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A B S T R A C T   

Study region: Mahanadi River Basin in India 
Study focus: This study explores the effect of climate change and human-induced farming and 
construction activities on soil erosion in a rainfed basin during two time periods viz. 1981–2000 
and 2001–2019. This study assesses erosion using the Geographic Information System integrated 
Revised Universal Soil Loss Equation (GIS-integrated RUSLE) model. Three different analyses are 
designed to assess the effect i) combined effect of change in all the RUSLE factors over these two 
time periods, ii) effect of only land use/cover change (LULC), and iii) only rainfall change impact 
on erosion rate. A modified sediment delivery ratio (SDR) has been proposed and the model 
performances are validated using the observed Sediment Yield data. 
New hydrological insights for the region: The results indicate an overall decrease in the erosion rate 
as a combined effect of change in all the factors, but at the same time, an increase in the spatial 
extent of the areas affected by soil erosion is noticed. The mean soil erosion rate varies between 
37.02 tons ha⁻1 yr⁻1 in 1981–2000 and 31.89 tons ha⁻1yr⁻1 in 2001–2019, with a 40% decrease in 
the maximum erosion rate, while the total and mean erosion rates are both down 13.85% 
compared to 1981–2000. The analysis suggested overall effect of the change in rainfall is more 
profound on erosion than LULC change.   

1. Introduction 

Climate change is defined as the change in climate conditions, such as long-term shifts in temperatures and weather patterns that 
continue to occur for a longer time, usually decades or more (IPCC, 2014). The rising temperature across the globe leads to an increase 
in the atmosphere’s moisture content (Wang et al., 2021, 2022). Eventually, the regional weather circulation patterns are influenced 
by the elevating water vapor concentration in the atmosphere. It results in shifting of weather circulation patterns affecting the fre-
quency, severity, and amount of heavy rainstorms throughout the year (Wang et al., 2017; Myhre et al., 2019). 

In many regions throughout the world, climate change is predicted to affect soil erosion, which will have an impact on ecological 
systems and social well-being (Eekhout and de Vente, 2022). 

Soil erosion, in general, is a detrimental hydro-geological phenomenon that leads to a loss of soil fertility due to the degradation of 
plant nutrients in surface soil and promotes water pollution by increasing sedimentation. It involves the detachment, transportation, 
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and deposition of particles of soil transferred from place to place. According to the FAO-led Global Soil Partnership, 75 billion tonnes 
(Pg) of soil are lost annually from agricultural areas around the world, resulting in an economic loss of US$400 billion each year 
(Borrelli et al., 2017). 

During the soil erosion phenomenon, water plays a vital role, which is exacerbated by anthropogenic activities almost worldwide 
(Gabriels and Cornelis, 2009). Specifically, the change in climate and Land Use Land Cover (LULC) through extreme hydrological 
cycles are one of the leading causes of soil erosion (Borrelli et al., 2020). It affects a range of physiochemical soil characteristics that 
drive infiltration and erosion mechanisms. Most of the previous studies over worldwide provided valuable information about soil 
erosion in the context of climate change, e.g., rainfall erosivity is examined for various climate models and scenarios adopted by the 
Intergovernmental Panel on Climate Change (IPCC), while other factors such as LULC are held constant (Chakrabortty et al., 2020; Pal, 
Chakrabortty, 2019; Gupta and Kumar, 2017; Khare et al., 2017; Doulabian et al., 2021), in context of both climate and LULC change 
(Op de Hipt et al., 2019; dos Santos et al., 2021; Belay and Mengistu, 2021; Pal et al., 2021) to observe changes in erosion using various 
models, taking spatiotemporal variability into account. 

Although several studies have been done on the coupled and individual effects of climate and LULC variations on soil erosion, the 
background is still not fully grasped in terms of comparing variations in erosion rate by varying specific RUSLE model factors such as 
rainfall erosivity (R), crop management (C), conservation practice (P) while retaining other factors constant. To show the variations of 
climate change and LULC change, the studies have used various models including SHETRAN (de Hipt et al., 2019), SWAT (dos Santos 
et al., 2021), USLE (Mondal et al., 2015) and RUSLE (Belay and Mengistu, 2021)(. Only a few studies have considered the changes in 
land use and vegetation growth along with the effects of climate change on soil erosion because of the complexity (e.g., cultural, 
socioeconomic, ecological and political) (Li and Fang, 2016). Considering, the variation in LULC, leading to a change in P factor, 
changes in rainfall reflecting the change in R factor, change in NDVI (normalized difference vegetation index) resulting in a change in C 
factor, K (soil erodibility) and LS (Slope Length and Steepness), the RUSLE model can efficiently show the effect of land use pattern 
and, the erosive power of rainfall on the erosion rate. As a result, it is essential to decouple the effects of rainfall and LULC change in 
order to understand if there is any individual effect over a specific region. 

Many earlier studies have verified the effectiveness of various erosion-quantifying physical models (Liu et al., 2006; Wu and Chen, 
2012). But in order to drive the physical models, enormous amounts of data are needed, which is difficult and problematic for studies 
that take place over a lengthy period of time over a larger area (Borrelli et al., 2017). 

Among all the empirical models, the Revised Universal Soil Loss Equation (RUSLE) is known for its versatility in field 

Fig. 1. Study area showing major stream network, districts and sediment gauge stations within the basin.  
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implementations and for being a standard tool for the adoption of conservational planning (Mahala, 2018). In India, runoff and soil loss 
data are limited and are usually obtained from gauging stations only (Patil et al., 2008). However, soil loss in ungauged watersheds 
needs to be determined accurately which is strenuous to quantify because the variables included in the erosion mechanism are 
complex. For the same, remote sensing (RS) and geographic information system (GIS) are highly effective techniques for studying soil 
erosion (Jena et al., 2018; Gupta and Kumar, 2017). The RUSLE model integrated with RS and GIS techniques provides usera -friendly 
tool for identifying, quantifying, and mapping spatial distribution and prioritizing soil erosion-prone areas efficiently and affordably, 
which helps with improved planning and conservation activities (Eniyew et al., 2021). 

