lead to agricultural drought (soil moist-

ure deficit) and further to hydrological drought (stream

flow/groundwater/reservoir storage deficit). Secondly, cli-

mate models are more efficient in the simulation of

primary hydroclimatic variables (e.g., precipitation) as com-

pared with secondary (e.g., soil moisture, stream flow) and

tertiary (drought indices) hydroclimatic variables (Moss

et al. ; Stevens & Bony ). Thus, it may be beneficial

to use the potential of climate models at primary hydrocli-

matic variables to investigate the change in drought

characteristics in the past and future for a better assessment.

Thus, temporal consequence or inter-relation between differ-

ent types of droughts is utilized for making a future

assessment of agricultural droughts.

Thewavelet-basedmodels for analyzing the temporal con-

sequence of meteorological drought to agricultural and

hydrological droughts were developed by Maity et al.

(b). The models linking meteorological drought (charac-

terized by the SPI) to agricultural drought (characterized by

the SSMI) are used in this study. It should be noted that

these models are framed based on a hypothesis that the

inter-relation between drought should be continuous in time,

and hence, it should be studied on the constituent frequency

or component level of drought indices. Wavelet Transform is

used to separate these constituent components of drought indi-

ces. Fourier Transform is avoided as it averages out temporal

information while identifying the constituent frequencies,

which is not desirable in a model assessing temporal conse-

quence on predecessor drought on successor drought.

Details of the utilized models are provided in Table 2. First,

the series of drought indices are transformed into their con-

stituent wavelet components using Multi-Resolution

Stationary Wavelet Transform (MRSWT) up to level 2, result-

ing in three components for each drought index. Next, the

inter-relation between drought indices is modeled on the com-

ponent level. For instance, models 1 and 2 predict the SSMI

series using Multiple Linear Regression (MLR) of the wavelet

components of predecessor drought indices (the SPI and/or



Table 2 | Models for the temporal consequences of meteorological drought on agricultural drought

S. No. Model description

1 SSMI(t) ¼ f
SPIa2 (t� T1), SPId2 (t� T1), SPId1 (t� T1)
SPIa2 (t� T2), SPId2 (t� T2), SPId1 (t� T2)

� �

2 SSMI(t) ¼ f
SPIa2 (t� T1), SPId2

(t� T1), SPId1 (t� T1)
SPIa2 (t� T2), SPId2

(t� T2), SPId1 (t� T2)
SSMIa2 (t� T1), SSMId2 (t� T1), SSMId1

(t� T1)

0
@

1
A

3
SSMIC(t) ¼ f

SPIa2 (t� T1), SPId2 (t� T1), SPId1
(t� T1)

SPIa2 (t� T2), SPId2 (t� T2), SPId1
(t� T2)

SSMIa2 (t� T1), SSMId2 (t� T1), SSMId1 (t� T1)

0
B@

1
CA forC ∈ {d1, d2, a2}

SSMI(t) ¼ g(SSMId1 , SSMId2 , SSMIa2 )

The symbols f and g represent Multiple Linear Regression (MLR) and inverse wavelet functions, respectively. T2¼ T1þ 1; T1¼ 2l, where l is highest MRSWT level (i.e., 2 in this study).
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SSMI) time series. Model 1 uses the information of the SPI

only for SSMI prediction, and it assumes that the memory in

the SSMI is not significant. However, model 2 additionally

uses the memory of the SSMI while predicting the SSMI.

Model 3 predicts the wavelet components of the SSMI series

using the wavelet components of the SPI and SSMI time

series, which are transformed into the SSMI series using

inverse wavelet transform. These models were found to cap-

ture the temporal consequence of drought satisfactorily in

the Upper Mahanadi Basin (Maity et al. b). The same

models are also run with the SPEI as input for assessing its

temporal consequences, which helps in assessing the relative

performance of the SPEI compared with SPI in predicting

the SSMI.

Themodels are run using two validation schemes (i.e., vali-

dation schemes I and II; Figure 3). Under validation scheme I

(also known as a fixed development and testing period), the

model is calibrated once over the development period and

the SSMI is predicted over the testing period using the same

calibrated model parameters. However, in the case of vali-

dation scheme II (also known as a moving window

approach), the model is calibrated on the development

period, and using the calibrated parameters, a single value

after the development period is predicted. In the next iteration,

the development period window is moved forward by one time

step, and the process of model calibration on the shifted devel-

opment period followed by the prediction of the single value

after the development period is repeated. The shifting of the

development period continues until prediction for all of the

time steps is complete.Due to the shiftingwindowand repeated
://iwaponline.com/jwcc/article-pdf/12/6/2400/935669/jwc0122400.pdf
calibrations, validation scheme II is more suitable for the cases

in which the relationship is expected to change with time.

The performance of the models is evaluated using the

Pearson’s Correlation Coefficient (r), Refined Index of

Agreement (Dr), Nash–Sutcliffe Efficiency (NSE), and

uRMSE (Krause et al. ; Willmott et al. ; Maity

et al. ). The first two performance measures (r and Dr)

measure the association between the predicted and the

observed SSMI. The maximum value of these performance

measures is 1 for the best performing model. The NSE and

uRMSE are dependent upon the error/deviation between

the predicted and the observed SSMI. An error variance

equal to zero (the best performing model) will result in the

NSE being equal to 1. For the positive error variance, the

NSE< 1. In the case of the uRMSE (i.e., the RMSE between

the ‘deviation from mean’ series of the predicted and

observed SSMI), the best performing model is expected to

have a uRMSE of 0.

r ¼ cov(Ŷ , Y)
SŶSY

(12)

Drfrac ¼
P jŶ � Y j
2
P jY � �Y j

Dr ¼
1�Drfrac for Drfrac � 1
1

Drfrac
� 1 for Drfrac > 1

8<
:

(13)

NSE ¼ 1�
P

(Ŷ � Y)
2

P
(Y � �Y)

2 (14)



Figure 3 | Schematic diagram of two types of validation schemes. In scheme II, at any model testing iteration, only the last value is recorded for performance assessment, as the other

parts of the testing period overlap the model development period of the same iteration (Source: Maity et al. (2016b)).
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uRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
[(Y � �Y)� (Ŷ � Ŷ)]

