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Abstract
The present study aims to explore and compare the potential of different Artificial Intelligence-based Soft Computing

(AISC) techniques to prepare surface Soil Moisture Content (SMC) map using fine-resolution (* 5 m), quad-polarized

Synthetic Aperture Radar (SAR) data obtained from Radar Imaging Satellite 1 (RISAT1). Potential of three different AISC

techniques, i.e. Support Vector Machine (SVM), Random Forest (RF) and Genetic Programming (GP), is explored. The

estimated surface SMC is validated with the field soil moisture values in both bare and vegetated lands (\ 30 cm height).

Different techniques have their own merits and demerits; however, we recommend GP to be most useful due to its other

features. For example, GP provides the mathematical relationship, importance and sensitivity of each individual input to

the surface SMC. This helps us to quantify the contribution of quad-polarized backscattering coefficients and soil texture

information. It is noticed that the use of only SAR data without soil texture information may be acceptable with reasonable

accuracy with an enormous benefit of its applicability to the locations without soil texture information. Using this, an

exemplary fine-resolution (* 5 m) SMC map is developed. Such high-resolution maps for large spatial extent are expected

to be highly useful in many applications.

Keywords Soil moisture � Remote sensing � Synthetic Aperture Radar (SAR) � Quad-polarized data � Radar Imaging

Satellite 1 � Artificial Intelligence-based Soft Computing (AISC) techniques

Introduction

Artificial Intelligence-based Soft Computing (AISC) tech-

niques are potential due to their feasibility to address the

problems having significant number of observation data

without a complete knowledge of theoretical background.

In AISC techniques, a comprehensive training data set of

examples is constructed covering as much of the system

parameter space as possible. Typically, a random subset of

the data is put aside for a completely independent valida-

tion. These AISC techniques have shown promise in han-

dling large amount of deviation and noise hidden in data

sets. Utilizing such properties of AISC technique-based

approaches, it may be potential to use in retrieving surface

SMC from backscattering data for different Land Use Land

Cover (LULC) and surface roughness conditions (Paloscia

et al. 2013) and studying the physical processes influencing

the SMC generally represented as nonlinear functions

(Coleman and Niemann 2012; Espinoza-Dávalos et al.

2016) to improve the retrieval algorithms.

There is a plethora of space-borne active and passive

microwave sensors which have been deployed to provide

useful global-scale surface soil moisture estimates. Exam-

ples include Tropical Rainfall Measuring Mission (TMI),

the Scanning Multichannel Microwave Radiometer

(SMMR), the Special Sensor Microwave/Imager (SSM/I),

the WindSAT mission, the Advanced Microwave Scanning

Radiometer–Earth Observing System (AMSR-E), the
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Advanced Microwave Scanning Radiometer2 (AMSR2)

mission, the Soil Moisture Ocean Salinity (SMOS) mission

and the Soil Moisture Active Passive (SMAP) mission

(Karthikeyan et al. 2017). The passive and active micro-

wave soil moisture products have been merged under the

European Space Agency (ESA) Climate Change Initiative

(CCI) program to produce a long-term global-scale SMC

record (Liu et al. 2012). However, these soil moisture

missions provide data at very low spatial resolution (* km

range) due to sensor limitations. Additionally, most of the

retrieval algorithms are influenced by the instrument

characteristics; sensor frequency and spatial heterogeneity

of the SMC at sub-satellite grid resolution which are poorly

characterized.

Indian Space Research Organization (ISRO) has laun-

ched Radar Imaging Satellite 1 (RISAT1), on April 26,

2012. It uses a multi-mode Synthetic Aperture Radar

(SAR) at C-band (5.35 GHz). Its spatial and temporal

resolutions are 3–50 m and 25 days, respectively. The

quad-polarized backscattering coefficients are acquired

from RISAT1 (henceforth RISAT1 data). The polarizations

of incident and backscattered radar signal are either hori-

zontal (H) or vertical (V). The outcomes are co-polarized

(HH or VV) and cross-polarized (HV or VH) backscatter-

ing coefficients. It is indeed true that there could be certain

limitations while producing very high resolution SMC

maps, and it may require high computing power along with

advanced techniques. Hence, based on the problem in hand,

the study attempts to explore the potential of AISC tech-

niques to develop high-resolution soil moisture maps uti-

lizing the available RISAT1 data. Also, in our knowledge,

only a few of the existing missions produce a soil moisture

map of spatial resolution in the range of a few metres using

all four polarizations, i.e. HH, HV, VH and VV of SAR

data (Pal et al. 2017). However, exploring the potential of

the AISC techniques to develop a fine-resolution SMC map

using the quad-polarized SAR data is still exceptional and

is the focus of the present study.

The Artificial Neural Network (ANN), Genetic Pro-

gramming (GP) and Support Vector Machines (SVMs) are

some of the AISC techniques that are extensively used in

different fields of hydrology (Unnikrishnan and Joth-

iprakash 2017; Li et al. 2018). The SVM is applied for

predicting soil moisture from SAR data showing a rea-

sonably good match with the observed soil moisture data

(Gill et al. 2006; Pasolli et al. 2015). The SVM model was

also found to perform better than ANN (Ahmad et al.