Thus, the study aims to evaluate the soil erosion for two successive time periods, viz., 1981–2000 and 2001–2019 in the light of 
changing rainfall and LULC change by alternatingly varying various factors and keeping a particular factor constant for a control time 
period, i.e., 1981–2000, to assess the erosion causing factors and resulting sedimentation towards downstream regions. 

Towards this, RS and GIS are integrated with the RUSLE model for basin-scale soil erosion assessment, and a rain-fed river basin, 
namely the upper part of the Mahanadi basin, being susceptible to water erosion, is considered as the study basin. There is a change in 
climate shift towards the end of the 20th century (around the 2000 s) (Houghton et al., 2001; Swanson et al., 2009; Wuebbles, 2018). 
Thus, the temporal length of this study has been divided into two periods to assess the effect of this remarkable climate change on soil 
erosion. The model outputs are validated using Sediment Delivery Ratio (SDR) approach. The approach can be used in other areas 
where observational data is scarce. 

2. Materials and methods 

2.1. Study area 

The upper Mahanadi River basin covering the northeastern Deccan plateau area of the Mahanadi River basin between the latitude 
of 20.16◦N and 22.75◦N and longitude of 80.5◦E and 82.5◦E is selected for this study (Fig. 1). The Mahanadi River is India’s seventh 
largest river, and it flows from west to east. It is draining a total coverage of 141,600 sq. km representing 4.30% of India’s entire 
geological area (Pichuka and Maity, 2017; Asokan and Dutta, 2008). The total basin area of the upper Mahanadi basin is 58,711 sq. km 
with a perimeter of 2287 km including sixteen districts. The important crops cultivated in the region include rice, groundnut, sug-
arcane, millets, and vegetables. The average maximum temperature is 39.56 ◦C, while the average lowest temperature is 20.01 ◦C. The 
average highest relative humidity in the basin is 82% and the average lowest relative humidity is 31.6% (Water year Book, CWC, 
2014). The basin is located in the agro-climatic area of the Eastern Plateau and Hills (Water year Book, CWC, 2014). The morphology of 
the Mahanadi upper sub-basin varies, with the dominating mountainous terrain in the northern upper section having elevations 
ranging from 196 to 1136 m. Agricultural land covers the majority of the basin, accounting for more than half of the total basin area. 
Soil texture in the study area is categorized as chromic vertisols, ferric luvisols, lithosols, and chromic luvisols. Ferric luvisols account 
for a large proportion of the basin, being prone to water erosion, as it has medium to low tolerance to yield reduction and is moderately 
susceptible to degradation (Stocking and Murnaghan, 2013). The assessment of soil erosion is important for the basin, given the 
physiographic and socio-economic characteristics of the basin. 

2.2. Description of data used 

Digital Elevation Model (DEM), Land Use Land Cover (LULC) map, rainfall data, Normalized Difference Vegetation Index (NDVI) 
map, and soil characteristics, such as sand, silt, and clay content and organic matter, are essential for the RUSLE model. 

Daily rainfall data with a spatial resolution of 0.25◦ × 0.25◦ is obtained from India Meteorological Department (IMD) for 
1981–2019. The entire length of data is divided into approximately two halves: 1981–2000 and 2001–2019, to assess the spatio- 
temporal variation in soil loss, considering the pre-2000 period as the base period. 

The soil characteristics, i.e., percentages of sand, silt, clay, and organic carbon content, are obtained from Harmonized World Soil 
Database (HWSD), version 1.2, with 30 arcs spatial resolution (~900 m), available at the Food and Agriculture Organization of the 
United Nations. 

The DEM of the study area with a 30 m spatial resolution is obtained Shuttle Radar Topography Mission (SRTM). It is used in the 
computation of topographic parameters, such as slope length and steepness factor. 

The calculation of the Normalized Difference Vegetation Index (NDVI) map and the supervised classification of land use/land cover 
(LULC) map are carried out using Landsat 5 satellite imageries for the years 1985, 1990, and 2010 and Landsat 8 imagery for the year 
2015. 

Image processing is carried out by Google Earth Engine (GEE), and ArcGIS (version10.3) is used for developing spatial maps of 
various input variables of the RUSLE model. Since prior to the 1990 s, Landsat imageries did not cover the entire study area, and 
significant changes are seen over a 5-year period following the 1990 s. Therefore, we considered 1990, 1995, 2010 and 2015 for the 
calculation of NDVI and for the preparation of LULC map. The calculation of median NDVI and supervised classification of LULC for the 
years 1985, 1990, 2010, and 2015 is carried out using the GEE. 

The sediment yield data for two-time frames are collected from the Central Water Commission (CWC) sediment concentration 
measuring stations of the upper Mahanadi basin, extracted from the hydro-meteorological water yearbook of CWC. The different 
sediment gauge stations along the upper Mahanadi basin are shown in Fig. 1. 
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2.3. Model description 

The RUSLE model is used for the assessment of soil erosion. It simplifies the complex physical mechanism for the long-term rate of 
soil erosion over an extensive area while retaining the main factors affecting the mechanism. For the forest and agricultural water-
sheds, RUSLE has been extensively employed to evaluate annual average soil erosion through enhanced methods to compute the soil 
erosion parameters (Renard et al., 1996). It is currently the most known modeling tool for simulating actual soil potential from coarser 
to finer spatial scales (Behera et al., 2020). According to Renard et al. (1996), the RUSLE factors are computed using rainfall, LULC, 
topography, and soil data. After that, the dynamics of streamflow and soil erosion can be assessed using a direct correlation between 
rainfall and runoff. This approach is broadly adopted to evaluate the soil loss, and therefore, its hazard assessment guides in reha-
bilitating the areas prone to erosion by adopting appropriate management policies (Biswas and Pani, 2015; Ostovari et al., 2017). 

