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A B S T R A C T   

Hydrologic extremes often lead to droughts and floods that adversely affect the socio-economic development. 
Change in the characteristics and causes of hydrologic extremes due to climate variability and climate change 
poses a challenge for its reliable prediction. We propose a time-varying approach to capture such temporal 
changes, often gradual, in hydrologic extremes through temporal networks (a series of network structures). 
Graphical Modelling (GM) based networks are developed through Bayesian Model Averaging (BMA) to deal with 
the complexity between the causal variables and extreme events. A demonstration of the proposed time-varying 
approach is shown for 1-month and 3-month ahead hydrological drought prediction in terms of Standardized 
Streamflow Anomaly Index (SSAI), at basin scale, that has notably changed in the recent years in terms of its 
frequency and severity. The frequency and severity of below-normal flow events has increased, particularly 
during the monsoon season (high flow months). We hypothesize that time-varying cause-effect relationship is 
important to capture such gradual change in the characteristics of hydrologic extremes. The results indicate that 
SSAI values for the low flow months are strongly associated with streamflow whereas for the high flow months 
the dominant predictors are rainfall, precipitable water and relative humidity. Furthermore, the cause-effect 
relationship between hydroclimatic variables and extreme events needs to be updated every 2 years for high 
flow and 3 years for low flow months. The proposed model very well captures the above and below-normal flow 
events and can be used as a remedial measure to handle similar cases through a proper assessment of time- 
varying cause-effect relationship between hydroclimatic variables and extreme events.   

1. Introduction 

Spatio-temporal re-distribution of hydro-meteorological variables, 
due to changing climate and dynamic terrestrial environment, leads to 
changes in the characteristics and causes of extreme events. These 
changes negatively impact the socio-economic development and are 
often incomprehensible as it follows a complex mechanism (Van Lanen 
et al., 2013; Van Loon et al., 2016). Hydrologic extremes mostly origi-
nate from a deficit/excess of precipitation; however, hydrologists are 
more concerned with how this plays out through the different processes 
in the hydrologic cycle. The evolution of water deficit/excess through 
the different components of the hydrological cycle, like soil moisture 
and streamflow, is not instantaneous and is controlled by complex 
processes (Hao et al., 2018; Kiem et al., 2016). Other hydro- 
meteorological variables, such as temperature, potential evapotranspi-
ration, relative humidity, precipitable water and pressure, also directly 
or indirectly influence the occurrence of hydrologic extremes (Cook 

et al., 2014; Livneh and Hoerling, 2016; Luo et al., 2017). The afore-
mentioned list of hydro-meteorological variables still remains incom-
plete and may vary with space and time. Overall, the development and 
evolution of an extreme event is dependent on multiple interacting 
factors, such as hydro-meteorological forcings, land-surface processes 
and human activities, and these factors are further accelerated under the 
impact of climate change (Cook et al., 2018; Mukherjee et al., 2018). 
Thereby, the complexity and uncertainty associated with the occurrence 
of such extremes make the investigation (modelling/analysis) of these 
events a challenging task. 

Statistical modelling of hydrologic extremes, such as floods and 
droughts, has a long history, ranging from regression based models 
(Barros and Bowden, 2008; Liu and Negrón Juárez, 2001; Panu and 
Sharma, 2002; Sun et al., 2012) to artificial intelligence (AI), including 
machine learning (ML) and deep learning (DL) based techniques (Barua 
et al., 2012; Fung et al., 2020; Kaur and Sood, 2020; Khan et al., 2020; 
Maity et al., 2021; Mishra et al., 2007; Mishra and Desai, 2006; Santos 
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et al., 2014; Yang et al., 2015). Some of the probabilistic approaches are 
able to capture the nonlinear dependence among the variables and 
provide probabilistic prediction from the conditional distribution (Hao 
et al., 2016; Liu et al., 2015; Madadgar and Moradkhani, 2013; Svoboda 
et al., 2002; Wang et al., 2009; Wu et al., 2011; Yan et al., 2012; Zink 
et al., 2016). However, a major drawback of many modelling ap-
proaches is significant difficulty to build the joint distribution in higher 
dimensions when the pool of influencing variables is relatively large 
(Hao et al., 2018). Studies have utilized different techniques, such as 
correlation analysis, step-wise regression analysis, conditional inde-
pendence structure based approach, model-free approach, self- 
organizing map, partial informational correlation, partial weights, 
wavelet-based techniques, to deal with such issues (Bowden et al., 2005; 
Dutta and Maity, 2020a, 2020b; Jiang et al., 2020; May et al., 2011; 
Sharma et al., 2016). New techniques for identifying important model 
inputs continue to emerge with each technique having its own advan-
tages and limitations however no single method is best suited for all 
modelling purposes (Dutta and Maity, 2020a; Galelli et al., 2014; Maity 
and Kashid, 2011). Most of the existing techniques are either unable to 
avoid the redundant information from multiple associated variables or 
miss out important variables due to the complex nature of association 
(Schisterman et al., 2017). When a system like hydroclimatic system is 
composed of multiple interacting variables, a complete information on 
the conditional independence structure is helpful to obtain a well- 
defined set of input variables for a target variable. Only the directly 
associated variables may be picked out to use in the model, leaving out 
the effect of conditionally independent and independent variables (Ihler 
et al., 2007). This addresses the issues of high dimensionality due to 
large pool of influencing variables and effectively deals with redundant 
information from multiple variables. Here lies the advantage of Graph-
ical Modelling (GM) approaches that provides a complete conditional 
independence structure that helps to further understand, predict and 
optimize the behavior of dynamical systems (Dutta and Maity, 2020c, 
2020a, 2018). 

Bayesian Networks (BNs), a class of GM approaches, are directed 
graphical models for representing probabilistic relationships among 
multiple interacting variables (Cooper, 1990; Heckerman et al., 1995; 
Witten et al., 2005). Formally, a BN is defined by a graphical structure, a 
family of (conditional) probability distributions and their parameters, 
which together specify a joint distribution over a set of random variables 
of interest. The graphical structure of a BN consists of a set of nodes and 
a set of directed edges. The nodes represent random variables, while the 
edges indicate conditional independence relations. A detailed literature 
review on the application of BNs in the field of hydrology and hydro-
climatology can be found in Avilés et al., (2016) and Morrison and 
Stone, (2014). Recently, studies have utilized graphical modelling and 
Bayesian network based approaches to analyze primary hydrologic 
variables like precipitation (Das and Chanda, 2020; Dutta and Maity, 
2020c; 2018), secondary hydrologic variables like streamflow (Dutta 
and Maity, 2020a; Ramadas et al., 2015) and tertiary hydrologic vari-
ables like drought (Avilés et al., 2016; Ramadas and Govindaraju, 2015). 
Whereas mostly the benefits of GM were realized in these studies, 
inherent non-stationarity may sometimes hinder the performance (Dutta 
and Maity, 2020a). Moreover, complexity in the graph structure may 
increase from primary to tertiary hydrologic variables. For example, 
identification of a single static graph structure assuming that the 
dependence among the variables remains constant over time may be 
questionable in a changing climate. Even keeping the effect of changing 
climate aside, moving from primary to tertiary hydrologic variables, 
such as droughts and floods, the uncertainty associated with the 
modelling framework substantially increases due to the complex in-
teractions among the variables. In addition to this, climate variability 
and climate change leads to temporal redistribution of the hydro- 
meteorological variables causing intensification/alteration of the hy-
drologic cycle (Dutta and Maity, 2020a). This gradually changes the 
cause-effect relationship of the influencing variables and hydrologic 