2

n

s
(15)

where Y and Ŷ represent the observed and predicted SSMI

series. Similarly, �Y and Ŷ represent the mean of the

observed and predicted SSMI series. SY , SŶ , and

cov(Ŷ , Y) are the standard deviation of the observed

SSMI, the standard deviation of the predicted SSMI, and

the covariance of the observed and predicted SSMI,

respectively.
om http://iwaponline.com/jwcc/article-pdf/12/6/2400/935669/jwc0122400.pdf
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RESULTS AND DISCUSSION

Bias-correction of CORDEX simulation and their skill-

based selection

As stated earlier, the daily precipitation, being a zero-

inflated variable, is bias-corrected using the copula-based

bias-correction scheme (Maity et al. ). Other variables,

i.e., maximum daily temperature, diurnal temperature

range, and daily total soil moisture are bias-corrected using
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the QM method. It should be noted that the bias-correction

of precipitation was satisfactory (Maity et al. ). The per-

formance for the bias-correction of maximum temperature

during the testing period is shown in Figure 4. It can be
Figure 4 | Spatio-temporal comparison of bias-corrected monthly mean daily maximum near-s

simulation (second column) for selected months during the period 1996–2005. The

://iwaponline.com/jwcc/article-pdf/12/6/2400/935669/jwc0122400.pdf
observed from the figure that the spatial distribution of

QM Corrected (QMC) values matches better than that of

the observed mean daily maximum temperature for a

month. Across the months, the correspondence between
urface air temperature (QMC) with the corresponding observed (OBS) values and CORDEX

results are shown for the RegCM4 RCM model forced by MPI-ESM-MR GCM.
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the QMC and observed data is also better than the

correspondence between the CORDEX simulation and

observed data. The better spatio-temporal correspondence

with the observed data suggests the efficacy of QM in redu-

cing bias in the maximum daily temperature. Similar results

are obtained for the bias-corrected values of the diurnal

temperature range and soil moisture (figures not shown).

In general, the QMC values of these variables are better

than the original CORDEX simulations for hydrological

modeling. From the bias-corrected values of the diurnal

temperature range and daily maximum air temperature,

the bias-corrected daily minimum air temperature is

obtained. From the bias-corrected values of daily maximum

and minimum air temperature, the daily PET is estimated by

using the Hargreaves formula at each grid point.

Next, the bias-corrected variables are converted to

their monthly values by accumulating them across days.

The bias-corrected variables including monthly PET are

then spatially averaged over each of the sub-basins using
Figure 5 | Top three CORDEX models (rank 1–3) at each sub-basin across the Indian mainland

om http://iwaponline.com/jwcc/article-pdf/12/6/2400/935669/jwc0122400.pdf
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the Thiessen polygon method. The effectiveness of the

CORDEX model in reproducing seasonality in monthly

precipitation series is evaluated using two MCDM methods,

namely, CP and PROMETHEE-2. The performance

measures used to characterize the skill of different

CORDEX models are R2, TSS, MAE, and uRMSE. The high-

est-ranked CORDEX model for each of the sub-basins is

shown in Figure 5. It should be noted that the rankings of

the CORDEX models from both of the MCDM method-

ologies are not expected to be the same, as the ranking

criteria followed are different in the MCDM methodologies.

CP compares the performance of the CORDEX models with

respect to the best possible performance. However, PRO-

METHEE-2 with the usual criterion inter-compares the

CORDEX models using their performance measures.

Despite the differences in ranking from these method-

ologies, RegCM4 RCM driven by MPI-ESM-LR and

CSIRO-Mk3.6.0 GCMs is found to be the best models for

simulating the monthly precipitation in most of the sub-
using CP and PROMETHEE-2. The legend shows the driving GCM (Table 2).
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basins across north and north-east India. On the other hand,

the best selected CORDEXmodels show more variability for

the sub-basins in south India. However, REMO2009 RCM

driven by MPI-ESM-MR GCM is found to be the best in

most sub-basins of this region. The spatial variation of the

ranking of the bias-corrected CORDEX model (along with

driving GCM) reveals the effect of differences in modeling

parameters and assumptions involved in simulations. Fur-

thermore, it should be noted that despite the better

performance of some of the CORDEX models (and their

driving GCMs) for the majority of sub-basins, any single

CORDEX simulation (and driving GCM) is found incompe-

tent to capture the majority diverse climatology of the Indian

mainland. These observations show the importance of per-

formance quantification of GCM/RCM models on a

regional scale (in any study involving multiple GCM/RCM

simulations) before using them in any further hydrological

analysis. The data from the best ranking CORDEX model

under either of CP or PROMETHEE-2 are used for studying

the temporal consequence of meteorological drought to an

agricultural one. It should be noted that the effectiveness of

the CORDEX models is not evaluated for other variables,

which might have resulted in another set of rankings. The

selection of a CORDEX model based on only one variable

(i.e., precipitation) ensures that the values of all variables

are generated by the same model and, hence, have the

samemodel assumption and parametrization. The translation

of meteorological drought to agricultural drought (as dis-

cussed in the next section) is then modeled using the bias-

corrected values from selected CORDEX models.

Modeling of the temporal consequence of drought

Using the bias-corrected values of monthly precipitation and

monthly soil moisture, the SPI and SSMI are calculated at

the 3-month running mean of the respective variables. Simi-

larly, the SPEI is calculated using the 3-month running

mean of the monthly climatic water balance series (the

difference of monthly precipitation and PET series). Wave-

let-based models 1–3, as shown in Table 1, are used for

predicting the SSMI.

The models are calibrated during the period 1979–1999

and tested during the period 2000–2005. Both validation

schemes (I and II) are used in this study. The performance of
://iwaponline.com/jwcc/article-pdf/12/6/2400/935669/jwc0122400.pdf
different models during the development period is shown in

Figure 6 for the case when the SPI is used for characterizing

metrological drought. From Figure 6, the performance of

model 2 is found to be the best among all of the models as evi-

dent by the high values of R2, Dr, NSE and low values of the

uRMSE for sub-basins across India. The performance of

model 2 is found to be slightly better for the sub-basins in

north India on an average as compared with that for the sub-

basins in south India. The better performance of models

using the past values of the SSMI series (models 2 and 3) as

compared with model 1 (which does not use any information

from the SSMI series) indicates the high innatememory of soil

moisture throughout the sub-basins across India.