2010). Despite the good performances of SVM and many

of the other AISC techniques, they are considered as black-

box models, i.e. they are not capable of revealing physical

processes. However, GP can be considered as a relatively

better method to deal with this issue. It is due to the feature

of GP that they can produce mathematical relationships

between inputs and outputs without a need of pre-defined

form of any relationship (Maity and Kashid 2011; Alavi

and Gandomi 2011). Application of GP technique in soil

moisture estimation from SAR data and meteorological

data was found potential in earlier studies (Makkeasorn

et al. 2009; Elshorbagy and El-Baroudy 2009). However, it

did not provide the prediction equations which are con-

sidered as the principal advantage of GP over other AISC

techniques in the current study.

Random Forest (RF) is a nonlinear modelling tool that

provides estimates regarding the hierarchy of variables in

the classification, and thus is able to estimate contribution

of each index to the total risk (Breiman 2001). The RF

algorithm has been applied to different fields of studies. A

number of theoretical and empirical studies have detailed

many advantages of RF, including high forecast accuracy,

acceptable tolerance to outliers and noise, and easy

avoidance of overfitting problems. Based on this body of

knowledge, RF may be useful for surface SMC retrieval

from SAR data and able to address the multi-variate and

nonlinear issues.

The above discussion on the utility of different AISC

techniques motivates the present study to explore their

potential in preparing large-scale fine-resolution surface

SMC map without the priori information of on-ground soil

information (e.g. soil texture and soil roughness) and uti-

lizing only the quad-polarized SAR data. The above dis-

cussion also explains that SVM and GP have been already

used in this field of study with reasonably good perfor-

mances. However, it is also discussed that the accuracies of

these models highly depend on more number of supple-

mentary information. Though the AISC techniques are

generally black-box models, GP can provide the predictive

equations which can be advantageous to explore the pre-

dictor–predictand relationship. In this study, the predictive

equations obtained from GP are explored and analysed.

Also, the sensitivity analysis and evaluation of importance

(discussed in subsequent sections in detail) of input vari-

ables allow the study to quantify the contribution of each

input in SMC estimation from SAR data. Finally, keeping

in mind the importance of soil moisture maps, having

information at a very fine resolution in climate modelling

as well as hydrological and agricultural modelling, the

study aims to prepare a SMC map for the study area using

the best-performing AISC technique. Therefore, in a nut-

shell, the objective of this study is to explore the efficacies

of different AISC techniques, namely SVM, RF and GP for

the estimation of surface SMC using quad-polarized SAR

data, and to develop a SMC map of the study area with the

best-performing technique. The target is to avoid the use of

ancillary information (e.g. soil texture and roughness) as

much as possible. Some information might be unavoidable

and some may be preferable. It also aims to explore the
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mathematical relationship to associate as well as quantify

the contribution of the input variables to the target variable

which is one of the principal gaps in the previous studies.

Study Area

The study area of the present study is defined by bound-

aries of the satellite images acquired. The RISAT1 data

are obtained for the study area on 25 and 27 October

2014. The image of 25th October is enclosed by the fol-

lowing four coordinates, 22�1050.3700N 9 87�13051.2600E;
22�406.110400N 9 87�2609.5700E; 22�21021.9400N 9 87�22
30.6200E; 22�1906.7700N 9 87�10014.0600E, and the area is

calculated to be 21.5 km 9 32.6 km. Similarly, the image

of 27th October is enclosed by the following four coordi-

nates, 22�4016.8400N 9 87�29045.1300E; 22�1026.389200N 9

87�1602.8600E; 22�18039.0400N 9 87�11053.3500E; 22�21030.
236400N 9 87�25039.3900E and the area is calculated to be

24.1 km 9 32.68 km.

The collective areas within the boundaries of the images

for both the days predominantly consist of agricultural

lands with a few patches of establishments and forested

areas. The climatic condition of the study area is tropical

where the average temperatures in summer and winter are

30 �C and 22 �C, respectively. It experiences an average

rainfall of 1140 mm during the monsoon. Figure 1 shows

the study area with the ground sampling points.

Data

Satellite Data

Two Single-Look Complex (SLC) satellite images

(RISAT1 data) are procured for the 2 days, i.e. 25 October

2014 and 27 October 2014, in Fine Resolution Stripmap

Mode 2 (FRS-2) mode from National Remote Sensing

Centre (NRSC), Hyderabad, with a resolution of * 20 m.

Table 1 represents the specifications of the procured

satellite images.

For each image, the digital numbers are provided by

NRSC for which the effect of the ‘speckle’ due to multiple

within-pixel scattering objects is removed. The speckle-

filtered digital numbers DNp are converted to backscatter-

ing coefficients expressed in decibel (dB). The conversion

uses the SAR calibration coefficients for each linear

polarization in the equation provided in the RISAT1 data

products by Space Application Centre (SAC) (SAC 2015)

which can be represented by the following form,

r0 ¼ 20 log10 DNp

� �
� KdB þ 10 log10

sin ip

sin ic
; ð1Þ

where r0 is the radar backscatter coefficient in dB, DNp is

the digital number grey-level count for the pixel p, KdB is

the calibration constant, ip is the incidence angle at pixel

position p, ic is the incidence angle at scene centre.