extremes and the characteristics of such events in terms of its frequency 
and severity. Such changes/fluctuations in the process may often lead to 
a non-stationary system (Betterle et al., 2017; Gibbs et al., 2018; Hwang 
et al., 2018; Milly et al., 2008; Wagener et al., 2010). Non-stationarity 
owing to gradual change in the association of the hydro- 
meteorological drivers and hydrologic extremes poses a challenge for 
modelling and development of the prediction models. Recent studies 
have used different techniques for modelling of extreme events in a non- 
stationary environment using copulas based techniques, detecting non- 
stationary hydrologic model parameters, time-varying model based on 
“generalized additive models for location, scale and shape” and break/ 
change point analysis (Apurv and Cai, 2019; Chebana and Ouarda, 2021; 
Das et al., 2021; He et al., 2021; Hesarkazzazi et al., 2021; Machado 
et al., 2015; Pathiraja et al., 2016). However, in a time evolving process, 
the set of input variables may also change over time that most of the 
aforementioned approaches do not consider or need further develop-
ment. In case of conventional GM approaches a single high scoring static 
model is utilized which may not represent the true time-varying asso-
ciation among the variables and there might be different models that 
explain the dependence reasonably well (Friedman and Koller, 2003; 
Tian et al., 2010). This forms the motivation of this study. There are two 
primary aspects to be considered. Firstly, the aspect of time-varying 
association among the influencing variables and hydrologic extremes 
can be dealt by updating/re-calibrating the model after a fixed time- 
interval. Such graph/network structures are referred to as temporal 
networks and have been successfully utilized to analyze primary and 
secondary hydrologic variables (Dutta and Maity, 2020a; 2020b). Sec-
ondly, in the context of tertiary hydrologic variables, like droughts, the 
aspect of uncertainty in identifying the robust networks can be dealt 
with by using Bayesian Model Averaging (BMA) for structural learning 
of Bayesian temporal network structures. BMA can be efficiently used to 
merge the information from multiple graph structures to truly under-
stand the underlying process (Friedman & Koller, 2003). In some other 
context, BMA is utilized for merging forecast information from multiple 
models in order to improve the predictability of hydrologic variables 
such as, precipitation, streamflow and drought (Duan et al., 2007; Huo 
et al., 2019; Jiang et al., 2012; Lu et al., 2019; Meira Neto et al., 2018; 
Qu et al., 2017; Tian et al., 2018; Xu et al., 2018; Ye et al., 2004). 
However, utilization of combined potential of temporal networks along 
with BMA may be highly beneficial to deal with the inherent complexity 
in the tertiary hydrologic variables, being influenced by a large pool of 
variables and changing climatic and terrestrial conditions. 

The objective of this study is to propose a BMA based temporal 
network approach to model the temporal evolution of the hydrologic 
extremes caused by changing climate and dynamic terrestrial environ-
ment. A demonstration is shown for 1-month ahead hydrological 
drought prediction defined by Standardized Streamflow Anomaly Index 
(SSAI), which has notably changed in recent years in terms of its fre-
quency and severity (designated by SSAI magnitude). The two key 
components of the proposed modelling framework are, a) Bayesian 
framework, where BMA of BNs is used to learn the graph structures and 
b) the temporal networks, where the graph structure obtained using the 
Bayesian framework is re-iteratively updated along with the model pa-
rameters after a fixed time-interval. This fixed time-interval is optimized 
based on the model performance during model testing period. Month- 
wise SSAI values are estimated (twelve different series corresponding 
to each month) and analyzed to develop twelve different prediction 
models for each month of analysis. The performance of the proposed 
model is compared with its time-invariant counterpart and a commonly 
used machine learning based modelling frameworks. 

2. Study area and data used 

The upper Mahanadi river basin up to Basantpur gauging station is 
considered as the study area with an approximate spatial extent of 
61,152 km2, lying between 20◦N to 23.5◦N latitude and 80.5◦E to 83◦E 
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longitude. It may be noted that Mahanadi is one of the major rain-fed 
east flowing rivers in India. Different indices can be utilized to charac-
terize the hydrological drought like Streamflow Drought Index (SDI), 
Standardized Streamflow Anomaly Index (SSAI), Palmer Hydrological 
Drought Index (PHDI), Standardized Standardized Reservoir Supply 
Index (SRSI), to name a few (https://www.droughtmanagement.info 
/indices/). First two indices are evaluated using streamflow data, 
PHDI is evaluated using precipitation, temperature and available water 
content and SRSI uses reservoir data. Each index has its own advantages 
and disadvantages, and selection of an index primarily depends on the 
application and the study area under consideration. Considering the 
strong seasonality in India, SSAI is used as the hydrological drought 
index to characterize the below/above-normal flow events. Detailed 
description on evaluation of SSAI is provided in the methodology section 
(Section 3.1). The time-period considered for the study is from January 
1971 to December 2018 and the daily streamflow data at the outlet of 
the basin (Basantpur station) for the above time-period is obtained from 
the India-Water Resources Information System (India-WRIS; 
https://indiawris.gov.in/wris/#/). There are very few minor structures 
in the upstream, such as small check dams. However, given the large 
enough spatial extent of the basin, the streamflow values can be 
considered as unregulated. 

In addition to streamflow, other input variables are temperature, 
precipitable water, potential evapotranspiration, pressure, relative hu-
midity, soil moisture and rainfall, all from the previous time-step. These 
are selected based on the physical feedback mechanism of the hydro-
climatic forcings, as established in different literature (Maity et al., 
2010; Maity and Kashid, 2011; Meenu et al., 2013; Pichuka et al., 2017; 
Ramadas et al., 2015; Rehana and Mujumdar, 2014). Month-wise stan-
dardized anomaly values for each variable are obtained by subtracting 
each data series from their respective monthly mean and dividing by the 
respective standard deviation of that month. Daily rainfall data is ob-
tained from India Meteorological Department (IMD) (Rajeevan et al., 
2008) and data at each grid point is converted to monthly rainfall depth 
by accumulating it over the month. Temperature and potential evapo-
transpiration data are obtained from Climatic Research Unit (CRU) 
Time-Series (TS) gridded data (Harris et al., 2013). Soil moisture data is 
obtained from the Climate Prediction Centre (CPC) of the National 
Oceanic and Atmospheric Administration (NOAA) (Fan and van den 
Dool, 2004; CPC, 2014), evaluated using a land surface model (one-layer 
bucket water balance model) and rest of the variables are obtained from 
NCEP/NCAR Reanalysis 1 project using historical data to present (Kal-
nay et al., 1996). Gridded data is obtained from all the above-mentioned 
sources and the data are taken from the grid points lying within the 
study area. It may be noted that the NCEP/NCAR Reanalysis 2 product is 
an improvement over the NCEP/NCAR Reanalysis 1. Improvement in 
the quality of the input variables may have an improvement in the model 
performance. However, the primary reason for using Reanalysis 1 
products is the availability of the data for a longer time period and a 
longer overlap with the available streamflow data for the study area. For 
development of a time-varying model, it is important to have a long 
enough data set so that the fixed time interval for model re-calibration 
can be effectively optimized. However, with the availability of longer 
streamflow data series it might be interesting to explore the uncertainty 
associated with each data source for different regions. 

3. Methodology 

Following sub-sections illustrate the main steps involved in the 
proposed time-varying approach to develop the prediction model. In 
brief, Section 3.1 deals with drought characterization. Next, a network/ 
graph structure is developed through BMA of BNs in Section 3.2 among 
the associated variables (input and target variables). In Section 3.3, the 
concept of temporal networks is developed by imparting time-varying 
characteristics. Lastly, Section 3.4 provides details on the other exist-
ing approaches utilized for comparing the performance of the proposed 

BMA based temporal network approach. 