The models are also run using the SPEI. Model 2 is

found to work marginally better in the case when the SPI

is used as input rather than SPEI. This might be due to

(i) the warming during the development period might be

insignificant (Thomas et al. ), leading to less evapotran-

spiration, hence there is no benefit of prediction using the

SPEI over SPI (Shamshirband et al. ); however, it

might not be the case in the future as more warming is

expected, and the SPEI captures the effect of warming cli-

mate better than SPI (Vicente-Serrano et al. ; Beguería

et al. ; Liu et al. ) and (ii) the memory of the

SSMI is comparatively more significant for modeling

the temporal consequence of meteorological drought over

agricultural drought. However, in the future, with compara-

tively warm weather, the near-surface air temperature might

affect the SSMI more due to higher evapotranspiration.

Hence, the SPEI-based prediction of the SSMI is more desir-

able for a future period. The performance of model 2 for

both validation schemes during the testing period is shown

in Figure 7 for the case when the SPI is used for character-

izing meteorological drought.

Comparing Figures 6 and 7, the performance of model 2

is found to be comparable during both development and test-

ing periods. This suggests that model 2 is not under- or over-

fitting. Additionally, it should be noted that the performance

across validation schemes (a comparison of Figure 7(a) and

7(b)) suggests no significant advantage for validation

scheme II, which was designed to capture any dynamic

relationship (if any) during the testing period. Thus, there

may not be any significant warming effect during this

period. Among all of the model options, model 2 (i.e., the



Figure 6 | Performance of (a) model 1, (b) model 2, and (c) model 3 for predicting the SSMI during the development period using validation scheme I. The data for all of the variables are

taken from the best (rank¼ 1) CORDEX simulation selected using CP. Meteorological drought is characterized by the SPI for the analysis.
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model relating the SSMI series with the component of predic-

tor drought and the memory of components of the SSMI

series) is found to perform the best and, thus, utilized for

assessing future agricultural drought.

Analysis of future agricultural drought

The predicted SSMI series for the future period, obtained

from a modeling of the temporal consequence of meteorolo-

gical drought using either of the SPI or SPEI in model 2, are

assessed for the state of agricultural drought in sub-basins

throughout India. It should be noted that 16 realizations

of the SSMI series are obtained – combinations of two

choices for each of (i) the validation schemes, (ii) the
om http://iwaponline.com/jwcc/article-pdf/12/6/2400/935669/jwc0122400.pdf
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predecessor meteorological drought indices (the SPI and

SPEI), (iii) the best CORDEX model selected on the basis

of the CP and PROMETHEE-2 methods, and (iv) RCP scen-

arios (RCP 4.5 and RCP 8.5). In this section, the results for

the SSMI series obtained from the SPEI-based modeling and

validation scheme II are discussed. This combination of pre-

decessor drought series and validation scheme is chosen as

is expected in warming and changing climates.

A trend analysis of the SSMI series in the future

(obtained from the SPEI-based models for validation

scheme II; Figure 8) carried out using the Mann–Kendall

Test at a 5% level of significance suggests that most of the

sub-basins in south India show a more wetting (an increas-

ing trend in the SSMI series) condition. However, most of



Figure 7 | Performance of model 2 for validation scheme (a) I and (b) II for predicting the SSMI during the testing period. The data for all of the variables are taken from the best (rank¼ 1)

CORDEX simulation selected using . Meteorological drought is characterized by the SPI.
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the sub-basins in north, central, and north-east India show

the condition of dryness (or a decreasing trend in the

SSMI series). This geographically contrasting change in

future agricultural drought is in agreement with the expected

changes in precipitation in south India as compared with

that in north and central India, as suggested by the literature

(Suman & Maity ). The future period is then separated

into three epochs: (i) E1 (2006–2035), (ii) E2 (2036–2070),

and (iii) E3 (2071–2100) for the analysis of temporal

changes in agricultural drought. This epoch-wise analysis

suggests that the trend of the SSMI series in the south

Indian sub-basins is expected to become insignificant or

dry by the end of this century. The analysis of the trend in

the SSMI series predicted using other combinations of the

validation scheme and predecessor meteorological drought

indices indicates a similar wetting trend in south India and

a drying trend in north and central India.

The percentage area under both moderate (SSMI��
1) and extreme (SSMI��2) agricultural drought con-

ditions for the SSMI index simulated by model 2 using

the SPEI and validation scheme II on a monthly scale is

expected to increase, as shown in Figure 9. By the end
://iwaponline.com/jwcc/article-pdf/12/6/2400/935669/jwc0122400.pdf
of the century, more than 50% of the Indian mainland

is expected to be under moderate agricultural drought

for the RCP 8.5 scenario. Similarly, more than 20% of

the Indian mainland is expected to be under extreme agri-

cultural drought by the end of the century for the RCP 8.5

scenario. Additionally, it is noticed that CORDEX models

selected on the basis of CP show more areas under

drought as compared with CORDEX models selected on

the basis of PROMETHEE-2.

The distribution of the percentage time for a sub-basin

to be under extreme drought conditions for different

periods in the future is shown in Figure 10. From the

figure, the percentage time for a sub-basin under extreme

drought conditions is found to be higher in most of the

sub-basins in north, central, and north-east India. Sub-

basins in central India are more vulnerable to extreme

drought conditions. On the other hand, the vulnerability,

and thus, the percentage time under extreme drought con-

ditions is found to be less for most of the sub-basins in

south India and for some large sub-basins in western

India. Additionally, the epoch-wise analysis shows that

the area under drought is increasing with time in the



Figure 8 | Trend of the SSMI series for different future periods. The results are provided for model 2 with the SPEI input and validation scheme II. Four columns indicate the entire future

period (2006–2100) and three epochs: E1 (2006–2035), E2 (2036–2070), and E3 (2071–2100). The row name shows the method (CP for Compromise Programming and P2 for

PROMETHEE-2) and the RCP scenario. The significance of the trend is assessed using the Mann–Kendall Test at a 5% level of significance. Sub-basins showing no significant

trend are shown in white patches.
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future. It should be noted that most of the sub-basins in the

Gangetic plain, a major agricultural region in India, show

high vulnerability to extreme drought conditions. Hence,
om http://iwaponline.com/jwcc/article-pdf/12/6/2400/935669/jwc0122400.pdf
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an increased vulnerability of these regions to agricultural

drought may have adverse consequences for food security

in the Indian sub-continent.