Incidence Angle Normalization

The RISAT1 data correspond to two different incidence

angles for two different dates as shown in Table 1. Since

the backscattering values highly vary with the incidence

angles of the sensor, it is not possible to combine the

backscattering values of the two dates to investigate the

association with the surface SMC. Hence, to study the

sensitivity of these backscattering values for the two dif-

ferent dates to the surface SMC, the measurements should

be normalized to a reference incidence angle. The present

study normalizes the incidence angles of the concerned two

dates to a reference angle of 30� using the library real-

ization prepared by Zribi et al. (2005). The library real-

ization consists of backscattering values and incidence

angles corresponding to a large range of surface roughness

condition. The incidence angles at each pixel are normal-

ized to the reference angle. This method of incidence angle

normalization was successfully used by Pal et al. (2017) to

estimate the probabilistic surface SMC using copula from

SAR data.

Field Data

The soil samples within the top 5 cm of the surface are

collected from 375 monitoring points within the areas of

the acquired images. The ground data are collected from

bare and vegetated lands having \ 30 cm vegetation

height. Out of 375 monitoring points, 320 data points are

from vegetated land areas and rest (55 data points) are from

bareland areas. It is worthwhile to mention two points here.

Firstly, the soil samples are collected within ± 1 h of

satellite visit to the study area (at 5:00 pm IST) in order to

assure the accuracy of the ground data. Almost no changes

in SMC owing to soil humidity change, between time of

satellite passing and the time of soil sample collection, are

assured through collecting the soil sample as close to the

time of satellite passing as possible. Secondly, the soil

samples are collected from only barelands and vegetated

lands having \ 30 cm vegetation height since the pene-

tration depth of RISAT1 is not more than 30 cm of vege-

tation height. It restricts the model to be applied only for

less than 30 cm vegetation height. Though it is not possible

to cover the entire image area (* 32 km 9 24 km) within

a short period of time of satellite passing over the region,

the selection of sampling points ensures a wide range of

soil moisture content, soil roughness and soil texture.
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These ranges are expected to well represent the entire study

region. The volumetric SMC and the soil texture infor-

mation of the collected soil samples are analysed in the

laboratory using Gravimetric Method (IS:2720, Part-2,

1973). A brief description of the experimental results is

given in Table 2 where the soil texture of the study area is

observed to be mainly sandy and silty.

The inability of plants to excerpt water below wilting

point is an important concern in agricultural applications as

well as the hydrological modelling. The present study deals

with the SMC extracted by the plants above wilting point

since it provides better correlation coefficient and lesser

error (Pal et al. 2017). The water that is essentially avail-

able to the plant is the difference between the observed

SMC and the wilting point, i.e. the moisture at 15 bar

pressure. The detail description of computing the SMC at

15 bar can be found in Pal et al. (2017). Thus, the SMC

mentioned in this paper refers to the SMC above the

wilting point or available SMC hereafter.

Fig. 1 The study area showing two images and sampling point distribution

Table 1 The description of incidence angles and scene centres of

satellite images for the two dates

Date of passing

(RISAT1)

Incidence

angle

Scene centre

Latitude Longitude

October 25, 2014 14.25039� 22.194216 �N 87.307328 �E
October 27, 2014 27.03315� 22.190772 �N 87.345272 �E
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Methodology

The study has explored the data-driven AISC techniques,

namely SVM, RF and GP to estimate the surface SMC

from RISAT1 data. In this study, the individual perfor-

mances of the three approaches have been investigated

with different sets of input combinations using backscat-

tering coefficients (HH, VV, HV and VH) and the soil

texture information, i.e. the experimental values of per-

centages of sand, silt and clay. To study the effect of

vegetation on SAR data-based surface SMC estimation and

to consider the effect of all backscattering coefficients, the

Radar Vegetation Index (RVI) is used as one of the inputs.

The RVI is expressed as the following (Kim et al. 2012),

RVI ¼ 8rHV
rHH þ rVV þ 2rHV

ð2Þ

The range of RVI is 0 to 1. For bareland, the value of

RVI is near 0 and it increases with the crop growth (Kim

et al. 2012). Table 3 illustrates the different cases using

various input combinations used for the three approaches.

The following section describes the mathematical

background of the three approaches. The SVM and RF are

applied through available packages of R-studio. The GP is

run using a software ‘Eureqa’ version 0.98 (Web source:

https://www.eureqa.com/). The software uses the GP-based

symbolic regression to provide a mathematical relationship

between the input and output variables.

Support Vector Machine (SVM)

In SVM, the ultimate goal is to find a functional depen-

dency, f xð Þ between independent variables x1; x2; . . .xLf g
obtained from x 2 RK . In the present study, the indepen-

dent variables are the eight different input variables, i.e.