3.1. Hydrological drought characterization 

A streamflow based drought index, referred to as Standardized 
Streamflow Anomaly Index (SSAI), is utilized to characterize the hy-
drologic drought. First, month-wise anomaly values of streamflow are 
obtained following eqn. (1), as follow: 

xaij = xij − xi (1)  

where,xaij is the anomaly value for the ith month of the jth year, xij is the 
observed streamflow for the ith month of the jth year and xi is the long- 
term mean for the ith month. Next, these anomaly values are fitted to a 
best-fit probability distribution, identified using the Chi-square good-
ness of fit test considering 5% significance level. The parameters of the 
fitted distribution are used to estimate the Cumulative Distribution 
Function (CDF) of the anomaly values, represented by F(Xa) =

P(Xa < xa). These values range between zero to one and are referred to 
as reduced variates of streamflow anomaly. Next, these reduced variates 
are transformed to standard normal variates as follows, 

Za = ∅− 1(F(Xa) ) (2)  

where, ∅− 1 is the inverse of cumulative standard normal distribution. 
These values are the standardized streamflow anomaly values and can 
range between − ∞ to + ∞. Positive values of this index indicate above- 
normal flow events and the negative values indicate below-normal flow 
events or droughts resulting from streamflow excess and deficit, 
respectively. These SSAI values define the severity of extremes and are 
used as the target variable in developing the BMA based temporal 
network model. Initially, these SSAI values are used as the target vari-
able in developing the BMA based temporal network model. Addition-
ally, the frequency of occurrence of below/above-normal flow events is 
evaluated as the total number of such events occurring over a particular 
time period divided by the length of the respective time period. It may 
also be noted that for effective implementation of the proposed meth-
odology the streamflow data should be de-trended before evaluating the 
SSAI values. 

Next, different categories of droughts, e.g., moderate, severe, 
extreme, are considered in the analysis, depending on the numerical 
values (also referred to as severity) of the index. Following Maity et al., 
(2013), following near normal flow category (N: near normal events 
including normal, abnormally dry and abnormally wet conditions), below- 
near normal flow/drought categories (D1: moderately dry, D2: severely 
dry, D3: extremely dry and D4: exceptionally dry events) and above-near 
normal flow categories (W1: moderately wet, W2: severely wet, W3: 
extremely wet and W4: exceptionally wet events) are considered. In this 
categorization, a value in the range of [− 0.7, 0.7] are considered as near 
normal events, as shown in Figs. 2 and 3. 

3.2. Development of the BMA based network structure and the prediction 
model 

BNs are a class of graphical models that represent the association 
between different variables by means of Directed Acyclic Graphs (DAGs; 
Cooper, 1990; Heckerman et al., 1995; Witten et al., 2005). Given the 
causes (causal/input variables), a BN can be used to compute the effect 
(target variable). Development of a BN involves learning the network 
structure, also referred to as the graph structure, development of the 
probabilistic model (parameter estimation of conditional probabilities) 
and prediction of the target variable given the directly influencing input 
variables. 

In traditional BNs, two different learning/model selection algo-
rithms, namely score based algorithm and constraint based algorithm 
are utilized to learn the graph structure (Scutari, 2017). These algo-
rithms provide a single high-scoring model that is selected as the final 
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graph structure (Heckerman et al., 1995). However, considering the 
uncertainty associated with tertiary hydrologic variables such as 
drought and flood, there may be multiple graph structures (in addition 
to the single high scoring model) that represent the dependency among 
the associated variables equally well. Furthermore, other structures may 
present some vital information related to the conditional independence 
among the variables that may get overlooked while selecting the single 
high scoring model. Owing to the complexity of the hydroclimatic 
forcings behind hydrologic droughts it may be advantageous to identify 
multiple graph structures that fit the data reasonably well and derive the 
combined information from all these structures to obtain the association 

among the variables. In this study, the order-Markov Chain Monte Carlo 
(order-MCMC) algorithm, based on the BMA of BNs, is used for precisely 
learning the graph structure (Friedman and Koller, 2003) by averaging 
the information from multiple graph structures. To start with, all the 
graph structures that fit the data comparatively well based on the 
likelihood-equivalent Bayesian score, also referred to as the BDe score 
(detailed description for evaluation of BDe score is provided in Appendix 
A), are selected. The number of selected structures is optimized so that 
the highly scoring graph structures are not excluded and the computa-
tional cost is minimized. Next, the selected graph structures are grouped 
based on their topological order (designated by Θ). These orders are 

Fig. 1. Temporal change in the a) frequency of 
below-normal (designated by DE) and above- 
normal (designated by WE) flow events b) 
severity (designated by SSAI magnitude) of 
above-normal flow events and c) severity of 
below-normal flow events. The months with sig-
nificant change (at 5% significance) in frequency 
are encircled in red and the months with signifi-
cant change (at 5% significance) in severity of 
above and below normal events (in terms of 
mean) are filled in grey. (For interpretation of the 
references to color in this figure legend, the 
reader is referred to the web version of this 
article.)   

R. Dutta and R. Maity                                                                                                                                                                                                                         



Journal of Hydrology 603 (2021) 126958

5

Fig. 2. Temporal change in the frequency of extreme events considering the first model development period of 1971–2000 and the contiguous testing period of 
2001–2018. The below/above-normal flow events are categorized as near normal ([− 0.7, 0.7], designated by N), above-near normal (>0.7, designated by AN) and 
below-near normal (<− 0.7, designated by BN) events. The severity of drought events has changed in the recent years considering both the high and low flow months. 
The change in frequency of near normal events is significant (at 5% significance) for all the months except for the month of June. 

Fig. 3. Temporal change in the severity of drought events (designated by SSAI magnitude) in terms of mean, 25th and 75th percentile and the range considering the 
first model development period of 1971–2000 and the contiguous testing period of 2001–2018. The below/above-normal flow events are categorized as near normal 
([− 0.7, 0.7], designated by N), above-near normal (>0.7, designated by AN) and below-near normal (<− 0.7, designated by BN) events. The months for which the 
change in the mean, considering the above categories, is significant at 5% significance level are filled with grey. 
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arranged in such a way that each node may only have parents from 
further up the chain or following it in the ordering. All the graph 
structures consistent with an order are combined to reduce the search to 
smaller space and a score is assigned to each group which is equal to the 
sum of the scores of all graph structures in the group. Next, a Markov 
chain is constructed considering all the node orders rather than all the 
graph structures. Detailed description on evaluation of the group score 
and construction of the Markov chain is provided in Appendix A. By 
grouping together and averaging the score over so many graph struc-
tures, an optimized structure is obtained that represents the association 
among the input variables and the target variable. After identification of 
the final graph structure that represents the association among the 
variables, the degree of association between the input variables and 
target variable is evaluated. This degree of association is measured as 
score gained/lost (BDe score), when a particular edge, for which the 
strength is being evaluated, is included/excluded from the structure. 
That is, the BDe score for two graph structures, one with and another 
without the edge, are evaluated. The difference between the score of the 
graph is considered as the edge strength. Using the obtained graph 
structure, the prediction model is developed by factorization of the 
graph and parameter learning. 

The prediction model is the joint probability distribution associated 
with a given graph structure. It is obtained as a product of functions 
associated with a subset of the nodes (variables). The function turns out 
to be the conditional probability of a variable given its parent variables 
(Ihler et al., 2007). Identification of the conditional probability distri-
bution also referred to as parameter learning is carried out using the 
Maximum Likelihood Estimation (MLE) approach (details provided in 
Appendix A). The prediction model becomes ready once the parameters 
are estimated. Next, the prediction of the target variable is carried out by 
plugging in the new values for the “parents of the target variable” 
(variables directly associated with the target variable as obtained from 
the graph structure), in the conditional probability distribution of the 
target variable. It may be noted that the above methodology is used for 
the model calibration considering a particular model development 
period. 