Figure 9 | Monthly series of the percentage area of the Indian mainland under (a) moderate (SSMI��1)) and (b) extreme (SSMI��2) agricultural drought conditions. The results are

presented for the SSMI predicted by model 2 using the SPEI and validation scheme II. ‘Observed’ indicates the SSMI calculated using ERA5 Reanalysis data for the time period

1979–2018.
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CONCLUSIONS

This study investigates the future status of agricultural

drought in 226 sub-basins across India. The translation

of meteorological droughts to agricultural droughts is

modeled using a recently developed wavelet-based

approach. At first, the CORDEX simulation of precipi-

tation, air temperature and others are bias-corrected,

and the best performing CORDEX model for simulating

precipitation is selected for each sub-basin. Based on the

data from the selected CORDEX model, the temporal con-

sequence of predecessor drought to a successor one is

modeled. In this study, agricultural drought (character-

ized by the SSMI) is considered as a successor drought.

The temporal consequence modeling is found to perform

satisfactorily across India despite varying climatology.

Given that the models are not over- or under-fitting, the

models are then utilized to estimate the future state of

agricultural drought in different sub-basins across India.

The major findings regarding the state of future agricul-

tural drought across India are as follows:

(i) The study has identified a geographically contrasting

change in the spatial pattern of future agricultural

drought over south and north India. Agricultural drought

shows an increasing trend in most of the sub-basins in

the Indian mainland, except for some of the sub-basins

that are situated in south India.

(ii) Sub-basins in north and central India are expected to be

vulnerable to frequent agricultural droughts, with the

sub-basins in central India expected to be comparatively
://iwaponline.com/jwcc/article-pdf/12/6/2400/935669/jwc0122400.pdf
more vulnerable. However, the vulnerability of sub-

basins in south India is found to be comparatively less.

(iii) In general, the percentage area of the Indian mainland

under extreme or moderate drought conditions is

expected to increase by the end of this century. On aver-

age, more than 20% area of the Indian mainland is

expected to suffer from extreme agricultural drought

conditions (SSMI��2). Moderate drought conditions

(SSMI��1) will be experienced as much as 50% of

the area.

(iv) The percentage time under extreme drought con-

ditions is found to be higher for many sub-basins in

north India. It is also noticed that most of the sub-

basins in the Gangetic plain exhibit high vulnerability

to extreme drought conditions in future. This may

have an adverse effect on food production in this

region.

Overall, the analysis has identified vulnerable basins

across India considering future agricultural drought. It also

underlines the geographically contrasting agricultural

drought between north and south India. These findings are

expected to be highly useful for policymakers for future

planning and preparedness in terms of agricultural pro-

ductivity. Utilizing the temporal consequence of

meteorological drought to analyze agricultural drought

leads to a reduction in the uncertainty associated with simu-

lated soil moisture; however, simulated precipitation also

has uncertainty (though less than a secondary variable like

soil moisture). As a way forward, it should be noted that

this study is carried out with CORDEX simulations driven



Figure 10 | Sub-basinwise percent time under extreme drought conditions across India for the SSMI predicted by model 2 using the SPEI and validation scheme II.
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ison Project Phase 5 (CMIP5). With the availability of

Coupled Model Intercomparison Project Phase 6 (CMIP6),

the analysis can be carried out with improved simulations

from CMIP6.
om http://iwaponline.com/jwcc/article-pdf/12/6/2400/935669/jwc0122400.pdf

 2022
ACKNOWLEDGMENT

This work was partially supported by Department of Science

and Technology, Climate Change Programme (SPLICE),

Government of India (Ref No. DST/CCP/CoE/79/



2419 M. Suman & R. Maity | Basin-wise future agricultural drought status across India Journal of Water and Climate Change | 12.6 | 2021

Downloaded from http
by guest
on 02 February 2022
2017(G)) through a sponsored project. All authors declare

that there is no conflict of interest.
DATA AVAILABILITY STATEMENT

The data used in this study are available from multiple

online repositories. The observed daily precipitation records

can be obtained from IMD (https://www.imdpune.gov.in/

Clim_Pred_LRF_New/Grided_Data_Download.html). Simi-

larly, ERA5 reanalysis data can be downloaded from

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-

datasets/era5. The CORDEX simulations used in this

study were obtained from Earth System Grid Foundation

(https://esgf-node.llnl.gov/projects/esgf-llnl/).
REFERENCES
Annamalai, H., Hafner, J., Sooraj, K. & Pillai, P.  Global
warming shifts the monsoon circulation, drying South Asia.
Journal of Climate 26 (9), 2701–2718.

Bandyopadhyay, A., Bhadra, A., Swarnakar, R., Raghuwanshi, N.
& Singh, R.  Estimation of reference evapotranspiration
using a user-friendly decision support system: DSS_ET.
Agricultural and Forest Meteorology 154, 19–29.

Beguería, S., Vicente-Serrano, S. M., Reig, F. & Latorre, B. 
Standardized precipitation evapotranspiration index (SPEI)
revisited: parameter fitting, evapotranspiration models, tools,
datasets and drought monitoring. International Journal of
Climatology 34 (10), 3001–3023.

Bisht, D. S., Sridhar, V., Mishra, A., Chatterjee, C. &
Raghuwanshi, N. S.  Drought characterization over India
under projected climate scenario. International Journal of
Climatology 39 (4), 1889–1911.

Brans, J.-P., Vincke, P. & Mareschal, B.  How to select and
how to rank projects: the PROMETHEE method. European
Journal of Operational Research 24 (2), 228–238.

Burke, E. J. & Brown, S. J.  Regional drought over the UK and
changes in the future. Journal of Hydrology 394 (3–4),
471–485.

Chen, H. & Sun, J.  Characterizing present and future drought
changes over eastern China. International Journal of
Climatology 37, 138–156.