HH, HV, VH, VV, RVI, %sand, %silt and %clay. The

output (dependent which is the volumetric SMC in the

present study) y1; y2; . . .yLf g is obtained from y 2 R

selected from a set of L independent and identically dis-

tributed (i.i.d) observations. The functional dependency is

given by f xð Þ ¼ w; xh i þ b, where w; xh i denotes the dot
product of a weighting vector w and input vector x; and b is

the bias. For this purpose, the original input domain is

mapped onto a higher dimensionality space, where the

function underlying the data is assumed to be linear. The

optimal linear function in the transformed space is identi-

fied by solving an optimization problem, which is the

combination of the training error (empirical risk) and the

model complexity (confidence term) through a regulariza-

tion parameter C:

Minimize
1

2
wk k2þC

XL

i¼1

ni þ n�i
� �

Subject to

Yi �
PK

j¼1

PL

i¼1

wjxji � b� e þ ni;

PK

j¼1

PL

i¼1

wjxji � yi � e þ n�i ;

ni; n
�
i � 0;

8
>>>>>><

>>>>>>:

ð3Þ

where e is the Vapnik’s insensitive loss function; C is the

capacity parameter cost; and ni and n�i are called the slack

variables which measure the distance (in the target space)

of the training samples lying outside the e-insensitive tube

from the tube itself (Han et al. 2007).

In a nutshell, the phases involved in SVM modelling can

be described as: (1) selection of an appropriate kernel

function and kernel parameter (kernel width—c), (2) des-
ignating the ‘e’ insensitive parameter and (3) defining the

capacity parameter cost, ‘C’.

Table 2 The volumetric SMC and soil texture description obtained from the experimental results of the study area for bare and vegetated land

areas

Type of LULC Sampling points v/v SMC range %Gravel %Sand %Silt %Clay

Bare 55 1.48–39.19 0–20.34 37.16–67.07 17.54–53.12 3.87–15.74

Vegetation 320 2.14–73.59 0–20.34 7.62–73.01 17.54–65.74 0.46–26.61

Table 3 Different input combinations for each model (refered as

different cases in the text)

Cases Input combination

1 HH, HV, VH, VV, sand, silt, clay

2 HV, VH, VV, sand, silt, clay

3 HH, VV, HV, sand, silt, clay

4 HH, VH, HV, sand, silt, clay

5 HH, VH, VV, sand, silt, clay

6 HH, HV, VH, VV, silt, clay

7 HH, HV, VH, VV, sand, clay

8 HH, HV, VH, VV, sand, silt

9 HH, RVI

10 HH, RVI, sand, silt, clay

11 HH, HV, VH, VV

12 HH

13 HH, sand, silt, clay
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In the present study, the Radial Basis Function (RBF)

kernel is used in the soil moisture estimation from SAR

data which has been proven the best kernel function for

nonlinear regressions (Han et al. 2007) using the ‘R’

package. Mathematically, the RBF can be defined as,

k xi; xð Þ ¼ exp �c x� xik k2
� �

c[ 0 ð4Þ

Genetic Programming (GP)

Genetic Programming (GP) (Koza 1992) attempts to find

some mathematical relationships among the input (the

backscattering coefficients and soil texture information in

this study) and target variables (the surface SMC in the

study). In the GP technique, the model space is constructed

over a defined set of parameters using linear, exponential,

logical, trigonometric and other mathematical operators.

An optimal set of covariates should be provided to the GP

since the dimensionality of the model space increases with

the number of covariates determined. For a specific

objective function, the GP algorithm moves over the model

space, selects a model, and evaluates its parameters by

means of symbolic regression and variable pairing tech-

niques (Schmidt and Lipson 2009; El-Baroudy et al. 2010).

The GP also aims to evaluate the sensitivity of each

input variable on the surface SMC variation. Assume

z ¼ f x; y; . . .ð Þ, the influence metrics of x on z are defined

as the sensitivity and the sensitivity (Sn) is calculated at all

input data points as follows,

Sn ¼ oz

ox

����

���� �
r xð Þ
r zð Þ ; ð5Þ

where oz
ox
is partial derivative of z with respect to x; r xð Þ is

the standard deviation of x in the input data; r zð Þ is the

standard deviation of z; oz
ox

�� �� represents the absolute value of
oz
ox
and oz

ox
is the mean of oz

ox
. Sn may be positive where oz

ox
[ 0

and negative where oz
ox
\0. Positive and negative percent-

ages are defined by the percentage of data points where
oz
ox
[ 0 and oz

ox
\0, respectively (Schmidt and Lipson 2009).

Random Forest (RF)

The RF is an ensemble regression tree method which

constructs each tree using a different bootstrap sample of

the data (Breiman 2001). The decision (classification or

regression) trees are constructed by recursively splitting the

data based on covariates. The observations in a node

become progressively pure (in terms of outcome) as data

move from the root node to terminal nodes. Every terminal

node is summarized by the average outcome value of all

the observations that culminate in there. While the trees are

being constructed in random forest, only random subset of

covariates at each internal node is assessed to reach the best

split. The averaging process of RF enhances the prediction

accuracy over a single tree. Moreover, the method is gen-

erally robust against overfitting (Breiman 2001). It has

three parameters to predefine:

(1) Number of predictor variables in the random subset

at each node, denoted as mtry,

(2) Number of trees to be grown in the forest, denoted as

ntree,

(3) Minimum size of terminal nodes, i.e. the nodesize.

The importance of each input variable in estimating the

target variable can be assessed in RF by Gini impurity

index, which is a standard decision-tree splitting metric

which can be mathematically described as follows (Rut-

kowski et al. 2015),

gðSÞ ¼ 1�
XK

k¼1

pk Sð Þð Þ2; ð6Þ

where g Sð Þ is the impurity measure, S is the set of data

elements where the number of different classes is denoted

as K; and pk Sð Þ is the ratio of number of elements present

in the set and number of elements of the set from the kth

class.