2.4. RUSLE model parameterization 

The RUSLE model comprises five input factors to compute the mean annual soil erosion in a region. The formulation is expressed as: 

A = R × K × LS × C × P (1)  

where K indicates the soil erodibility factor (ton ha-1MJ-1mm-1), R indicates the rainfall erosivity factor (MJ mm ha-1 h-1 yr-1), LS 
indicates the topographic factor (dimensionless), P is the conservation practice factor (dimensionless) (0− 1), C indicates the cover 
management factor (dimensionless) (0–1.5), A indicates the mean annual potential soil loss (tons ha-1 yr-1). All these factors are 
discussed one by one. 

2.4.1. Rainfall erosivity factor 
Rainfall erosivity factor (R) is the potential of rainfall to separate the soil particles from the soil layer. It is the measure of the erosive 

strength of rainfall. It depends on the intensity, duration, and volume of the precipitation and it can be calculated as a specific 
rainstorm or sequence of rainstorms to calculate erosivity cumulatively. The most common type of erosion in barren land is splash 
erosion. The value of R factor is computed from Eq. (2). It was originally developed by Wischmeier and Smith (1978) to establish the 
relation between rainfall depth and rainfall erosivity and afterward amended by Arnoldus (1980) for the inclusion of monthly rainfall 
dynamics. 

R =
∑12

i=1
1.735 × 10

(

1.5×log

(
Pi

2
P

)

− 0.08188

)

(2)  

where P is the average annual rainfall magnitude (mm), Pi is the rainfall of ith month (mm), R is an average rainfall erosivity factor (MJ 
mm ha-1h-1 yr-1). 

2.4.2. Soil erodibility factor 
Soil erodibility factor (K) is the vulnerability of the top layer of soil to erosion, sediment transport capacity, and runoff rates under 

standard conditions. It is measured as the soil loss on a 22.13 m long plot with 9% slope, kept in constant fallow, tilled along the slope 
of a hill (Weesies et al., 1998). The K factor value is calculated by adopting the Eq. (3) given by Wischmeier and Smith (1978). 

K =
1.2917

(
2.1 × 10− 4 × M1.14(12 − OM) × 3.25 × (S − 2) + 2.5 × (ρ − 3)

)

100
(3)  

where OM refers to the % of organic matter content in the soil; S indicates the value corresponding to structural classes (1 for very fine 
granular; 2 for fine granular; 3 for medium or coarse granular and 4 for blocky, platy or massive structure); ρ indicates the value 
corresponding to the permeability class (1 for rapid; 2 for moderate to rapid; 3 for moderate; 4 for slow to moderate; 5 for slow and 6 
for very slow permeability rate); and M is a function of soil primary particle size fraction given by: M = (% of silt + % of very fine sand) 
x (100 - % of clay). The study area has three types of soil with different soil characteristics as used in Eq. (3). 

2.4.3. Topographic factor 
The slope length and steepness, collectively called the topographic factor (LS), is the linear distance joining the beginning of the 

overland flow and the point where slope length lowers for the deposition process. The equation for evaluating the LS factor in the 
RUSLE model considers rill erosion, unlike the USLE model. In specific, the moving process of the erosion mechanism is controlled 
mainly by the topographical factor. The LS factor is computed from Eq. (4) (Mitasova and Mitas, 2001): 

LS =

(

FA ×
CS

22.13

)0.4

×

(
Sinθ

0.0896

)1.3

(4)  

where FA is the flow accumulation and CS is the cell size of the DEM data (in our case, 30 m), θ is the slope angle of the drainage basin 
(in degrees). 
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2.4.4. Cover management factor 
The cover management factor (C) is the ratio of soil loss from cultivated land to relative soil loss from continuous, clean tilled fallow 

land in specific conditions. Several researchers allocated the C factor on the basis of LULC. However, the changes in vegetation cover 
and density were not included in these analyses. Therefore, in this analysis, Normalized Difference Vegetation Index (NDVI) is used to 
consider variability between scrubland and forests. To calculate the NDVI for every pixel in the study area, Eq. (5) is used (Jena et al., 
2018). 

NDVI =
(NIR − Red)
(NIR + Red)

(5)  

where NIR and Red are the measures of spectral reflectance obtained in the near-infrared and visible spectrum, respectively. The value 
of NDVI lies between − 1 and + 1. Within the near-infrared part of the electromagnetic spectrum, the photosynthetically active 
vegetation exhibits high reflectivity as compared to the Red portion. Therefore, very high values of NDVI are observed for active 

Fig. 2. Data requirement and technical flowchart for the study using RUSLE model.  
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photosynthesis vegetation. The C factor is computed from Eq. (6) (Durigon et al., 2014). 

C = e− 2NDVI
1− NDVI (6)  

2.4.5. Support practice factor 
The support practice (P) is the ratio between soil loss through a particular management practice to the relative loss with up and 

downslope plowing (Renard et al., 1996). The P factor in the current study is allocated in accordance with the management practices 
for different LULC as represented in Table S1 in Supplementary Material. The value varies between 0 and 1, with the highest value for 
land without management practice and the lowest value for land with management practices. 

2.5. Climate change effect analysis 

The most severe environmental alteration is expected as a consequence of climate change (Perović et al., 2019). The soil erosion 
quantification is subject to vary in the perspective of climate change in response to changes in rainfall, vegetation indices, and LULC 
over time periods. The magnitude and intensity of rainfall directly affect the RUSLE model. As a result, a modified evaluation of the 
Rainfall erosivity (R) factor for different time periods is inevitable under the climate change aspect. In this regard, the R factors for two 
time periods, 1981–2000 and 2001–2019, are determined. 

The most significant connection among the soil, soil moisture, and the atmosphere is the vegetation (Chuai et al., 2013). Seasonal as 
well as annual climate variations affect natural vegetation (Bagherzadeh et al., 2020; Zhang et al., 2011; Cui and Shi, 2010). In this 
study, the NDVI for the years 1990 and 1995 are calculated and the spatial map for both years are averaged using raster calculator in 
the ArcGIS environment to prepare a spatially distributed NDVI map for the time frame 1981–2000. Similarly, the spatially distributed 
NDVI map for the years 2010 and 2015 are averaged to account for soil loss estimation for the period of 2001–2019. 