3.3. Development of the temporal networks and re-calibration of 
prediction model 

The time-varying characteristics are imparted to the prediction 
model by gradually updating the network structures over time, also 
referred to as temporal networks (Dutta and Maity, 2020a). The model 
development period is considered as a moving window of 30 years and 
the model is re-calibrated iteratively after a fixed time-interval (say n 
years) in terms of model inputs and parameters. The value of n needs to 
be optimized and this optimized value is designated by τ and referred to 
as the Optimum Recursive Interval (ORI) for model re-calibration (Dutta 
and Maity, 2020a, 2018). In order to obtain τ, different values of n, 
starting from n = 1 to n = 5 years, are considered. As the time-period of 
the study is from 1971 to 2018, the first model development period is 
considered from 1971 to 2000 and the model testing period is from 2001 
to 2001+(n-1). As the model is updated after n years the next model 
development period is shifted by n years and the second model devel-
opment period is considered from 1971 + n to 2000 + n. The process 
continues over the entire time period of the study. To identify the value 
of τ, this procedure is repeated for different values of n and the model 
performance during all the contiguous model testing periods, is evalu-
ated to identify the ORI of model re-calibration. 

3.4. Comparison with existing approaches 

Performance of the proposed BMA based temporal network approach 
is compared with three commonly used modelling concepts in the field 
of hydrology. To start with, a time-invariant counterpart of the BMA 
based temporal network approach is used. Next, two Machine Learning 

(ML) techniques, namely Support Vector Regression (SVR) and Artificial 
Neural Network (ANN) are utilized in a time-varying framework. Details 
on all the three models are as follows. Firstly, for development of the 
BMA based time-invariant network approach, the procedure explained 
in the previous sub-section remains the same but only one graph 
structure is developed using 30-years data. Next, the developed pre-
diction model is used for the entire testing period without the concept of 
time-varying models, explained before. Lastly two commonly used ML 
based approaches namely, SVR and ANN are developed based on the 
time-varying concept but the concept of conditional independence 
structure is not utilized. SVR and ANN are common machine learning 
techniques utilized in different hydroclimatic studies (Ardabili et al., 
2019; Barua et al., 2012; Cristianini and Shawe-Taylor, 2000; Khan 
et al., 2020; Maity et al., 2010; Prasad et al., 2017; Raghavendra and 
Deka, 2014). Inputs for the SVR model are identified through correlation 
analysis as followed traditionally. In this comparison, the ML based 
models are developed with the aforementioned time-varying concept 
and thus, the inputs and the parameters of the models are updated after 
n years, as in the proposed BMA based temporal network approach. 

4. Results and discussions 

Broadly the results are presented to show the temporal changes in the 
characteristics of hydrologic drought and the ability of the proposed 
model to capture temporal change in the association among the 
hydroclimatic variables and predict the occurrence of below/above 
normal flow events. Section-wise presentation of results and discussion 
is as follows: Section 4.1 shows the change in the frequency and severity 
of observed extreme events considering the first model development 
period and the contiguous model testing period. Next, the hydroclimatic 
forcings directly influencing the hydrologic drought as revealed by the 
network structures (developed using the proposed model) is presented 
in Section 4.2. Section 4.3 shows the temporal change in the network 
structures (developed using the proposed model) and establishes the fact 
the association between the hydroclimatic forcings and extreme events 
is gradually changing over time. Section 4.4 shows the ability of the 
proposed BMA based temporal network approach to capture the below/ 
above normal flow events. Lastly, Section 4.5 compares the performance 
of the proposed model with other well-established modelling 
approaches. 

4.1. Temporal change in the frequency and severity of hydrologic drought 

At the outset, the change in the characteristics of extreme events is 
ascertained in terms of change in the frequency and severity of below/ 
above-normal flow events. Fig. 1a shows the temporal change in the 
frequency of the below/above-normal flow events, evaluated individu-
ally for each month, considering the time periods of 1971–2000 
(henceforth denoted as T1) and 2001–2018 (henceforth denoted as T2). 
Additionally, the significant changes in the frequency, identified using 
the two-sample z-test of proportions considering 5% significance level is 
also shown. It is clearly noticed that the frequency of below-normal flow 
events has increased for the post-monsoon season (October and 
November with significant increase in October), winter season 
(December-February with significant increase in December and 
February) and two monsoon months of July and August (significant 
change in both the months). Furthermore, the pre-monsoon season 
(March-May with significant increase in April and May) and other 
monsoon months, i.e., June and September (significant change in 
September) exhibit an increase in the frequency of above-normal flow 
events. The higher frequency of below/above-normal flow events 
especially considering the months in the pre-monsoon (March-May), 
monsoon (June-September) and post-monsoon (October-November) 
seasons, may arise from the change in monsoon intensity and shift in 
monsoon pattern (Sahu et al., 2020). 

Secondly, the temporal change (considering the time periods of T1 
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and T2) in the severity of below/above-normal flow events, assessed by 
considering the negative and positive values of SSAI as two different 
data series, is shown in Fig. 1b and 1c, respectively, through boxplots. 
The figures show the change in the severity of below/above-normal flow 
events in terms of either increase or decrease in the mean, range, 25th 
quartile (lower) and 75th quartile (upper) values of SSAI for each month 
of analysis. The significant changes in the mean, identified using the 
two-sample t-test considering 5% significance level, for the below/above 
normal flow events are shown in grey. Considering the months of July- 
October, (months falling in the monsoon and post-monsoon season) an 
increase in the mean, maximum and upper quartile value is observed, 
thereby showing an increase in the severity of above-normal flow events 
(Fig. 1b). Similar observations can be made for the comparatively low 
flow months of February, March, April and May that exhibit significant 
change (at 5% significance) in its mean. It is interesting to note that in 
the pre-monsoon season both the frequency and severity of above- 
normal flow events have increased in the recent time period, i.e., T2 
as compared to T1. Further, the severity of below-normal flow events in 
terms of mean, lower quartile and minimum value has increased 
considering the monsoon season (June-September). Similar observa-
tions are made for the months of November, December and January too. 
A decrease in the severity in terms of mean is observed for the months of 
February-May (significant at 5% significance). However, an increase in 
the severity in terms of the lower quartile value is observed for these 
months. It is interesting to note that the months in the monsoon season 
show change in the frequency and severity of below/above-normal flow 
events depending on the month of analysis. 

In order to ascertain the temporal change in the frequency and 
severity of below/above-near normal events, the SSAI values have been 
divided into three categories (as shown in the contingency tables in 
Fig. 9; First Table). Fig. 2 shows the temporal change (considering time 
periods T1 and T2) in the frequency of different categories of below/ 
above-near normal flow events for each month of analysis. It may be 
noted that for all months starting from January to December, the fre-
quency of below-near normal events has increased. Similarly, the fre-
quency of above-near normal events has also increased for the months of 
February-September. Thereby considering the months in the monsoon 
season (June-September), the frequency of near normal events has 
decreased and the frequency of both above- and below-near normal 
events have increased. Moreover, the severity of above-near normal and 
below-near normal events has increased (decreased) either in terms of 
mean, (upper quartile) lower quartile or (maximum) minimum values 
for almost all the months (Fig. 3). The significant changes in the mean, 
identified using the two-sample t-test considering 5% significance level, 
for all the three categories of below/above-near normal flow events are 
shown in grey. The pre-monsoon months of March and April show sig-
nificant increase in the mean severity of above-near normal events and 
significant decrease in the mean severity of below-near normal events. 
The month of May shows a significant decrease in the mean severity of 
below-near normal events. Next, considering the monsoon months of 
June, July and August significant change is observed in the mean 
severity of both above- and below-near normal events. For instance, the 
months of June and August show significant decrease in the mean 
severity of above-near normal events and July shows significant increase 
in the mean severity of above-near normal events. Furthermore, the 
post-monsoon season (October and November) shows significant 
decrease in the mean severity of below-near normal events. Thereby, 
alterations of the hydrologic cycle strongly impact the characteristics of 
the extreme events over time, and significant temporal changes are 
noticed in the recent decades (T2) as compared to past (T1). 