Christensen, J. H., Boberg, F., Christensen, O. B. & Lucas-Picher,
P.  On the need for bias correction of regional climate
change projections of temperature and precipitation.
Geophysical Research Letters 35 (20), L20709.

Dai, A.  Drought under global warming: a review. Wiley
Interdisciplinary Reviews: Climate Change 2 (1), 45–65.
://iwaponline.com/jwcc/article-pdf/12/6/2400/935669/jwc0122400.pdf
Dai, A.  Increasing drought under global warming in
observations and models. Nature Climate Change 3 (1), 52.

Dai, A., Trenberth, K. E. & Qian, T.  A global dataset of
Palmer Drought Severity Index for 1870–2002: relationship
with soil moisture and effects of surface warming. Journal of
Hydrometeorology 5 (6), 1117–1130.

D’Andrea, F., Drobinski, P. & Stéfanon, M.  European heat
waves: the effect of soil moisture, vegetation, and land use.
Dynamics and Predictability of Large-Scale, High-Impact
Weather and Climate Events 2, p. 185.

Douville, H.  Influence of soil moisture on the Asian and
African monsoons. Part II: interannual variability. Journal of
Climate 15 (7), 701–720.

Douville, H., Colin, J., Krug, E., Cattiaux, J. & Thao, S. 
Midlatitude daily summer temperatures reshaped by soil
moisture under climate change. Geophysical Research Letters
43 (2), 812–818.

Elía, R. d., Laprise, R., Biner, S. & Merleau, J.  Synchrony
between reanalysis-driven RCM simulations and
observations: variation with time scale. Climate Dynamics
48 (7–8), 2597–2610.

Feng, S., Trnka, M., Hayes, M. & Zhang, Y.  Why do different
drought indices show distinct future drought risk outcomes in
the US Great Plains? Journal of Climate 30 (1), 265–278.

Field, C. B., Barros, V., Stocker, T. F. & Dahe, Q.  Managing
the Risks of Extreme Events and Disasters to Advance
Climate Change Adaptation: Special Report of the
Intergovernmental Panel on Climate Change. Cambridge
University Press.

Fowler, H., Ekström, M., Blenkinsop, S. & Smith, A. 
Estimating change in extreme European precipitation using a
multimodel ensemble. Journal of Geophysical Research:
Atmospheres 112, D18.

Gerken, T., Bromley, G. T., Ruddell, B. L., Williams, S. & Stoy,
P. C.  Convective suppression before and during the
United States Northern Great Plains flash drought of 2017.
Hydrology and Earth System Sciences 22 (8), 4155–4163.

Ghorbani, M. A., Kazempour, R., Chau, K. W., Shamshirband, S.
& Taherei Ghazvinei, P.  Forecasting pan evaporation
with an integrated Artificial Neural Network Quantum-
behaved Particle Swarm Optimization model: a case study in
Talesh, Northern Iran. Engineering Applications of
Computational Fluid Mechanics 12 (1), 724–737.

Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M. &
Seneviratne, S. I.  Global assessment of trends in wetting
and drying over land. Nature Geoscience 7 (10), 716–721.

Hargreaves, G. H.  Defining and using reference
evapotranspiration. Journal of Irrigation and Drainage
Engineering 120 (6), 1132–1139.

Hernandez, E. A. & Uddameri, V.  Standardized precipitation
evaporation index (SPEI)-based drought assessment in semi-
arid south Texas. Environmental Earth Sciences 71 (6),
2491–2501.

Hersbach, H.  The ERA5 atmospheric reanalysis. AGU Fall
Meeting Abstracts, NG33D-01.

https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html
https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html
http://dx.doi.org/https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
http://dx.doi.org/https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://esgf-node.llnl.gov/projects/esgf-llnl/
http://dx.doi.org/10.1175/JCLI-D-12-00208.1
http://dx.doi.org/10.1175/JCLI-D-12-00208.1
http://dx.doi.org/10.1016/j.agrformet.2011.10.013
http://dx.doi.org/10.1016/j.agrformet.2011.10.013
http://dx.doi.org/10.1002/joc.3887
http://dx.doi.org/10.1002/joc.3887
http://dx.doi.org/10.1002/joc.3887
http://dx.doi.org/10.1002/joc.5922
http://dx.doi.org/10.1002/joc.5922
http://dx.doi.org/10.1016/0377-2217(86)90044-5
http://dx.doi.org/10.1016/0377-2217(86)90044-5
http://dx.doi.org/10.1016/j.jhydrol.2010.10.003
http://dx.doi.org/10.1016/j.jhydrol.2010.10.003
http://dx.doi.org/10.1002/joc.4987
http://dx.doi.org/10.1002/joc.4987
http://dx.doi.org/10.1029/2008GL035694
http://dx.doi.org/10.1029/2008GL035694
http://dx.doi.org/10.1038/nclimate1633
http://dx.doi.org/10.1038/nclimate1633
http://dx.doi.org/10.1175/JHM-386.1
http://dx.doi.org/10.1175/JHM-386.1
http://dx.doi.org/10.1175/JHM-386.1
http://dx.doi.org/10.1175/1520-0442(2002)015%3C0701:IOSMOT%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(2002)015%3C0701:IOSMOT%3E2.0.CO;2
http://dx.doi.org/10.1002/2015GL066222
http://dx.doi.org/10.1002/2015GL066222
http://dx.doi.org/10.1007/s00382-016-3226-0
http://dx.doi.org/10.1007/s00382-016-3226-0
http://dx.doi.org/10.1007/s00382-016-3226-0
http://dx.doi.org/10.1175/JCLI-D-15-0590.1
http://dx.doi.org/10.1175/JCLI-D-15-0590.1
http://dx.doi.org/10.1175/JCLI-D-15-0590.1
http://dx.doi.org/10.1029/2007JD008619
http://dx.doi.org/10.1029/2007JD008619
http://dx.doi.org/10.5194/hess-22-4155-2018
http://dx.doi.org/10.5194/hess-22-4155-2018
http://dx.doi.org/10.1080/19942060.2018.1517052
http://dx.doi.org/10.1080/19942060.2018.1517052
http://dx.doi.org/10.1080/19942060.2018.1517052
http://dx.doi.org/10.1080/19942060.2018.1517052
http://dx.doi.org/10.1038/ngeo2247
http://dx.doi.org/10.1038/ngeo2247
http://dx.doi.org/10.1061/(ASCE)0733-9437(1994)120:6(1132)
http://dx.doi.org/10.1061/(ASCE)0733-9437(1994)120:6(1132)
http://dx.doi.org/10.1007/s12665-013-2897-7
http://dx.doi.org/10.1007/s12665-013-2897-7
http://dx.doi.org/10.1007/s12665-013-2897-7


2420 M. Suman & R. Maity | Basin-wise future agricultural drought status across India Journal of Water and Climate Change | 12.6 | 2021

Downloaded fr
by guest
on 02 February
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L.,
Yamazaki, D., Watanabe, S., Kim, H. & Kanae, S. 
Global flood risk under climate change. Nature Climate
Change 3 (9), 816.