Change in land productivity that contributes to LULC change is also a crucial aspect to assess soil erosion. Land use planning and 
ecological growth need a thorough knowledge of the spatiotemporal variation of soil erosion on account of LULC change (Keesstra 
et al., 2016). The spatially distributed LULC map for both the time periods, viz. 1981–2000 and 2001–2019 are computed by 
calculating the average of the spatially distributed LULC map of 1990 and 1995 for the time period 1981–2000 and the LULC maps of 
2010 and 2015 are used to prepare the LULC map for the time frame 2001–2019. The average map is prepared using the raster 
calculator in the ArcGIS environment. Furthermore, the topographic factor, soil type, and soil texture are subject to very slow al-
terations over the years (Behera et al., 2020). Thus, the soil erodibility factor (K), a function of soil type, and the topographic factor 
(LS), a function of slope length and steepness, are considered as constant in this study. 

In this study, three analyses are performed keeping the K factor and LS factor as constant in all the analyses to delineate the effects 
of other factors related to climate and terrestrial conditions on soil erosion. Firstly, the coupled effects of three changing factors, viz. 
the R factor, C factor and P factor on erosion rate are observed by updating all the three factors for the time periods of analysis (pre-and 
post-2000). Subsequently, the individual effects of change in rainfall and LULC over time are analyzed. For that, in the second analysis, 
the influence of LULC variations on erosion rate is assessed by considering 1981–2000 as the control period, varying C and P factors 
and assuming the R factor as constant throughout the time. In the last analysis, the influence of changing rainfall on erosion is assessed 
by taking the P factor as constant over time, while the C factor and R factor are varied by anticipating 1981–2000 as the control period. 

Using the methodology discussed for calculating C factor, R factor, and P factor, different maps are prepared for both time periods 
of 1981–2000 and 2001–2019. Furthermore, these factors are multiplied with K factor and LS factor in developing a potential soil 
erosion map intended for respective time periods. The operational flow chart of the overall methodological approach is shown in Fig. 2. 

2.6. Validation using sediment yield data 

When soil erodes, a portion of it is moved through the channel section and makes a significant contribution to sediment yield, 
whereas the remaining portion is stored in the channel. Multiple soil erosion and sedimentation studies have been conducted to 
analyze the relationship between soil loss inside a drainage basin and Sediment Yield (SY) at the outlet point. The Sediment Delivery 
Ratio (SDR), a lumped concept, can be used to calculate the SY. The SDR is defined as the ratio of sediment yield calculated at a channel 
point to gross highlands soil erosion, including sheet, rill, gully, and channel erosion. However, the RUSLE only estimates rill and inter- 
rill or sheet erosion, which is regarded as a significant contributing factor to gross erosion. This concept of SDR takes into account a 
number of processes that occur throughout on-site soil erosion and the sediment yield at the outlet (Van Rompaey et al., 2001). A 
variety of factors can influence SDR, including channel density, sediment source, proximity to the mainstream, texture, basin area, 
length, slope, rainfall-runoff factors, and land use/land cover. The SDR of a watershed with steep slopes is greater than that of a 
watershed with flat and broad valleys. In general, the lesser the SDR, the greater the area size. Several SDR models have been 
developed and utilized to determine SY as tabulated in Table S5 in Supplementary Material. However, the selection of the best SDR 
model for a certain basin is cumbersome, owing to the lack of studies involving this technique using observational data. The drainage 
area method as given in Eq. (7) is the most commonly and widely used method for estimating SDR (De Vente et al., 2007). 

SDR = a × D− b (7)  

where D is the drainage basin area (in km2); and a and b are correction factors related to the physical characteristics of the basin. The 
adjustment b variable has a negative sign as it signifies that with an increase in the basin area, the SDR decreases. The various SDR 
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models extensively used in the literature are provided in Table S2 in Supplementary Material. In this study, we have used observed 
sediment yield values obtained from CWC’s sediment concentration measuring stations in the study basin. The average SY data is 
collected from 1981 to 2019. The average SY for the periods is calculated for twelve sub-basins of the study basin, namely, And-
hiyarkore, Bamnidih, Baronda, Basantpur, Ghatora, Jondhra, Kotni, Manendragarh, Rajim, Rampur, Seorinarayan and Simga having 
sediment gauging station (Fig. 1) for the periods 1981–2000 and 2001–2019. Using these data, the parameters in Eq. (7) are calibrated 
for the study basin as discussed later in Results and Discussion section. Finally, the estimated sediment yield (SYest) is evaluated as 
follows: 

SYest = SDR × GSL (8)  

where GSL is the gross soil loss and both SYest and GSL are in tons.yr-1. 

3. Results and discussion 

The spatial variation of mean annual precipitation for two successive periods 1981–2000 and 2001–2019 is shown in Fig. S1a and 
Fig. S2b, respectively in Supplementary Material. It is observed that average rainfall per year differs from 915 mm to 1623 mm, with 
the maximum value confined to the northern part of the basin during the years 1981–2000 and from 960 mm to 1414 mm with the 
maximum value found in the southern and most of the northern areas of the basin during 2001–2019. The rainfall erosivity factor (R), 
as shown in Fig. S1c and S1d in supplementary material ranges between 2029 and 8168 MJ mm ha− 1 h− 1 yr− 1 during 1981–2000 and 
from 40 to 4609 MJ mm ha− 1 h− 1 yr− 1 during 2001–2019. It is noticed that the northwestern part of the basin, such as the Kawardha 
and Mungeli districts, having low R factor during 1981–2000, is found to have a slight increase in R factor during 2001–2019. On the 
other hand, the central part of the basin, such as Bemetara, Baloda Bazar, Raipur, and Mahasmund, is found to have more drastic 
increase in R factor during 2001–2019. The southeastern part of the basin spanning over the Gariaband and Kanker districts having 
medium R factor during 1981–2000 exhibits more R factor during 2001–2019. Similarly, the southern part of the basin (Balod, 
Dhamatari and Durg districts) is characterized by medium R factor during 1981–2000 that reduces during 2001–2019. The rest of the 
basin area is noticed to have more or less steady R factor for the considered time periods. It is observed that the higher R factor is 
spatially distributed over northern and southwestern regions during 1981–2000, and over northern and eastern parts during 
2001–2019. This may be the result of erratic rainfall across the study area and the similar phenomena were also reported for Huaihe 
River Basin, China by Wei et al. (2022) and Yangtze River basin, China by Huang et al. (2013). Peng et al. (2022) suggested that the rise 
in rainfall intensity would result in higher erosion rates. Soil erodibility is a measurement of a soil’s cohesive character, which is 
governed by the physical and chemical characteristics of soil and thus influencing its erodibility potential. The spatially distributed K 
factor map is illustrated in Fig. S2a in Supplementary Material. The K factor varies as, 0.043 tons h MJ− 1 mm− 1 for clay soil, 0.065 ton h 
MJ− 1 mm− 1 for loam soil, 0.069 ton h MJ− 1 mm− 1 for sandy clay loam soil, and 0.075 ton h MJ− 1 mm− 1 for sandy loam soil. It is 
noticed that a large part of the basin is covered by sandy loam soil with a maximum K factor value. Lower K values are found for clay 
soil covering the least part (i.e., 0.029%) of the study area. In clay soil, the higher percentage of clay than sand has a more cohesive 
nature that binds the soil particles, thus reducing its susceptibility to erosion. 