4.2. Hydroclimatic forcings behind hydrologic droughts as revealed by the 
network structures 

The proposed approach is based on the concept of network structures 
which provides the complete conditional independence structure that 

reveals the hydroclimatic forcings behind the hydrologic droughts. 
Figs. 5 (panel#1) and 6 (panel#1) show the network structures for the 
first model development period (1971–2000) considering one typical 
low flow (January) and high flow (July) month, respectively. The input 
variables (temperature-TE, precipitable water-PW, potential 
evapotranspiration-PE, pressure-PR, relative humidity-RH, soil 
moisture-SM, rainfall-RA, streamflow-ST; all inputs from the previous 
month) and the target variable (SSAI; current month of analysis) are 
represented by differently colored nodes and the association between 
any two variables is shown by a directed edge. Absence of an edge can be 
interpreted as the variables being independent or conditionally inde-
pendent and presence of an edge can be interpreted as the variables 
being directly dependent. Considering the month of January (a typical 
high flow month), SSAI (target variable) is directly dependent on 
streamflow and conditionally independent of all the other input vari-
ables. Streamflow is directly influenced by soil moisture, which is in turn 
directly dependent on rainfall and temperature. Further, relative hu-
midity is associated with rainfall, precipitable water and potential 
evapotranspiration. A possible reason for the indirect connection be-
tween rainfall and precipitable water could be the multiple factors 
affecting precipitation quantity like degree of saturation, atmospheric 
water vapor, and the presence of dynamic mechanisms which provide 
the cooling necessary to produce saturation. Similar network structures 
are identified for each month and the input variables directly influ-
encing SSAI are shown in Fig. 7. In Fig. 7, input variables are represented 
by colored squares; black color indicates no association or conditionally 
independent association and different shades of red indicates significant 
association with varying values of edge strengths (strength of associa-
tion). Considering other low flow months of December, February, 
March, April and May and the first model development period (Fig. 7a), 
streamflow emerges as the primary influencing variable for 1-month 
ahead prediction. For the months of May and December, in addition to 
streamflow, rainfall also shows direct association with SSAI. A probable 
reason can be the higher rainfall magnitude in the months of May 
(falling in the pre-monsoon season) and December (falling in the winter 
monsoon season) as compared to the other low flow months for the 
considered study area. 

Next, considering the month of July (a typical high flow month) and 
the first model development period (Fig. 6, panel#1), SSAI (target var-
iable) is found to be directly dependent on rainfall and precipitable 
water. Furthermore, the streamflow variations show direct dependence 
on soil moisture and rainfall, and relative humidity is directly associated 
with temperature, potential evapotranspiration and precipitable water. 
During high flow months, it is expected that the moderately sized 
catchment will almost be in a stationary state as the precipitation is quite 
continuous over time. Thus, the variation in extreme events will respond 
mainly to precipitation variation in time. Fig. 7b shows that precipitable 
water directly influences SSAI for August and September (other 
monsoon months) during the first model development period. Stream-
flow shows a direct association with SSAI in case of June (first monsoon 
month) and November. Thereby the complete conditional independence 
structure, as identified by the proposed approach, helps to identify the 
directly influencing variables and given these variables below/above- 
normal flow events are conditionally independent or independent of 
the other hydroclimatic forcings. 

4.3. Temporal change in the hydroclimatic forcings behind hydrologic 
droughts 

The time-varying association between hydroclimatic forcings and 
SSAI is assessed through the proposed BMA based temporal network 
approach. To start with, the first 30-year period is considered as the first 
model development period and the initial network structure is devel-
oped. The network structure is recursively re-developed after each τ 
years interval, denoted as ORI, as defined in the methodology section 
(Section 3.3). The value of τ is ascertained by assuming different values 
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(n = 1, 2, 3, …) and comparing the model performance for the contig-
uous model testing period. Four performance metrics namely, Correla-
tion coefficient (R), Nash-Sutcliffe Efficiency (NSE), Index of agreement 
(Dr), Coefficient of determination (R2) and Root Mean Square Error 
(RMSE) are utilized for assessment. Fig. 4 shows the month-wise per-
formance of the models considering the different values of n (1, 2 … 5 
years). It is observed that a value of n = 2 years and n = 3 years provides 
the best possible performance considering the months in the monsoon 
and post-monsoon season (June-November) and the months in winter, 
and pre-monsoon season (December-May), respectively. Thereby the 
prediction model needs to be re-calibrated after 2 and 3 years, consid-
ering the comparatively low flow and high flow months, respectively in 
order to capture the time-varying association among the hydro- 
meteorological variables. 

Considering the value of τ as 2 years, the corresponding model 
development periods (testing periods) are 1971–2000 (2001–2002), 
1973–2002 (2003–2005) … 1987–2016 (2017–2018) and considering 
the same as 3 years, the corresponding model development periods 
(testing periods) are 1971–2000 (2001–2003), 1974–2003 (2004–2006) 

… 1986–2015 (2016–2018) Thereby, the model is calibrated 9 times for 
the high flow months and 6 times for the low flow months, considering 
the entire time period (1971–2018) of the study. Figs. 5 and 6 show the 
time-varying temporal networks obtained for the 6 model development 
periods considering a typical low flow (January) and a typical high flow 
(July) month, respectively. For example, considering the month of 
January and the first model development period SSAI is directly 
dependent on streamflow, whereas for the second model development 
period (Fig. 5, panel#2), in addition to streamflow, SSAI also shows a 
direct dependence on temperature. Further, it is interesting to note a 
distinct change in the interaction among the other input variables also. 
For instance, soil moisture is conditionally independent of rainfall and 
temperature. Similar observations can be made for the third model 
development period also. Such changes in the interaction among the 
variables are accounted for by the modified rainfall pattern for the 
considered study area and a change in the terrestrial environment. 
Considering the fifth and sixth model development period, SSAI shows 
direct dependence on the streamflow and potential evapotranspiration 
in addition to other input variables. Change in climatic factors like high/ 

Fig. 4. Month-wise comparison of the different statistics value to identify the value of τ, considering the contiguous model testing period (2001–2018), best per-
formance is obtained considering the value of n as 2 years for the monsoon and post-monsoon season (June-November) and 3 years for the rest of the months 
(December to May). 

Fig. 5. Time-varying association of the hydroclimatic forcings (input) variables and SSAI (target variable; indicated as Y) over the years for the month of January 
(typical low flow month). The model development period is considered as a moving window of 30 years and considering the ORI of model calibration as 3 years the 
six model development periods are shown as 1 (1971–2000) to 6 (1986–2015). The input variables used are Streamflow (ST), Rainfall (RA), Soil Moisture (SM), 
Relative Humidity (RH), Pressure (PR), Potential Evapotranspiration (PE), Precipitable Water (PW) and Temperature (TE), all from the previous time-step. 
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low vapor pressure, increased/decreased radiation in the surrounding 
region and change in terrestrial environment may affect the influence of 
potential evapotranspiration over time. Next, considering the month of 
July and the first model development period SSAI is found to be directly 
dependent on rainfall and precipitable water. It is interesting to note 
that considering the second model development period (Fig. 6, 
panel#2), in addition to rainfall and precipitable water, potential 

evapotranspiration also shows a direct association with SSAI. The 
interaction between the other input variables is more or less similar with 
pressure remaining independent of all the other variables. This result 
contradicts the findings obtained for a typical low flow month, whereas 
the interaction between the variables drastically changes over the time. 
Considering the sixth model development period (1981–2010), SSAI 
shows a direct dependence on rainfall, relative humidity and 

Fig. 6. Time-varying association of the hydro-meteorological (input) variables and SSAI (target variable; indicated as Y) over the years for the month of July (typical 
high flow month). The model development period is considered as a moving window of 30 years and considering the ORI of model calibration as 2 years the nine 
model development periods are shown as 1 (1971–2000) to 9 (1987–2016). The input variables used are Streamflow (ST), Rainfall (RA), Soil Moisture (SM), Relative 
Humidity (RH), Pressure (PR), Potential Evapotranspiration (PE), Precipitable Water (PW) and Temperature (TE), all from the previous time-step. 