Results and Discussion

The k-fold cross-validation method is used for evaluating

the generalized model performance to an independent data

set and avoiding overfitting. This cross-validation tech-

nique randomly splits a data set into k-separate folds with

equal or almost equal data length, and each fold is in turn

used to test the model developed from the remaining

(k - 1) folds. In our study, the entire data set is split into

three different folds where each fold contains 40 and 200

data points randomly selected from bare and vegetated land

areas, respectively, from the entire pool of 375 data points.

Remaining data points (15 from bareland and 120 from

vegetated land areas) are used for the testing of the models.

The performances of the selected models during the

training and testing periods are evaluated by different

performance metrics, namely Correlation Coefficient (CC),

Refined Degree of Agreement (Dr) and the Root Mean

Square Error (RMSE) for all the 13 cases (Table 3). Ini-

tially, the models have been developed independently for

bare and vegetated land areas for all the 13 cases using

three different AISC methodological approaches. The

independently developed models for each case are applied

to bare and vegetated land areas, and the results are eval-

uated through performances of the models both in the

1676 Journal of the Indian Society of Remote Sensing (October 2019) 47(10):1671–1682

123



training and testing periods. The model performances are

assessed in terms of the mean values of the performance

metrics across the three folds.

Determination of Model Parameters

For the modelling of SVM, the kernel functions or kernel

parameters, namely kernel width (c), insensitive parameter (e)
and capacity parameter cost (C), are selected for bare and

vegetated land areas for each of the 13 cases and three dif-

ferent folds. The SVMmodels are tuned by varying the values

of these three kernel parameters from 0.01 to 1 with 0.05

increments. The best model parameters are selected based on

the minimumMean Squared Error (MSE) values. The values

of these kernel parameters for the three folds of 13 cases for

bare and vegetated land areas are provided in Table S1 and

Table S2, respectively, in supplementary document.

For each case of the bare and vegetated land areas, amodel

is developed by using the GP technique to estimate the sur-

face SMC from the set of input variables. The software

‘Eureqa’ uses the GP-based symbolic regression to provide a

mathematical relationship between the input and output

variables. The approach includes the basic mathematical and

exponential functions in search process and minimizes the

Mean Absolute Error (MAE) to define the objective function

to make the search algorithm to be robust to the outliers

present in the data set. This technique is robust to the mul-

ticollinearity problem. Moreover, the surface SMC is accu-

rately modelled by an optimal number of input variables by

developing parsimonious models. The solutions for the

estimation of surface SMC in terms of the input variables

determined by the Eureqa are given in Table S3 and

Table S4, respectively, in supplementary document for bare

and vegetated land areas, respectively. Eureqa generates

many (* 105 to 106) predictive equations for the target

variable. Among these, the best model is selected based on

minimum error measures on validation data shown in Eur-

eqa. The error measures are MSE and MAE.

In case of modelling with the RF, the parameters,

namely mtry, ntree and nodesize, need to be pre-defined. The

study observes that the outcome of the RF model becomes

stable after 500 trees. Hence, keeping the ntree constant as

500 for each fold of each case both for bare and vegetated

land areas, the parameters mtry and nodesize are selected

for bare and vegetated land areas. The RF models are tuned

by varying the values of mtry from 1 to 4 with 1 increment

for each of the 13 cases and three folds, whereas the values

of nodesize are varied from 5 to 40 and 5 to 200 for

bareland are vegetated land areas, respectively, for all three

folds of 13 cases. The best model parameters are selected

based on the minimum MSE values. The values of these RF

model parameters are shown in Table S5 in supplementary

document.

Relative Importance and Sensitivity of Different
Input Variables

Individual contributions of different input (predictor) vari-

ables are determined in RF modelling by Gini impurity

index and in GP by sensitivity analysis. The importance

values of each input variables obtained in RF modelling for

all 13 cases and across the three folds are provided in

Table S6 and Table S7 in supplementary document for bare

and vegetated land areas, respectively. The comparison of

importance values of all the input variables indicates the

significant dominance of HH for estimating surface SMC

both for bare and vegetated land areas. The ranges of

importance values of HH for bareland for the three folds are

0.020–0.128, 0.048–0.151 and 0.015–0.063, respectively.

The importance values corresponding to remaining vari-

ables except RVI, i.e. VV, VH, HV, sand, silt and clay,

range from 0.002 to 0.066 across the three folds for all the

13 cases which are visibly lesser than HH importance value.

However, it is observed in cases 9 and 10 that the RVI

contribution is also significant, i.e. (0.070–0.091,

0.022–0.044 and 0.014–0.020 for three folds) when com-

pared with HH. Additionally, it is observed that at the

omission of HH, the silt, sand, HV and VV contribute sig-

nificantly in estimation of surface SMC. The trend of

observing visible dominance of HH also persists for the

vegetated land areas where the ranges of magnitude of

importance values corresponding to HH are 0.265–0.919,

0.549–1.242 and 0.924–1.477 for the three folds. Where-

as the importance values of VV, VH, HV, sand, silt and clay

range from 0.010 to 0.418 across all the three folds and 13

cases. The importance values of RVI range from 0.009 to

0.120, 0.005–0.181 and 0.200–0.586 across the three folds

for the vegetated land areas. The sand, silt and VH are

observed to have higher magnitude of importance values at

the omission of HH for the vegetated land areas.