The topographic factor defines the impact of slope steepness (S) and slope length (L) factors on soil erosion. The results represented 
in Fig. S2b in Supplementary Material shows that 94.25% of the watershed has LS value < 5, indicating a less varied topography of the 
basin. Correspondingly, 3.09%, 2.09%, 0.37%, 0.07%, and 0.09% of the basin have LS value in the range of 5–10, 10–25, 25–50, 
50–75, and > 75, respectively (Table S2 in Supplementary Material). 

NDVI is calculated to measure the C factor. The NDVI gives more detail regarding the density and condition of the vegetation cover. 
It better represents the spatial variation of the factor C for the two successive years, as illustrated in Fig. S3 in Supplementary Material. 
Low C factor values are associated with dense forests, while high values are associated with fallow lands and crop fields as observed 
from the results. The percentage of area covered under each class of C factor for two successive periods is compared in Table S3 in 
Supplementary Material. The C factor value ranging from 0.3 to 0.5 accounted for 88.39% of the study area during 1981–2000 that 
increased to 89.02% during 2001–2019. As soil surfaces are considered vulnerable to bare soil and pastureland, a higher value of the C 
factor indicates more susceptibility to soil erosion (Dash et al., 2021). Therefore, the higher range for the C factor of 0.7–1 implies 
increased soil erosion susceptibility since they are assessed as exposed soil surfaces. It is depicted that an insignificant rise in the area 
coverage made up 0.001% (1981–2000) to 0.007% (2001–2019) for the C factor value of 0.7–1. However, a decline is elucidated for 
the area coverage for the C factor value of 0–0.1, 0.1–0.3, 0.5–0.7 from 1981 to 2000–2000–2019. The C factor value of 0.1–0.3 is 
found to be decreased for some northwestern, southwestern and central parts of the basin, covering the districts such as Rajnandgaon, 
Kawardha, Bemetara, and Bilaspur, whereas it is found to be increased in the northeastern, southeastern and southern parts of the 
basin including districts like Korba, Dhamatari, Gariaband, and Mahasmund during 2001–2019. The decline in C factor values in some 
parts of the area over the years suggests a decrement in soil erosion rate. 

The P factor denotes the decreased soil erosion threat caused by supportive management structures implemented in a particular 
area. It’s value is allocated based on various LULC classes. The average of the LULC map for the years 1990 and 1995 (Fig. S4a in 
Supplementary Material) is considered to evaluate the P factor for the time period of 1981–2000 (Fig. S4c in Supplementary Material). 
Likewise, the average of the LULC map for the years 2010 and 2015 (Fig. S4b in Supplementary Material) is considered to evaluate the 
P factor for the time period of 2001–2019 (Fig. S4d in Supplementary Material). It is found that the maximum part of the basin is 
covered by agricultural cropland. Table S4 in Supplementary Material depicts the areal distribution for the LULC over two successive 
periods. It is observed that there is a decline in forest cover (25.5–22.93%) and fallow land (28.95–22.22%) from 1981 to 
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2000–2001–2019. However, there is an increase in water bodies (0.55–0.96%), agricultural cropland (35.84–39.05%), built-up 
(1.38–4.94%), and barren land (7.78–9.9%) over the years. This shows that most of the study area is affected by climate change. 
The P factor value ranges from 0 to 1. The maximum value for P factor in 1981–2000 is found to be surrounding some parts of the 
northern, southern and eastern basin area (Koriya, Manendragarh, Kanker, Mahasamund, and Baloda Bazar) that has been decreased 
during 2001–2019. However, the area of the basin covering the northwestern part of the basin (Kawardha and Mungeli) shows an 
increase in P factor value for the year 2001–2019 than in 1980–2000. Considering the outcomes of all the RUSLE factors for both the 
time periods, i.e., 1981–2000 and 2001–2019, three further analyses are carried out. 

The factors so prepared in raster map form are multiplied in the raster calculator in ArcGIS 10.3 system to obtain spatially 
distributed erosion map. The spatially distributed maps of soil erosion are reclassified into eight erosion classes by following the 
consumer-specified classification criterion. The erosion classes, along with the percentage of areal coverage for all three analyses, are 
provided in Table 1. The average annual potential soil erosion varying pixel-wise across the upper Mahanadi basin for all three an-
alyses are depicted in Fig. S5 in Supplementary Material. 

Overall, in all three analyses, the erosion rate including the maximum, mean and total erosion rate are observed to be reduced 
during 2001–2019 than during 1981–2000 period as depicted in Table 2. In the first analysis, the average annual soil erosion is 
estimated concerning the coupled effect of factors such as conservation practice (P) factor, crop management (C) factor, and rainfall 
erosivity (R) factor keeping other factors, namely topographic (LS) factor and erodibility (K) factor constant over the years. From the 
study, it is found that the mean soil erosion rate varies as 37.02 ton ha-1 yr-1 in 1981–2000 and 31.89 ton ha-1 yr-1 in 2001–2019, with a 
decrement of maximum rate from 2.5 × 105 ton ha-1 yr-1 (1981–2000) to 1.5 × 105 ton ha-1 yr-1 (2001–2019). The total erosion rate is 
about 217.35-million-ton yr-1(1981–2000) and 187.23 million ton yr-1 (2001–2019). The maximum erosion rate is decreased by 40%, 
whereas the total and mean erosion rate is decreased by and 13.85% with respect to 1981–2000. 