Winter Pre-Monsoon/ 
summer Monsoon Post-Monsoon

a) b)

Fig. 7. Time-varying association of the input variables and the drought index (SSAI). The input variables used are Streamflow (ST), Rainfall (RA), Soil Moisture (SM), 
Relative Humidity (RH), Pressure (PR), Potential evapotranspiration (PE), Precipitable Water (PW) and Temperature (TE), all from the previous time-step. Based on 
the obtained value ORI of model calibration of a) 3 years for the dry flow months, the six model development periods are shown as 1 (1971–2000) to 6 (1981–2010) 
and b) 2 years for the high flow months, the nine model development periods are shown as 1 (1971–2000) to 9 (1987–2016). SSAI for the low flow months show 
strong association with streamflow as compared to other input variables. However, considering the low flow months SSAI is strongly influenced by variables like 
precipitation, precipitable water and relative humidity. 
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precipitable water. A gradual shift in the directly dependent input var-
iables is observed considering the last two model development periods 
with increasing dependence of SSAI on soil moisture and potential 
evapotranspiration. 

Similar temporal networks are identified for each month and the 
input variables directly influencing SSAI are shown in Fig. 7. For 
example, considering the month of February, during the first model 
development period (1971–2000), SSAI is directly dependent on 
streamflow and potential evapotranspiration but conditionally inde-
pendent of precipitable water, pressure, temperature, relative humidity, 
soil moisture, and rainfall. Moreover, the strength of association be-
tween SSAI and streamflow is stronger considering the first three model 
development periods, i.e., 1971–2000, 1974–2003, and 1977–2006. 
Gradually the strength reduces over time as noticed for the fourth 
(1980–2009), fifth (1983–2012) and sixth (1986–2015) development 
periods. A closure observation reveals that the high variation in 
February streamflow series is noticed during the entire time-period with 
a significantly increasing trend till late 1990s and a decreasing trend 
afterwards. This leads to a changing below/above-normal flow events 
and alteration in the association of SSAI with streamflow over time. 

Based on the obtained results, it is interesting to notice that SSAI for 
the low flow months, namely, January, February, March, April, May, 
and December with the streamflow range of 1.83 to 249.55 cumec, is 
strongly associated with streamflow (Fig. 7a). Contrary to this, during 
the high flow months of June, July, August, September, October and 
November where the range of streamflow lies between 247.88 and 
6572.32 cumec, the dominant predictors are rainfall, precipitable water 
and relative humidity (Fig. 7b). Furthermore, the number of input var-
iables directly influencing SSAI, considering a particular model devel-
opment period for the high flow months is more as compared to the low 
flow months. As streamflow is the dominant predictor considering the 
SSAI of the low flow months with high strength of association, most of 
the information on the below/above-normal flow events can be 
extracted from streamflow itself making the contribution of other vari-
ables insignificant. However, considering the high flow months, most of 
the significant input variables show similar association with SSAI and 
information from all these variables is vital to explain the below/above- 
normal flow events. It can be clearly stated that the causal factors (input 
variables) of extreme events change temporally for a particular season as 

well as from one season to another. Thereby, it is vital to iteratively re- 
calibrate the model to successfully capture the below/above-normal 
flow events. 

4.4. Performance of the proposed time-varying approach 

The observed and predicted SSAI values obtained using the BMA 
based temporal network approach along with the different categories of 
below/above-near normal flow events depicted with different color 
gradations of red/blue are shown in Fig. 8. The near-normal events are 
shown in grey. The proposed approach shows satisfactory performance 
in capturing the events falling near normal to severe dry/wet flow 
events. However, considering the extreme and exceptional dry/wet flow 
events the model shows better performance in capturing these two wet 
flow categories as compared to these dry flow categories. Further, 
considering four different contingency tables, Fig. 9 shows the different 
categorizations of SSAI (maintaining the range of near-normal events as 
− 0.7, 0.7) and the efficacy of the proposed model to capture the same. 
The values mentioned in the diagonals (shown in grey) of the contin-
gency tables show that the observed and predicted values of SSAI fall in 
the same range, i.e., a near normal/below-near normal/above-near 
normal events have been correctly captured along with its severity 
range. For instance, considering the third type of categorization, 23 
(summation of last column) above-near normal flow events have been 
observed to be greater than 1.2. Out of these events, 18 (diagonal 
element) events have been correctly predicted to lie in this range. The 
remaining five events have been under-predicted as less severe above- 
near normal flow events (4) and a near normal flow event (1). Simi-
larly, considering the second type of categorization, 57 (summation of 
third column) below-normal flow events have been observed to lie in the 
range [− 1.2, − 0.7). 24 events have been correctly predicted to fall in 
this range and the rest of the events are predicted as either less or more 
severe above-normal flow events. It can be observed that as the range of 
SSAI is made smaller for categorization of below/above-normal flow 
events the model error gradually increases; however, the model per-
formance is satisfactory considering all the four categories. Overall, the 
SSAI as well the range are well captured by the proposed BMA based 
temporal network approach, due to its ability to re-calibrate the model 
and capture the time-varying characteristics among the variables. 

Fig. 8. Comparison of the observed (solid yellow) and predicted (dotted black) SSAI obtained using the proposed BMA based temporal network approach for the 
month-wise analysis. The positive and negative values of SSAI (above and below-normal flow events) are divided into nine categories as near-normal (N), moderately 
wet/dry (W1/D1), severely wet/dry (W2/D2), extremely wet/dry (W3/D3) and exceptionally wet/dry (W4/D4). The streamflow values for the contiguous testing 
period are also plotted in white. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Next, month-wise prediction performance of the proposed BMA 
based temporal network approach is assessed by comparing the 
observed and the predicted SSAI values (Fig. 10). The results show that 
the predicted values closely follow the observed values for many 
months, such as January, March, May, October and November. For the 
months of February, April, July and September, positive errors are 
noticed and for the months of June, August and December negative 
errors are observed. It is also interesting to note that as compared to the 
high flow months (the statics value lie in the following range: R =
0.85–0.91, RMSE = 0.50–1.13, NSE = 0.75–0.82, and Dr = 0.75–0.83), 
the performance of the model is comparatively better considering the 
low flow months (the statics value lie in the following range: R =
0.86–0.92, RMSE = 0.32–1.01, NSE = 0.75–0.87 and Dr = 0.80–0.91). A 
probable reason is the high variations in streamflow during the high 
flow months leads to extreme and exceptional above-near normal flow 

events that are complex in nature. Further, the uncertainty range 
considering the predictions at the 5th and 95th percentile is also shown 
in Fig. 10. It may be noted that all the observed values fall within the 
uncertainty range, except one observed SSAI value in the months of 
February and April. 