The sensitivity of the surface SMC to the different input

variables for all the cases of bareland and vegetated land

areas are presented in the GP analysis. The observation

clearly shows that the surface SMC is most sensitive to the

HH for bare land areas. The HH always shows (100% of

time) positive sensitivity, i.e. the increase in the values of

HH results in the increase in the target variable. The 100%

positive sensitivity of HH to estimate surface SMC is

observed for all the 12 cases (except case 2) for both the

bare and vegetated land areas. The magnitude of positive

sensitivity of HH is 1 for all the 12 cases. For case 2, where

HH is emitted from the input variable combination, the

%silt is showing 100% positive sensitivity to the surface

SMC with a positive magnitude of 1 for all the three folds.

For the vegetated land areas, the significant association

of HH to the surface SMC is confirmed for all the cases
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where the HH has shown 100% positive sensitivity across

all the three folds with sensitivity magnitude of 1. For the

second case when the HH is eliminated from the input

combination, the %sand shows the 100% positive sensi-

tivity with the positive magnitude 1 for the first and second

folds. However, for the third fold, VV shows 100% posi-

tive sensitivity with the magnitude of sensitivity of 0.853,

while the %sand shows the 100% negative sensitivity with

the negative magnitude of 0.474.

The prediction equations obtained from GP for bare and

vegetated land areas, shown in Tables S3 and S4, provide

the same conclusion as the above discussion that the HH is

the most significant variable to determine the surface SMC.

The occurrence of only HH across all the models with an

optimum model performance and the worst model perfor-

mance at the exclusion of HH establish the evident

importance of HH for both the bare and vegetated land

areas. For bareland areas, the occurrence of percentages of

sand and silt and VV is observed in more complex pre-

dictive equations. It is also observed that among the soil

texture information, silt is the most contributing variable

based on its occurrence in more number of predictive

equations for all the cases, better model performance at its

presence and occurrence along with HH in most cases at

higher model complexity. As mentioned earlier, the study

area mainly consists of silt and sand content with a very

less amount of clay content. Hence, it can be concluded

that for bareland areas, the soil texture information plays an

important role in surface SMC retrieval from SAR data

with higher model complexity. For the vegetated land

areas, the major soil components of the study area play a

crucial role to estimate the surface SMC only at the

omission of HH. However, it is also observed that the

presence of soil texture information does not show a sig-

nificant improvement in model performance which is

almost comparable with the performance with only

backscattering coefficients. Consequently, to select the

parsimonious models, the predictive equations consisting

of only HH (except case 2) are chosen to estimate the

surface SMC using the GP technique.

Similar to the bareland areas, the dominance of HH in

determining the surface SMC is evident for vegetated land

areas. It has been observed that the predictive equations

selected for all 12 cases except case 2 (where the HH is

omitted from the input combination) consist of only HH

component. This finding of major contribution of HH, for

both the bare and vegetated land areas, can be validated

with the findings of some previous established studies

stating the more dominance of HH in surface soil moisture

estimation from SAR data than the other polarizations

(Kornelsen and Coulibaly 2013) making the present study

more reliable. Moreover, the ability to quantify the con-

tribution of each input variable makes the present study

more relevant than the previous studies. Thus, the results

indicate the applicability and reliability of the models in

the ungauged locations where soil texture information is

unavailable but only SAR data are available. Along with

HH and soil texture information, the contributions of HV

and VV are observed in the predictive equations with

higher complexity for estimation of surface SMC for the

vegetated land areas. The study also uses RVI along with

HH and the soil texture information to study the effect of

vegetation (\ 30 cm in height) on SMC retrieval. It can be

seen from Tables S3 and S4 that the RVI does not occur at

all for both the bare and vegetated land areas although, as

discussed before, the RVI occurs in the predictive equa-

tions for both the bare and vegetated land areas with

increasing model complexity without substantial improve-

ment in model performances. In a nutshell, the study of

importance values and sensitivity magnitudes of all the

input variables suggest the significant contribution of HH

to SMC estimation with and without soil texture informa-

tion for both the bare and vegetated land areas. Also, the

influence of predominant soil texture type, when HH is not

in use, is demonstrated for both the bare and vegetated land

areas.

Model Performances

The comparison of mean values across the three folds of

the performance metrics of three methods used, for training

and testing periods for all the 13 cases, is shown in sup-

plementary document in Figures S1 and S2 combined for

bare and vegetated land areas due to less umber of data

points for bareland area.

The ranges of CC, Dr and RMSE are 0.669–0.723,

0.470–0.491 and 0.114–0.120 for SVM; 0.417–0.672,

0.570–0.659 and 0.091–0.112 for GP; and 0.568–0.612,

0.611–0.635 and 0.096–0.100 for RF across all the 13 cases

during the training period. Thus, the values of performance

metrics show comparable model performances for all three

models used although GP is observed to perform better in

terms of higher Dr and lower RMSE almost for all the case

except input variable combination case 2 (HH omitted) and

case 5 (HV omitted). The performance metrics range for

SVM, GP and RF during the testing period are as follows—

CC: 0.688–0.747, Dr: 0.495–0.515, RMSE: 0.109–0.116;

CC: 0.488–0.687, Dr: 0.590–0.669, RMSE: 0.086–0.103,

and CC: 0.624–0.669, Dr: 0.646–0.666 and RMSE:

0.088–0.092, respectively. Here also, the GP shows a better

model performance in terms of Dr and RMSE for all the

cases except case 2 and case 5.