It is observed that, there is a gradual decline in soil erosion seen in the northern and eastern parts of the basin over the years. The 
region with the greatest percentage drop is found to be laid out with vegetation with a decline in rainfall over the years and are having 
reduced slope. The maximum soil erosion for both the time periods is found at the northern part of the basin, i.e., at Chirimiri, the 
largest city and a hill station with steep slopes of the Manendragarh district of Chhattisgarh (Fig. S5 in Supplementary Material). 
Furthermore, Habtu and Jayappa (2022) confirmed that the north and northeastern sections of their study region with hilly and 
mountainous topography have a moderate to extremely severe erosion vulnerability due to steep slopes and high rainfall. 

From the reclassified erosion map, it is found that the area under the negligible erosion group (5–10 tons ha-1 yr-1) covers the 
maximum part of the basin, while the least area is under severe erosion for both time periods. Nonetheless, it covers 67.4% of the area 
during 1981–2000, which climbs up to 71.5% during 2001–2019. This shows that it is highly likely for those places to face increased 
soil erosion hazards in the future. However, the rest of the reclassified erosion rates (Table 5) are observed to decline over the years for 
that basin area. This is attributed to the increasing spatial coverage of the study region as corroborated by other works (Allafta and 
Opp, 2022; Habtu and Jayappa, 2022). Besides, this could be due to change in rainfall, change in crop management practices, and 
LULC over the periods. Since rainfall acts as a vital contributor to the soil erosion processes, climate change is likely to affect soil 
erosion through changes in rainfall (Mondal et al., 2015). Soil erosion may be increased or decreased as a result of LULC changes. 
Changes in LULC (i.e., the spread of cultivated area) lead to increased soil erosion, which is expected to intensify with increased 
precipitation (Belay and Mengistu, 2021). 

The areal extent in terms of percentage for the change in erosion rate for the three analyses are illustrated in Table 3. The change in 
erosion rate along with the areal coverage for each categorized change rate for all three analyses is shown in Fig. 3. For the first 
analysis, almost 83% area of the study region exhibits a reduced change in the erosion rate during 2001–2019 as compared to the past 
time frame, i.e., 1981–2000. Nearly 19% area shows a negative change in erosion rate mostly across the northern and southern parts, 
wherein for 64% of the entire study area, the reduction lies in the range of − 5–0 tons ha-1 yr-1. It is found that the R and C factor 
declines during 2001–2019 prior to 1981–2000. Moreover, during 2001–2019, it is observed that there are more built-up areas and 
water bodies, less fallow land and forest areas influencing the P factor. All these factors (R, C, P) together represent the higher decline 
in erosion rate during 2001–2019 than 1981–2000. The rainfall erosivity factor (R) is an important factor that results in soil erosion 
(Wei et al., 2022). He et al. (2022) and Kabolizadeh et al. (2022) showed that the potential of erosion decreases along with the value of 

Table 1 
Percentage of basin area for different soil erosion class during 1981–2000 (control period) and 2001–2019 (according to three different analyses). 
Fig. 2 may be referred for the details of three analysis.  

Soil Erosion Class Erosion Range (ton ha-1 yr-1) Percentage of study area covered (%) 

Control Period First Analysis Second Analysis Third Analysis 

1981–2000 2001–2019 

Negligible 0–5  67.4  71.50  71.59  67.48 
Very low 5–10  4.44  4.04  4.13  4.40 
Low 10–20  6.36  5.68  5.68  6.39 
Slight 20–40  7.32  6.36  6.21  7.47 
Moderate 40–80  6.63  5.66  5.52  6.76 
High 80–160  4.32  3.65  3.67  4.19 
Very High 160–320  2.03  1.75  1.79  1.87 
Severe > 320  1.5  1.36  1.39  1.39  
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Table 2 
Maximum, mean and total erosion rate for all the three analyses during 1981–2000 and 2001–2019.  

Analysisa Assessment target 1981–2000 2001–2019 

Maximum erosion rate 
(tons/ha/yr) 

Mean erosion rate 
(tons/ha/yr) 

Total erosion rate 
(Million tons/yr) 

Maximum erosion rate 
(tons/ha/yr) 

Mean erosion rate 
(tons/ha/yr) 

Total erosion rate 
(Million tons/yr) 