4.5. Comparison of the proposed approach with the other modelling 
approaches 

Performance of the BMA based temporal network approach is 
compared with three other modelling approaches: i) BMA based time- 
invariant network approach, ii) SVR based time-varying approach, and 
iii) ANN based time-varying approach. The performance statistics ob-
tained using all the three models are compared in Table 1 (the models 
are designated as M1, M2, M3 and M4 and the data series for month-wise 

Fig. 9. Compilation of four contingency tables comparing the observed versus predicted SSAI values divided into different categories based on the severity of the 
below/above-normal flow events. The first table shows the nine categories namely, near-normal i.e. [− 0.7, 0.7], moderately wet/dry, severely wet/dry, extremely 
wet/dry and exceptionally wet/dry and the efficiency of the prediction model in capturing the extreme events. For the following three tables the near-normal band is 
kept the same; however, the bands defining the below/above-near normal events are gradually changed in order to provide a detailed analysis of the model 
performance. 
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analysis is designated as S1). Furthermore, Fig. 11 shows that the BMA 
based temporal network approach successfully captures the mean and 
range of the SSAI values considering all the months of analysis. Moving 
our attention to the low flow months, it is clearly evident that the BMA 
based time-invariant network approach gives sub-power performance 
due to its inability to identify the temporal change in the causes-effect 
relationship. Moving on to the ML based time-varying approaches, the 
results indicate that for the low flow months, the model is able to 
reasonably capture the mean and range of SSAI, except for the months of 
January and May. However, considering the high flow months, perfor-
mance of the proposed model is better as compared to the ML based 
time-varying approaches. Month-wise analysis is also carried out with 
non-detrended series and the results are presented in Table 1 (data series 
for month-wise analysis is designated as S1_ndt) for all the four models. 
It may be observed that the analysis carried out after removing the trend 
shows a slightly improved performance as compared to using the non- 
detrended series. Overall, the ability of the proposed approach to cap-
ture the true dependence structure between the large pool of hydro- 
meteorological variables and drought index improves the prediction 
skill of the proposed model. 

Next, additional analysis is carried our considering SSAI for all the 
months as a single series. Having established the efficacy of the time- 
varying approach over the time-invariant counterpart results obtained 
using the three time varying approaches (temporal network, SVR and 
ANN based) considering all the months as a single series is shown in 
Fig. 12a. While carrying out the month-wise analysis it was observed 
that a unique set of predictors are identified for each month considering 

a particular time-period. When SSAI for each month is analyzed as a 
single series, it is observed that the set of predictors identified are 
dominated by the fact that most of the months (November-May) are low 
flow months as compared to the monsoon season (June-September). 
Thereby, the model performance deteriorates (the statics value using the 
proposed approach are: R = 0.69, RMSE = 0.70, NSE = 0.56, and Dr =
0.62; Table 1) in comparison to the month-wise analysis. The model is 
unable to specially capture the below/above-normal flow events for the 
high flow months due to the inability of the model to appropriately 
identify the predictor set. Fig. 12a also compares the performance of the 
three time-varying models utilizing the box-plots. In terms of capturing 
the mean and range of the observed data, the performance of all the 
models are comparable. However, when comparing the performance 
statics (considering the SVR (ANN) based time-varying approach and 
monthly drought index as a single series are: R = 0.50 (0.45), RMSE =
0.89 (0.99), NSE = 0.40 (0.38), and Dr = 0.43 (0.41); Table 1) it is 
observed that the proposed model out-performs the ML based time- 
varying approaches due to its ability to appropriately identify the 
complex mechanism associated with hydrologic drought. 

The prediction models developed so far can be utilized to provide 1- 
month ahead forecast of below/above normal flow events. In order to 
provide an outlook of the model performance with a longer lead time, 
results for 3-month ahead forecast are also presented in Table 1 and 
Fig. 12b. Considering a longer lead time (the statics value using the 
proposed approach are: R = 0.75, RMSE = 0.88, NSE = 0.66, and Dr =
0.73; Table 1), the model performance gradually deteriorates. The pri-
mary reason being the increase in the lag time of the influencing hydro- 

Fig. 10. Month-wise performance of the BMA based temporal network approach in capturing SSAI for all the contiguous testing periods, i.e. 2001–2018. The upper 
and lower bar shows the uncertainty range of prediction considering the 95th and 5th percentile respectively. Deviation of the predicted value from the corre-
sponding observed value is shown in terms of error as depicted by the color gradient. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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meteorological variable and SSAI. However, given the complex nature of 
tertiary hydrological variables, such as floods and droughts, the model 
very well captures the extreme flow events for the considered study area. 
With the availability of the data for the hydroclimatic forcings, that 
influence the hydrologic droughts, from different sources like the 

ground observations and reanalysis products, effective forecast with a 
lead time of 1 to 3-months can be provided using the developed model. 
Further on availability of the observed streamflow data the model 
should be re-calibrated at span of 2–3 years based on the identified ORI 
of model re-calibration in order to capture time-varying association 
among the hydroclimatic variables and extreme events. This time span 
may change based on the study area considered. 

5. Summary and conclusions 

Inherent non-stationarity owing to the impact of climate and 
terrestrial changes causes a gradual change in the characteristics of 
hydrological extremes. This study proposes a BMA based temporal 
network approach as an efficient modelling technique for capturing such 
slow moving changes and prediction of hydrologic extremes by assessing 
the time-varying cause-effect relationship between hydroclimatic vari-
ables and extreme events. Changing climate and dynamic terrestrial 
environment suggests a change in the characteristics of extreme events 
like flood and drought. Considering the river-basin used for this study, 
results indicate temporal change in the characteristics of extreme events. 
An increase in the frequency of occurrence during the time period of 
2001–2018 (with respect to the first model development period of 
1971–2000) of below-normal flow events can be observed with an 
increased severity especially during the monsoon season (June- 
September). Studies have established that change in climatic factors, 
such as high temperature, precipitation deficit, increased evaporation, 
reduced runoff and infiltration, caused due to combined effect of climate 
variability and human activities has reduced streamflow which might be 
a primary cause for increase in hydrologic drought (Kim and Jehanzaib, 
2020). Similar observations of change in frequency and severity are also 
made considering the non-monsoon months, hence establishing the 
temporality associated with the characteristics of extremes. Further, the 
benefit of applying the time-varying concept in prediction of extreme 
events is established by carrying out basin scale prediction. In the pro-
posed time-varying approach BMA is used to develop the network/graph 
structures that are re-iteratively updated to obtain a series of networks 
(temporal networks). This helps to establish the change in the causality 
of extreme events. In this technique, instead of learning a single static 
high scoring graph structure, the information from multiple probable 
graph structures is used to obtain the final graph structure, that are 
updated after a fixed time interval, which reduces the uncertainty while 
dealing with tertiary hydrologic variables like flood and drought and 
capture the temporal change in the causality of the extreme events in a 

Table 1 
Performance statistics for the different models and the four different data series.  