The comparison of model performances across the 13

cases shows that worst model performances are obtained

for case 2 when HH is omitted from the input variable

combination. It is true for GP and RF during both training
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and testing periods. The deduction applies both for bare

and vegetated land areas. However, for SVM, performance

is nearest to worst for case 2 (HH is excluded), whereas it

shows the worst performance for case 12 where only HH is

used as the input variable during training and testing per-

iod. The contribution of the soil texture information is

assessed by comparing the model performances between

the case where soil texture is used with all four backscat-

tering coefficients, i.e. case 1 and the case where only

backscattering coefficients are used, i.e. case 11, for all the

three approaches. The observation suggests that the omis-

sion of soil texture information marginally decreases the

model performance of SVM, remains same in GP and

increases in RF modelling. Hence, it can be said that the

use of only SAR backscattering coefficients without the

information of soil texture information can provide almost

accurate SMC estimate by GP and RF and thus would be

highly beneficial for ungauged locations. And, for SVM the

performances of the cases without soil texture information

and using HH can be considered acceptable since the soil

texture information is unavailable/unreliable in many

regions and the contribution of HH is well established

assuring the applicability of the model in different regions.

Although some studies have stated that the sensitivity of

HH and VV is identical, especially for bare land areas, the

fact that at C-band HH is more sensitive to soil moisture

than VV due to relatively smaller attenuation by vegetation

stand (Ulaby et al. 1982) allows the models to be applied

more proficiently with the dominance of HH observed

irrespective of LULC condition.

The model performances obtained in the present study

show better model performance when compared with rel-

atively well-established data-driven methods such as SVM

and ANN in the similar field of study to verify the bene-

ficial findings of the study (Notarnicola et al. 2008; Ahmad

et al. 2010; Rodrı́guez-Fernández et al. 2015). The results

of these established studies, using data-driven methods

such as ANN and SVM, indicate to obtain a good perfor-

mance with defined soil roughness condition or LULC

using many other satellite data information and ground-

truth information of the study area. While the present study

emphasizes on using only the satellite data information to

estimate the surface SMC, the comparison of model per-

formances for all the methods with and without the soil

texture information shows the comparable model perfor-

mances for both the cases sustaining the novelty of the

study. Otherwise, in the studies using the backscattering

coefficient data, the model performance is found to be

lesser than obtained in the present study, e.g. Notarnicola

et al. (2008) and Ahmad et al. (2010). Therefore, the

comparison leads to the pledge of enhanced and accept-

able model training and performance of the present study.

The comparison of the mean bias is performed by

computing the difference between the mean of the

observed SMC and the mean of the estimated SMC during

the training and testing period for combine bare and veg-

etated land areas. The averages of the mean bias across the

three folds for each method and each of the 13 cases are

presented in supplementary document in Figure S3 for

combined bare and vegetated land areas. It can be observed

that the mean bias is insignificant in RF for both training

and testing periods where the ranges are 0.000067–0.00463

and 0.0078–0.0102, respectively, for all the 13 cases. The

highest mean bias values are observed for SVM where the

ranges are 0.075–0.079 and 0.081–0.088 during training

and testing periods, respectively, across all the cases. In a

nutshell, the performances from all the three approaches,

i.e. SVM, GP and RF models, are reasonably accept-

able during both the training and testing periods for all the

13 cases for combined bare and vegetated land areas.

Figure 2 shows scatter plots between observed and

estimated surface SMC data for GP of case 9 for all the

three folds combined for bare and vegetated land areas.

The similar scatter plots using SVM and RF are shown in

supplementary document in Figure S4 and Figure S5. The

HH and RVI are shown as the input combination as it

provides a good model performance and it allows the study

to validate its novelty to be applicable for the ungauged

locations with the unavailability of soil texture informa-

tion. From these figures, it can be observed that the scatter

plots fit well for all the three methods within the SMC

range of 10–40% which confirms the applicability of pro-

posed approaches for this soil moisture range.

The indicated SMC range of model applicability is

strongly supported by the physical phenomenon involved

in the SMC estimation from SAR data. The backscattering

coefficient increases with an increase in volumetric SMC

up to 35% after which any change in dielectric properties in

the soil does not influence the radar signal and it becomes

insensitive to soil moisture. This phenomenon strongly

favours the SMC range where all the three models are

observed to perform the best.

Soil Moisture Maps

Using the three different AISC techniques, we are able to

apply the supplementary data sets of RISAT1 for each date

on a pixel-by-pixel basis to develop a soil moisture map of

the study area. It has been observed that the results from all

the three methods and for all the cases except case 2 and 12

are comparable. The soil moisture maps of our study area

have been prepared using all the three methods discussed in

the study and as observed in the model performance, the

maps are also comparable for all the three methods.