First 
Analysis 

Assessing the coupled effects of all the 
factors on erosion rate 

2.60 × 105  37.02  217.35 1.57 × 105  31.89  187.23 

Second 
Analysis 

Assessing the impact of variations in 
LULC on erosion rate 

2.60 × 105  37.02  217.35 1.55 × 105  32.27  189.46 

Third 
Analysis 

Assessing the impact of changing rainfall 
shifts on erosion rate 

2.60 × 105  37.02  217.35 1.90 × 105  35.23  206.83  

a Fig. 2 may be referred for the details of three analysis 
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rainfall erosivity (R) factor. An effective indicator of soil erosion is vegetation cover, it can gradually reduce overall soil loss by 
protecting the topsoil from the direct effects of precipitation (Novara et al., 2019). There has been an increase in vegetation cover 
during 2001–2019 than 1981–2000 that result in a decrease in the C factor and thus the erosion rate. Other studies (Kavian et al., 2019; 
Almohamad, 2020; Macedo et al., 2021; Kabolizadeh et al., 2022) have made reference to this, and the findings of this study are similar 
with those. For this study, the SDR approach is used for validating the outcomes of this research. Our findings revealed that SY levels 
are overestimated. The substantial inaccuracies could be due to observations that were made with probable uncertainty and/or model 
development uncertainty. Our findings regarding overestimation of sediment yield quite resembled to the study done on sediment 
yield modelling in Tawi River of Jammu region, India by Rawat et al. (2022). Due to the great complexity of the sediment delivery 
mechanism and the necessity to examine the interrelationship between their intervenient components to adapt the equation, it is 
difficult to develop a universal equation to estimate the SDR in a basin (Walling, 1983). On that account, we adjusted SDR equation by 
Vanoni (1975) accordingly to minimize the disparity between the estimated and observed sediment yield (SYobs and SYest) for our study 
area. The twelve sub-basins are divided into two-thirds for calibration and one-third for validation purposes. Thus, 3-fold 
cross-validation is used to obtain a more accurate and dependable coefficient of SDR for the study basin. The value of a from Eq. 
(7) is optimized, considering a wide range of values from 0.05 to 0.5. The optimum value of a is selected based on the least RMSE 
between SYobs and SYest and a reasonable difference between calibration and validation error across the folds and two time periods. 
Results of 3-fold cross-validation reveal that Eq. (9) is the best suited for predicting SDR for the study basin (D in km2). 

SDR = 0.1 × D− 0.125 (9) 

The plot between the observed and predicted sediment yield data for both the time periods is represented in Fig. 4. The twelve 

Table 3 
Percentage of basin area for the change in erosion rate for the three analyses. Fig. 2 may be referred for the details of three analysis.   

Percentage of study area covered (%) 

Change in erosion rate (tons ha-1 yr-1) First Analysis Second Analysis Third Analysis 

< − 50  5.75  5.48  1.05 
-50 to − 25  3.79  3.47  1.33 
-25 to − 10  5.29  4.86  3.09 
-10 to − 5  3.21  3.25  2.88 
-5–0  61.82  65.17  73.84 
0–5  6.77  6.06  12 
5–10  2.91  2.30  2.61 
10 to- 25  3.98  3.24  2.08 
> 25  6.44  6.13  1.06  

Fig. 3. Change in erosion rate (ton ha-1 yr-1) showing (a) coupled effects of both rainfall and LULC, (b) individual effect of LULC while holding 
rainfall variation as constant, and (c) individual effect of rainfall variation while holding LULC as constant. 

S.S. Dash and R. Maity                                                                                                                                                                                               



Journal of Hydrology: Regional Studies 47 (2023) 101373

11

sediment gauge stations, along with their respective SDR, SYobs and SYest for both 1981–2000 and 2001–2019 time periods are rep-
resented in Table 4. Overall, it is observed that the gross soil erosion and the sediment yield over the basin reduces in 2001–2019 as 
compared to 1981–2000. 

A Spearman’s rank correlation analysis was performed for average annual rainfall and average annual soil erosion for both period 
of datasets. During 1981–2000, soil erosion and rainfall were strongly positively correlated (r = 0.525, p < 0.01). While, during the 
period 2001–2019, soil erosion and rainfall were moderately correlated (r = 0.160, p < 0.01). 

The preliminary correlation analysis suggests that the rainfall have a positive impact on the soil loss, while more detailed analysis is 
required to explore the full mechanism. Since, soil loss depends on the duration of rainfall, and more importantly rainfall intensity, the 
effect of rainfall frequency and intensity can show more positive correlation with erosion. 

A Similar type of study on the comparison of rainfall and erosion has been done earlier by various researchers. Martínez-Mena et al. 
(2020) evaluated the effects of various sustainable management practices on erosion in two rainfed systems in Spain. They found that 
the Spearman’s correlation between rainfall erosivity and soil erosion was found to be 0.52 with p < 0.01 and they found that erosive 
responses were correlated much more closely with the rainfall intensity than with the rainfall depth. Huang et al. (2020) found that 
Spearman’s rank correlation analysis showed actual soil loss related to annual rainfall positively. Strong correlation was (r ≥ 0.7) 
observed in more than 50% area and were statistically significant at 95% confidence level. 

The second analysis shows the impact of variation in LULC (P factor) on erosion rate. The maximum, mean and total erosion rate are 
found to be 1.55 × 105 tons ha-1 yr-1, 32.27 tons ha-1 yr-1 and 189.46 million tons yr-1, respectively. From the reclassified erosion map, 
as shown in Fig. S5 in Supplementary Material, it is found that the area under each erosion class is nearly the same as in the case of the 
first analysis conducted. The analysis shows that, while C and P factor are changed, keeping R factor constant, the maximum erosion 
rate is found to be almost the same as the erosion rate considering all the factors changing overtime in the first analysis. The mean 

Fig. 4. Average sediment yield during 1981–2000 and 2001–2019: (a) observed SY from gauge station, and (b) estimated SY using RUSLE.  

Table 4 
Tabular representation of sediment delivery ratio (SDR), observed and computed sediment yield along the basin for 1981–2000 and 2001–2019, 
considering the first analysis.  

Gauging station Area (km2) Sediment delivery ratio Observed sediment yield in tons/year Computed sediment yield in tons/year    