Lead time Data Series Model Performance statistics 

R RMSE NSE Dr R2 

1 month S1 M1  0.90  0.67  0.80  0.83  0.762 
M2  0.75  0.81  0.55  0.69  0.521 
M3  0.70  0.82  0.52  0.63  0.471 
M4  0.68  0.85  0.51  0.63  0.442 

S1_ndt M1  0.89  0.67  0.79  0.82  0.760 
M2  0.73  0.82  0.54  0.69  0.510 
M3  0.69  0.86  0.51  0.63  0.461 
M4  0.65  0.89  0.50  0.61  0.420 

S2 M1  0.69  0.70  0.56  0.62  0.458 
M2  0.50  0.89  0.40  0.43  0.239 
M3  0.45  0.99  0.38  0.41  0.186 
M4  0.43  0.99  0.35  0.42  0.180 

S2_ndt M1  0.67  0.71  0.55  0.62  0.450 
M2  0.49  0.91  0.39  0.42  0.230 
M3  0.43  0.98  0.36  0.40  0.185 
M4  0.41  1.01  0.35  0.40  0.170  

3 months S1 M1  0.75  0.88  0.66  0.73  0.521 
M2  0.63  1.02  0.47  0.54  0.402 
M3  0.63  1.10  0.42  0.53  0.396 
M4  0.54  1.15  0.32  0.45  0.245 

S1_ndt M1  0.75  0.89  0.64  0.73  0.522 
M2  0.62  1.06  0.45  0.54  0.395 
M3  0.61  1.10  0.41  0.52  0.391 
M4  0.50  1.21  0.29  0.43  0.242 

S2 M1  0.53  1.02  0.44  0.49  0.251 
M2  0.42  1.25  0.32  0.40  0.204 
M3  0.43  1.28  0.33  0.43  0.185 
M4  0.30  1.40  0.27  0.31  0.162 

S2_ndt M1  0.51  1.09  0.42  0.48  0.247 
M2  0.42  1.24  0.35  0.40  0.190 
M3  0.41  1.29  0.34  0.41  0.182 
M4  0.29  1.45  0.25  0.28  0.150 

(i) M1: BMA based temporal network approach, M2: SVR based time-varying 
approach, M3: ANN based time-varying approach, M4: BMA based time- 
invariant network approach. 
(ii) S1: Month-wise data, S2: All months as single series, S1_ndt: Month-wise 
non-detrended data, S2_ndt: All months as single series non-detrended data. 

Fig. 11. Comparison of the observed SSAI (Obs) and predicted SSAI obtained using the proposed BMA based temporal network approach (Pred-M1), BMA based 
time-invariant network approach (Pred-M2), SVR based time-varying approach (Pred-M3) and ANN based time-varying approach (Pred-M4). 
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non-stationary environment. 
As a typical example, 1-month ahead hydrologic drought prediction 

defined by a streamflow based index (SSAI) is carried out to study the 
efficacy of the proposed approach. Applying the concept of BMA based 
temporal networks, the results indicate that the proposed prediction 
model, in terms of model inputs and parameters, needs to be re- 
calibrated every 2 years and 3 years considering the high and low 
flow months respectively, in order to appropriately capture the time- 
varying association between the input and target variables. Based on 
the time-varying dependence structure obtained among the variables, 
drought index (SSAI) for the low flow months are strongly associated 
with streamflow. Contrary to this, considering the high flow months the 
dominant predictors are rainfall, precipitable water and relative hu-
midity. Results also show that the BMA based temporal network 
approach successfully captures the extreme events associated with both 
low and high flows. Further, dividing the extreme events into different 
classes based on the severity of below/above-normal flow events, the 
proposed model shows satisfactory agreement with the observed events. 
That is, the predicted SSAI values very well captures the severity of the 
below/above-normal flow events, with higher efficacy considering the 
above-normal flow events. The ability of the proposed approach to 
identify the conditional independence structure among a large pool of 
associated variables, considering the complexity associated with tertiary 
hydrologic variables and capture the time-varying association among 
the variables can be effective for analyzing complex hydrologic pro-
cesses. Overall, the findings of this study establish (i) the change in the 
drought frequency and severity over time, and (ii) benefit of the time- 
varying concept as an efficient approach for such complex hydrologic 
extremes exhibiting gradual change in its characteristics. Whereas the 

first issue is being realized/established for many hydrological variables 
at different places around the world, the second aspect is a valuable 
contribution in terms of a remedial measure to handle such cases 
through a proper assessment of time-varying cause-effect relationship 
between hydroclimatic variables and extreme events. 
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Appendix A. Mathematical details for development of the BMA based network approach 

The following section gives the mathematical details for evaluation of the BDe score, evaluation of the group score, development of the Markov- 
chain and factorization of the final graph structure. 

Fig. 12. Comparison of the observed and predicted SSAI obtained using the proposed BMA based temporal network approach (Pred-M1), SVR based time-varying 
approach (Pred-M2) and ANN based time-varying approach (Pred-M3) for the drought index for all the months as a single series, a) & b) 1-month lead and c) & d) 3- 
month lead. The scatter plot shows the results obtained using the proposed model. 
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Evaluation of the BDe score 

The score of each graph structure, also known as the BDe score, (Geiger and Heckerman, 2002) is the posterior probability of the structure 
evaluated as, 

P(G/D)∝P(D/G)P(G) =
∏n

i=1
S(Xi,Pai/D) (1)  

where, G refers to the network structure among the variables, D represents the data set, S is a score function dependent on variable Xi, and Pai is the 
parent set of variable Xi. 

Scoring of the topological orders (Θ) 

Each order Θ receives a score R(Θ/D)equal to the sum of the scores of all graph structures in the order. 

R(Θ/D) =
∑

G∊Θ
P(G/D) (2) 

The score of each node’s possible parent sets is computed and efficiently used as the sum of the scores of all the graph structures compatible with a 
particular order (Friendman and Koller, 2003). The score of the order is evaluated as the product of the node score sums over possible parent sets. 

R(Θ/D) =
∑

G∊Θ
P(G/D)∝

∏n

i=1

∑

Pa∊Θi

S(Xi,Pai/D) (3)  

Construction of the Markov chain 

A chain with stationary distribution proportional to R(Θ/D)is produced by a Metropolis-Hastings algorithm with acceptance probability, 

ρ = min

{

1,
q
(
Θj/Θ’

)
R(Θ’/D)

q
(
Θ’/Θj

)
R
(
Θj/D

)

}

(4)  

where q
(
Θ’/Θj

)
is the probability of proposing a move to Θ’ from Θ, and can be any move in the space of orders. The simplest move is flipping two 

nodes in the order while leaving the position of others unchanged. Upon convergence, order-MCMC provides a sample of an order Θ⋆ from a dis-
tribution proportional to the score R(Θ/D) over the space of possible orders of the nodes of the graph structure. Given a sampled order, a network 
structure is selected by sampling the parents of each node independently according to the scores of its permissible parent sets. 

Factorization and parameter learning of the final graph structure 

Let X1,X2,...,XNbe N random variables with a known graph structure (directed graph). The joint probability distribution, also known as the global 
probability distribution, depends on a set of local probability distributions, one for each node/variable. It can be expressed as follows, 

P(X1,X2, ...,XN) =
∏n

i=1
p(Xi/pai) (5)  

where p(Xi/pai) is the local conditional probability associated with node i. A specific form of the factorization, given by the Markov property of BNs 
(Korb and Nicholson, 2004), states that every random variable Xi, directly depends only on its parents. Thereby the conditional probability of any 
variable Xi given rest of the variables can be written as, 

p(Xi/rest) = p(Xi/pai) (6) 

In order to identify the local probability distribution two methods namely, Bayesian parameter estimation and maximum likelihood parameter 
estimation can be utilized (Scutari, 2017, 2010). In this study, MLE is used to learn the parameter set Φof the joint probability distribution function of 
the variables that can be represented as, 

P(X1,X2, ...,XN/Φ) =
∏n

i=1
p(Xi/pai, θi) (7)  

where θiis the vector of parameters for the conditional distribution of xi and Φ = (θi, ..., θN). Given the training data X = {x1, ..., xm} where xl = (xl1,

..., xln)’ and M is the number of observations for each variable, the log-likelihood of Θwith rest to X is computed as, 

log
(Φ

X

)
=

∑M

l=1

∑N

i=1
logp(Xli/pai, θi) (8) 

The likelihood function as given in equation 5, which decomposes according to the network structure, thereby, the MLEs for each node is computed 
independently (Neapolitan and Jiang, 2007). The local probability distribution is extracted from the fitted probabilistic graphical model (Scutari, 
2017). The probabilistic distribution is used to predict the target variables given the directly influencing input variables. 
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