However, the map prepared by the methodology based on
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GP technique is finalized due to its least overfitting and

consistent performance for all the cases. The soil moisture

maps developed with GP-based methodology for both the

dates are shown in Fig. 3. The soil moisture maps are

obtained by using the HH and RVI as the input combina-

tion. The selection of input variable combination is based

on the substantially good model performance and appli-

cability to the ungauged locations without soil texture

information as discussed before. In the SMC maps for the

two dates (Fig. 3), the blue regions indicate higher soil

moisture and the yellow indicates the areas having lower

soil moisture values. The white areas in the SMC maps

mostly represent the masked regions consisting of estab-

lishments, roads, rivers and few patches of tall trees/forest

where the models are not applicable. However, it also

represents the SMC of 0 m3/m3. Since the study area

mostly consists of agricultural lands, there is less chance of

having an area with SMC value of 0 except some patches

of barelands with very low SMC values which are shown in

very light yellow colour in the SMC maps. Disparities in

SMC due to drainage after a rainfall event are evident

which are easily detectable due to homogeneous cover

conditions for two different dates. As observed from the

SMC maps of two different dates, the deeper blues repre-

senting higher soil moisture indicate the rainfall occurred

on 27 October 2014.

A spatial validation is also attempted to compare the

model output with the well-established, latest global

atmospheric reanalysis ERA-Interim soil moisture product

from European Centre for Medium-Range Weather Fore-

casts (ECMWF), which is based on the ECMWF Integrated

Forecast System model using tiled ECMWF Scheme (Dee

et al. 2011). However, the spatial resolution of ERA-In-

terim data (0.125� 9 0.125� or * 13 km 9 13 km) is

much coarser than our output (* 20 m). Thus, the data are

collected and initially compared with the observed SMC

data of the study area for the two dates. The upscaled field-

observed SMC values are compared with the SMC value of

nearest four ERA-Interim grid points. The upscaling is

carried out by taking the average of the volumetric SMC

through all the monitoring points falling within a pixel of

ERA-Interim data. The observed SMC values are found to

be 0.245 and 0.233 for 25 October and 27 October 2014,

respectively, and respective SMC values of ERA-Interim

data are found to be 0.299 and 0.304. Hence, it can be

noticed that there is some obvious uncertainty in the ERA-

Fig. 2 The scatter plots between the observed and estimated surface SMC of the case 9 combined for bare and vegetated land areas for folds 1, 2

and 3 for GP. Best fit and 45� lines are also shown in the plots
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Interim data that does not match fully with the observed

field data. Still the correspondence is acceptable. However,

as mentioned before, the resolution of ERA-Interim is very

coarse as compared to our model output using RISAT1

data. This wide gap between spatial resolutions restricts a

true comparison and indicates the benefit of very high

resolution soil moisture map that is apparent (Figures S6

and S7 in the supplementary document). The presence of

higher soil moisture in the low-lying areas and in the

vicinity of water paths/river networks is very clearly visible

in the maps developed in this study, which is highly

masked in the SMC map using ERA-Interim values.

Conclusions

In this paper, different Artificial Intelligence-based Soft

Computing (AISC) techniques are explored for their

potential to develop soil moisture maps using the quad-

polarized SAR data obtained from RISAT1. Different

combinations of inputs consisting of radar backscattering

data and soil texture information (HH, HV, VH, VV, RVI

and percentages of sand, silt and clay) are used to compare

the contribution of each input variable.

Three AISC techniques, namely SVM, GP and RF, can

be beneficially utilized for surface SMC retrieval from

SAR data with their relative merits and demerits. The

comparison of the performance statistics obtained from

these techniques suggests that they perform reasonably

well for both training and testing data. However, the

importance analysis in RF and sensitivity analysis in GP

technique helps to quantify the contribution of each input

variables and, in turn, it helps to precisely select the sub-

stantial subset of input variables.

The substantial sensitivity of HH to the surface SMC

distribution is authenticated by the deteriorated model

performances for all the three approaches when HH is

dropped from the input set. The dominance of HH in soil

moisture estimation is also quantified in the importance

analysis in RF and sensitivity analysis in GP technique as

well. The soil texture information (silt and sand in the

present study) also plays an important role in determining

the surface SMC for both bare and vegetated land areas

with more complex models. However, model performance

is still reasonably good even without the use of this

information. In case the information of soil texture is not

available, it is recommended to use only the HH and RVI.

It increases the applicability of the AISC techniques to the

areas without soil texture information. The validation of

the model estimated SMC data with the ERA-Interim SMC

values also indicates the beneficial use of quad-polarized

SAR data in AISC-based techniques to obtain a more

accurate high-relation SMC estimate. Overall, the AISC

techniques are highly potential and we recommend the use

of GP due to its ability to provide mathematical relation-

ship between satellite-based SAR data and in situ soil

texture information with surface SMC. It also provides

importance and sensitivity of each individual input. The

typical fine-resolution (* 5 m) surface SMC map for a

large area is extremely useful, and high-resolution, quad-

Fig. 3 Soil moisture map of the study area on a 25 October 2014 and b 27 October 2014 using the GP model. The unit of volumetric SMC shown

in maps is m3/m3
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polarized SAR data can be beneficially used through the

potential of AISC techniques, especially GP, without using

the any priori ground information to develop the surface

SMC map.
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