Kang, H. & Sridhar, V.  Combined statistical and spatially
distributed hydrological model for evaluating future drought
indices in Virginia. Journal of Hydrology: Regional Studies
12, 253–272.

Krause, P., Boyle, D. & Bäse, F.  Comparison of different
efficiency criteria for hydrological model assessment.
Advances in Geosciences 5, 89–97.

Kumar, D. N.  Multicriterion Analysis in Engineering and
Management. PHI Learning Pvt. Ltd.

Lauer, A., Eyring, V., Righi, M., Buchwitz, M., Defourny, P.,
Evaldsson, M., Friedlingstein, P., de Jeu, R., de Leeuw, G.,
Loew, A. & Merchant, C. J.  Benchmarking CMIP5
models with a subset of ESA CCI Phase 2 data using the
ESMValTool. Remote Sensing of Environment 203, 9–39.

Liu, Z., Wang, Y., Shao, M., Jia, X. & Li, X.  Spatiotemporal
analysis of multiscalar drought characteristics across the
Loess Plateau of China. Journal of Hydrology 534, 281–299.

Maity, R., Aggarwal, A. & Chanda, K. a Do CMIP5 models
hint at a warmer and wetter India in the 21st century?
Journal of Water and Climate Change 7 (2), 280–295.

Maity, R., Suman, M. & Verma, N. K. b Drought prediction
using a wavelet based approach to model the temporal
consequences of different types of droughts. Journal of
Hydrology 539, 417–428.

Maity, R., Suman, M., Laux, P. & Kunstmann, H.  Bias
correction of zero-inflated RCM precipitation fields: a
copula-based scheme for both mean and extreme conditions.
Journal of Hydrometeorology 20 (4), 595–611.

Mallya, G., Mishra, V., Niyogi, D., Tripathi, S. & Govindaraju, R. S.
 Trends and variability of droughts over the Indian
monsoon region. Weather and Climate Extremes 12, 43–68.

Maraun, D., Shepherd, T. G., Widmann, M., Zappa, G., Walton,
D., Gutiérrez, J. M., Hagemann, S., Richter, I., Soares, P. M.,
Hall, A. & Mearns, O. L.  Towards process-informed bias
correction of climate change simulations. Nature Climate
Change 7 (11), 764.

Ministry of Finance, India  Economic Survey 2017-18. Tech.
Rep. GOI. Available from: http://mofapp.nic.in:8080/
economicsurvey/.

Mishra, A. & Singh, V. P.  Analysis of drought severity-area-
frequency curves using a general circulation model and
scenario uncertainty. Journal of Geophysical Research:
Atmospheres 114, D6.

Mishra, V., Shah, R. & Thrasher, B.  Soil moisture droughts
under the retrospective and projected climate in India.
Journal of Hydrometeorology 15 (6), 2267–2292.

Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose,
S. K., Van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma,
M., Kram, T. & Meehl, G. A.  The next generation of
scenarios for climate change research and assessment.
Nature 463 (7282), 747.
om http://iwaponline.com/jwcc/article-pdf/12/6/2400/935669/jwc0122400.pdf

 2022
Naresh, K. M., Murthy, C., Sesha Sai, M. & Roy, P. 
Spatiotemporal analysis of meteorological drought variability
in the Indian region using standardized precipitation index.
Meteorological Applications 19 (2), 256–264.

Oguntunde, P. G., Abiodun, B. J. & Lischeid, G.  Impacts of
climate change on hydro-meteorological drought over the
Volta Basin, West Africa. Global and Planetary Change 155,
121–132.

Ojha, R., Kumar, D. N., Sharma, A. & Mehrotra, R.  Assessing
severe drought and wet events over India in a future climate
using a nested bias-correction approach. Journal of
Hydrologic Engineering 18 (7), 760–772.

Pai, D., Sridhar, L., Guhathakurta, P. & Hatwar, H.  District-
wide drought climatology of the southwest monsoon season
over India based on standardized precipitation index (SPI).
Natural Hazards 59 (3), 1797–1813.

Pai, D., Sridhar, L., Rajeevan, M., Sreejith, O., Satbhai, N. &
Mukhopadhyay, B.  Development of a new high spatial
resolution (0.25× 0.25) long period (1901–2010) daily gridded
rainfall data set over India and its comparison with existing
data sets over the region. Mausam 65 (1), 1–18.

Pomerol, J.-C. & Barba-Romero, S.  Multicriterion Decision in
Management: Principles and Practice, Vol. 25. Springer
Science & Business Media, New York.

Raju, K. S. & Kumar, D. N.  Ranking of global climate models
for India using multicriterion analysis. Climate Research
60 (2), 103–117.

Raju, K. S., Sonali, P. & Kumar, D. N.  Ranking of CMIP5-
based global climate models for India using compromise
programming. Theoretical and Applied Climatology
128 (3–4), 563–574.

Schmidli, J., Frei, C. & Vidale, P. L.  Downscaling from GCM
precipitation: a benchmark for dynamical and statistical
downscaling methods. International Journal of Climatology
26 (5), 679–689.

Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M.,
Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K.,
Rahimi, M. & Reichstein, M.  Changes in climate
extremes and their impacts on the natural physical
environment. In: Managing the Risks of Extreme Events
and Disasters to Advance Climate Change Adaptation:
Special Report of the Intergovernmental Panel on Climate
Change. Cambridge University Press, New York,,
pp. 109–230.