1981–2000 2001–2019 1981–2000 2001–2019 

Andhiyarkore 2.1 × 103  0.076839076 507616.3  207592.6667  281978.7  507707.2 
Bamnidih 9.6 × 103  0.063538598 2690081.3  279891.3889  4168963  3251909 
Baronda 3.1 × 103  0.073094128 564736.8  363319.0556  753989.1  603947.8 
Basantpur 5.8 × 104  0.050734547 11238611.9  4035206  10854604  9339915 
Ghatora 2.9 × 103  0.07375947 No Data  710026.1111  846895.9  1306786 
Jondhra 2.9 × 104  0.055254032 4252650.9  750625.2222  3713184  791675.6 
Kotni 6.9 × 103  0.066264112 No Data  4154052.667  796887.7  6368438 
Manendragarh 9.8 × 102  0.084509905 80334.0  849933.3333  366648.1  1496024 
Rajim 8.3 × 103  0.064717299 696740  710026.1111  1874181  1306786 
Rampur 3.4 × 103  0.072509667 563848.5238  750625.2222  1105717  791675.6 
Seorinarayan 4.7 × 104  0.052059476 No Data  4154052.667  7202100  6368438 
Simga 1.7 × 104  0.059317467 1830340.571  849933.3333  1703145  1496024  
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erosion rate and total erosion rate are slightly increased in the second analysis (32.27 tons/ha/yr and 189.46 tons/ha/yr, respectively) 
with respect to the first analysis (31.89 tons/ha/yr and 187.23 tons/ha/yr, respectively). Around 82.23% of the study region shows a 
decline in erosion rate with time, as illustrated in Fig. 3. Almost 17.06% of the study area indicates a decrease in erosion rate, 
particularly in the north and southern parts, with 65.17% of the study area experiencing a drop in the range of − 5–0 tons ha-1 yr-1. 
There is a little variation in erosion rate when coupled effects of all the changing factors are compared with the constant rainfall factor 
on the erosion rate over the years. This explains that change in rainfall, when combined with LULC and NDVI variations, gives quite a 
similar result when change in rainfall is considered fixed along with changing LULC and NDVI variations. It can be seen from Fig. S4a 
and S4b in Supplementary Material that with varying decades, there is a shift toward built-up land resulting in less or the same 
infiltration rate. LULC constituted of more establishments towards 2001–2019 have less P factor value that contributes towards 
declined erosion rate in the study area. There seems to have a positive correlation between the P factor value and the erosion rate. This 
outcome is in line with findings from other studies (Wijesundara et al., 2018; Naqvi et al., 2013; Prasannakumar et al., 2012; Jena 
et al., 2018). 

The third analysis shows the impact of changing rainfall on erosion rate. In the third analysis, the maximum mean and total erosion 
rate are found to be 1.90 × 105 tons ha-1 yr-1, 35.23 tons ha-1 yr-1, 206.83 million tons yr-1. Over here, distinguished change is observed 
in almost all categorized erosion ranges. Most remarkably, the negligible erosion group (5–10 tons ha-1 yr-1) covering around 67.48% 
of the study region is found to be reduced in terms of the areal extent with respect to the first two analyses. 

This explains that while LULC (P factor) is considered to be constant over the years and R factor along with C factor is changed, the 
erosion rate increases. This current analysis shows that the change in rainfall have more influence on erosion rate rather than other 
factors. 

The change in rainfall and soil loss have a strong correlation between them. A significant increase in rainfall amount is typically 
followed by the rise in soil erosion (Nigam et al., 2017). While there is a mixed effect of both increase and decrease in erosion rate along 
with time towards the northern and southern part of the study region in the first and second analysis, there is an inconsiderable in-
crease in erosion rate towards northern and southern parts of the study area during 2001–2019 in the third analysis. 

While the first and second analyses show a blended effect of both increase and decrease in erosion rate towards the northern and 
southern parts of the study region, the third analysis shows an insignificant increase in erosion rate toward the northern and southern 
parts of the study region from 2001 to 2019 with respect to 1981–2000. In the third analysis, there is a rise in erosion rate with very 
scanty declines in the middle part of the research area, in contrast to the diverse results in the first and second analyses. 

The change in erosion rate is almost the same for the first two analyses for each categorized class. In contrast, in the third analysis, 
the change in erosion rate is considerably varying from the rest analysis, as shown in Table 3. 

Spatial variation of erosivity is noticed in all the analyses and the maximum soil detachment has occurred due to varying rainfall 
amount. The erosion rate is found to be directly proportional to the rainfall depth in the majority of locations. This finding is also 
supported by previous studies that established soil erosion is considerably influenced due to differences in rainfall erosivity (Zhang, 
Liu, 2005; Nearing et al., 2004; Shiono et al., 2013). Increased precipitation intensity is expected to result in increased soil degradation, 
which has also been concluded by Zhang et al. (2011). This is observed that the change in mean rainfall amount as reflected in R factor 
affects the erosion rate more than the LULC change. Similarly, de Hipt et al. (2019), (Belay and Mengistu, 2021) and dos Santos et al. 
(2021) found that the climate change has a larger impact on erosion than LULC. 

As anticipated, this study shows that the climate change in terms of change in rainfall and LULC significantly increases spatial 
variation and becomes the major contributing factor to change in soil erosion rate over the study area. 

Despite the major findings gleaned from this study, it is realized that higher spatial resolution satellite data can shed more light on 
the results of this research. This limitation can be addressed in future studies by collecting sentinel imageries for the assessment. 
Besides, the use of only one erosion model is a constraint to this study. The use of multi-model approaches could enhance under-
standing of uncertainty resulting from model choice. 

4. Conclusions 

The effect of climate change on soil erosion using GIS integrated RUSLE model is investigated in a rainfed basin through analyzing 
the change in rainfall and LULC. The maximum, mean, and total erosion rates for all the analyses during 2001–2019 were less than 
during 1981–2000. The maximum erosion rate decreased by 40%, whereas the total and mean erosion rates reduced by 13.85% for 
1981–2000 when all the factors (R, C, P) were varied over the years. Whereas with R constant and varying P and C factors, it was 
observed that there was a 40.38% decrease in maximum erosion rate and 12.83% decrease in total and mean erosion rate with respect 
to 1981–2000. Similarly, by varying R and C factor and with P factor as constant, it was observed that there was a 26.92% decrease in 
maximum erosion rate, and 4.84% decrease in mean and total erosion rate. 

It was also noticed that the erosion class from 5 to 10 ton ha-1 yr-1 covers 67.4% of the study area during 1981–2000, which 
elevates to 71.5%, 71.59% and 67.48% during 2001–2019 in the first, second and third analyses, respectively. Thus, it was not the total 
amount of erosion but the spatial extent of the zone that increased due to changes in the climate. 

The model yielded acceptable SDR and SY estimates, and it can be used to predict SY in similar rain-fed basins with sparse data and 
ungauged basins. Besides, the identified suitable locations and the anticipated changes in the soil erosion risk will help administrators 
consider soil management measures in erosion-prone sites over the years. In addition, the proposed methods for evaluating the risks of 
soil loss in a climate change context can be widely applied at the basin scale by performing basin-specific calibration and validation. 
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