Shamshirband, S., Hashemi, S., Salimi, H., Samadianfard, S.,
Asadi, E., Shadkani, S., Kargar, K., Mosavi, A., Nabipour, N.
& Chau, K. W.  Predicting standardized streamflow
index for hydrological drought using machine learning
models. Engineering Applications of Computational Fluid
Mechanics 14 (1), 339–350.

Sharma, S. & Mujumdar, P.  Increasing frequency and spatial
extent of concurrent meteorological droughts and heatwaves
in India. Scientific Reports 7 (1), 15582.

Sharma, T., Vittal, H., Chhabra, S., Salvi, K., Ghosh, S. &
Karmakar, S.  Understanding the cascade of GCM and

http://dx.doi.org/10.1038/nclimate1911
http://dx.doi.org/10.5194/adgeo-5-89-2005
http://dx.doi.org/10.5194/adgeo-5-89-2005
http://dx.doi.org/10.1016/j.rse.2017.01.007
http://dx.doi.org/10.1016/j.rse.2017.01.007
http://dx.doi.org/10.1016/j.rse.2017.01.007
http://dx.doi.org/10.1016/j.jhydrol.2016.01.003
http://dx.doi.org/10.1016/j.jhydrol.2016.01.003
http://dx.doi.org/10.1016/j.jhydrol.2016.01.003
http://dx.doi.org/10.2166/wcc.2015.126
http://dx.doi.org/10.2166/wcc.2015.126
http://dx.doi.org/10.1016/j.jhydrol.2016.05.042
http://dx.doi.org/10.1016/j.jhydrol.2016.05.042
http://dx.doi.org/10.1016/j.jhydrol.2016.05.042
http://dx.doi.org/10.1175/JHM-D-18-0126.1
http://dx.doi.org/10.1175/JHM-D-18-0126.1
http://dx.doi.org/10.1175/JHM-D-18-0126.1
http://dx.doi.org/10.1016/j.wace.2016.01.002
http://dx.doi.org/10.1016/j.wace.2016.01.002
http://dx.doi.org/10.1038/nclimate3418
http://dx.doi.org/10.1038/nclimate3418
http://mofapp.nic.in:8080/economicsurvey/
http://mofapp.nic.in:8080/economicsurvey/
http://mofapp.nic.in:8080/economicsurvey/
http://dx.doi.org/10.1029/2008JD010986
http://dx.doi.org/10.1029/2008JD010986
http://dx.doi.org/10.1029/2008JD010986
http://dx.doi.org/10.1175/JHM-D-13-0177.1
http://dx.doi.org/10.1175/JHM-D-13-0177.1
http://dx.doi.org/10.1038/nature08823
http://dx.doi.org/10.1038/nature08823
http://dx.doi.org/10.1002/met.277
http://dx.doi.org/10.1002/met.277
http://dx.doi.org/10.1016/j.gloplacha.2017.07.003
http://dx.doi.org/10.1016/j.gloplacha.2017.07.003
http://dx.doi.org/10.1016/j.gloplacha.2017.07.003
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000585
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000585
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000585
http://dx.doi.org/10.1007/s11069-011-9867-8
http://dx.doi.org/10.1007/s11069-011-9867-8
http://dx.doi.org/10.1007/s11069-011-9867-8
http://dx.doi.org/10.3354/cr01222
http://dx.doi.org/10.3354/cr01222
http://dx.doi.org/10.1007/s00704-015-1721-6
http://dx.doi.org/10.1007/s00704-015-1721-6
http://dx.doi.org/10.1007/s00704-015-1721-6
http://dx.doi.org/10.1002/joc.1287
http://dx.doi.org/10.1002/joc.1287
http://dx.doi.org/10.1002/joc.1287
http://dx.doi.org/10.1080/19942060.2020.1715844
http://dx.doi.org/10.1080/19942060.2020.1715844
http://dx.doi.org/10.1080/19942060.2020.1715844
http://dx.doi.org/10.1038/s41598-017-15896-3
http://dx.doi.org/10.1038/s41598-017-15896-3
http://dx.doi.org/10.1038/s41598-017-15896-3
http://dx.doi.org/10.1002/joc.5361


2421 M. Suman & R. Maity | Basin-wise future agricultural drought status across India Journal of Water and Climate Change | 12.6 | 2021

Downloaded from http
by guest
on 02 February 2022
downscaling uncertainties in hydro-climatic projections over
India. International Journal of Climatology 38, e178–e190.

Sheffield, J. & Wood, E. F.  Projected changes in drought
occurrence under future global warming from multi-model,
multi-scenario, IPCC AR4 simulations. Climate Dynamics
31 (1), 79–105.

Sheffield, J., Wood, E. F. & Roderick, M. L.  Little change in
global drought over the past 60 years. Nature 491 (7424),
435–438.

Spinoni, J., Vogt, J. V., Naumann, G., Barbosa, P. & Dosio, A. 
Will drought events become more frequent and severe in
Europe? International Journal of Climatology 38 (4),
1718–1736.

Stevens, B. & Bony, S.  What are climate models missing?
Science 340 (6136), 1053–1054.

Stocker, T. F., Qin, D., Plattner, G., Tignor, M., Allen, S.,
Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P. 
Climate change 2013: the physical science basis. In
Working Group I Contribution to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change
2013. Tech. Rep. Intergovernmental Panel on Climate
Change.

Suman, M. & Maity, R.  Foreseeing the agricultural and
hydrological drought knowing the ongoing meteorological
scenarios through wavelet analysis. In: Proceedings of the
International Conference on Hydraulics, Water Resources,
Coastal & Environmental Engineering. The Indian Society
for Hydraulics, Pune, India.

Suman, M. & Maity, R.  Southward shift of precipitation
extremes over south Asia: evidences from CORDEX data.
Scientific Reports 10 (1), 1–11. doi:10.1038/s41598-020-
63571-x.

Taylor, K. E.  Summarizing multiple aspects of model
performance in a single diagram. Journal of Geophysical
Research: Atmospheres 106 (D7), 7183–7192.

Teutschbein, C. & Seibert, J.  Regional climate models for
hydrological impact studies at the catchment scale: a review
of recent modeling strategies. Geography Compass 4 (7),
834–860.

Thomas, T., Nayak, P. & Ghosh, N. C.  Spatiotemporal
analysis of drought characteristics in the Bundelkhand region
://iwaponline.com/jwcc/article-pdf/12/6/2400/935669/jwc0122400.pdf
of central India using the standardized precipitation index.
Journal of Hydrologic Engineering 20 (11), 05015004.

Thrasher, B., Maurer, E. P., Duffy, P. B. & McKellar, C.  Bias
Correcting Climate Model Simulated Daily Temperature
Extremes with Quantile Mapping. Tech. Rep. Copernicus
Publications on behalf of the European Geosciences Union.

Trenberth, K. E.  Changes in precipitation with climate
change. Climate Research 47 (1/2), 123–138.

Trenberth, K. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. 
The changing character of precipitation. Bulletin of the
American Meteorological Society 84 (9), 1205–1217.

Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I.  A
multiscalar drought index sensitive to global warming: the
standardized precipitation evapotranspiration index. Journal
of Climate 23 (7), 1696–1718.

Vicente-Serrano, S. M., Lopez-Moreno, J.-I., Beguería, S., Lorenzo-
Lacruz, J., Sanchez-Lorenzo, A., García-Ruiz, J. M., Azorin-
Molina, C., Morán-Tejeda, E., Revuelto, J., Trigo, R. &
Coelho, F.  Evidence of increasing drought severity
caused by temperature rise in southern Europe.
Environmental Research Letters 9 (4), 044001.

Wang, H., Chen, Y., Pan, Y. & Li, W.  Spatial and temporal
variability of drought in the arid region of China and its
relationships to teleconnection indices. Journal of Hydrology
523, 283–296.

Willmott, C. J., Robeson, S. M. & Matsuura, K.  A refined
index of model performance. International Journal of
Climatology 32 (13), 2088–2094.

Xu, K., Yang, D., Yang, H., Li, Z., Qin, Y. & Shen, Y.  Spatio-
temporal variation of drought in China during 1961–2012: a
climatic perspective. Journal of Hydrology 526, 253–264.

Yuan, X., Wang, L., Wu, P., Ji, P., Sheffield, J. & Zhang, M. 
Anthropogenic shift towards higher risk of flash drought over
China. Nature Communications 10 (1), 1–8.

Zhang, X., Obringer, R., Wei, C., Chen, N. & Niyogi, D. 
Droughts in India from 1981 to 2013 and implications to
wheat production. Scientific Reports 7, 44552.

Zhao, C., Huang, Y., Li, Z. & Chen, M.  Drought monitoring
of southwestern China using insufficient GRACE data for the
long-term mean reference frame under global change.
Journal of Climate 31 (17), 6897–6911.
First received 31 December 2020; accepted in revised form 26 February 2021. Available online 18 March 2021

http://dx.doi.org/10.1002/joc.5361
http://dx.doi.org/10.1002/joc.5361
http://dx.doi.org/10.1007/s00382-007-0340-z
http://dx.doi.org/10.1007/s00382-007-0340-z
http://dx.doi.org/10.1007/s00382-007-0340-z
http://dx.doi.org/10.1038/nature11575
http://dx.doi.org/10.1038/nature11575
http://dx.doi.org/10.1002/joc.5291
http://dx.doi.org/10.1002/joc.5291
http://dx.doi.org/10.1126/science.1237554
http://dx.doi.org/10.1038/s41598-019-56847-4
http://dx.doi.org/10.1038/s41598-019-56847-4
http://dx.doi.org/10.1029/2000JD900719
http://dx.doi.org/10.1029/2000JD900719
http://dx.doi.org/10.1111/j.1749-8198.2010.00357.x
http://dx.doi.org/10.1111/j.1749-8198.2010.00357.x
http://dx.doi.org/10.1111/j.1749-8198.2010.00357.x
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0001189
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0001189
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0001189
http://dx.doi.org/10.3354/cr00953
http://dx.doi.org/10.3354/cr00953
http://dx.doi.org/10.1175/BAMS-84-9-1205
http://dx.doi.org/10.1175/2009JCLI2909.1
http://dx.doi.org/10.1175/2009JCLI2909.1
http://dx.doi.org/10.1175/2009JCLI2909.1
http://dx.doi.org/10.1088/1748-9326/9/4/044001
http://dx.doi.org/10.1088/1748-9326/9/4/044001
http://dx.doi.org/10.1016/j.jhydrol.2015.01.055
http://dx.doi.org/10.1016/j.jhydrol.2015.01.055
http://dx.doi.org/10.1016/j.jhydrol.2015.01.055
http://dx.doi.org/10.1002/joc.2419
http://dx.doi.org/10.1002/joc.2419
http://dx.doi.org/10.1016/j.jhydrol.2014.09.047
http://dx.doi.org/10.1016/j.jhydrol.2014.09.047
http://dx.doi.org/10.1016/j.jhydrol.2014.09.047
http://dx.doi.org/10.1038/s41467-018-07882-8
http://dx.doi.org/10.1038/s41467-018-07882-8
http://dx.doi.org/10.1038/srep44552
http://dx.doi.org/10.1038/srep44552
http://dx.doi.org/10.1175/JCLI-D-17-0869.1
http://dx.doi.org/10.1175/JCLI-D-17-0869.1
http://dx.doi.org/10.1175/JCLI-D-17-0869.1

	Assessment of basin-wise future agricultural drought status across India under changing climate
	INTRODUCTION
	STUDY AREA AND DATA USED
	METHODOLOGY
	Bias-correction of CORDEX simulation outputs
	Selection of the best performing CORDEX model
	Compromise programming
	Preference Ranking Organization METHod of Enrichment Evaluation-2
	Entropy method for weighting performance statistics

	Drought characterization using bias-corrected CORDEX output
	Modeling of the temporal consequences of meteorological drought

	RESULTS AND DISCUSSION
	Bias-correction of CORDEX simulation and their skill-based selection
	Modeling of the temporal consequence of drought
	Analysis of future agricultural drought

	CONCLUSIONS
	This work was partially supported by Department of Science and Technology, Climate Change Programme (SPLICE), Government of India (Ref No. DST/CCP/CoE/79/2017(G)) through a sponsored project. All authors declare that there is no conflict of interest.
	DATA AVAILABILITY STATEMENT
	REFERENCES


