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A B S T R A C T   

This study presents an analysis to identify precipitation-based climate change hotspots and key-vulnerable cities 
using multi-model, multi-scenario, high-resolution (0.25◦×0.25◦), bias-corrected precipitation dataset across 
India from 14 state-of-the-art General Circulation Models (GCMs), participating in Coupled Model Intercom
parison Project version 6 (CMIP6). Preliminary analysis indicates an overall wetter future across India with 290 
± 150 mm to 530 ± 260 mm increase in mean annual precipitation towards end of this century under various 
climate change scenarios. Apart from the mean precipitation, the extremes are also found to be increasing by 
alarmingly higher rates. However, the spatio-temporal variations of such increments are notably diverse over 
different seasons in a year and across different Homogeneous Precipitation Zones (HPZs) in the country. 
Therefore, a new and more inclusive index, named as Precipitation-based Hotspot Index (PHI), is developed to 
identify the ‘precipitation-based hotspots’, i.e. the places with most pronounced changes in precipitation char
acteristics. The PHI considers the changes in various aspects of precipitation, such as mean, variability, and 
characteristics of extremes (magnitude, frequency and intensity). Based on the PHI values in the far-future period 
(2061–2100) and for the worst climate change scenario, the hotspot regions are identified mostly in the 
northwest, west-central, west coast, and northeast parts of India. Further, considering two important socio- 
economic vulnerability factors (population density and human development index) along with PHI, the key- 
vulnerable tier-I cities are identified across India. The analysis reveals four out of ten tier-I cities will be high
ly vulnerable towards end of this century. The findings of this analysis (hotspot maps) and the data products 
(high-resolution, bias-corrected precipitation dataset) are expected to be highly beneficial for impact assess
ments, hydrologic modelling, and formulating suitable adaptation and mitigation strategies for India over future.   

1. Introduction 

The observed changes in various natural systems on the Earth, such 
as atmosphere, oceans, land, cryosphere, and biosphere, since the pre- 
industrial era carries the unequivocal signature of anthropogenic 
climate change and its ever-increasing impacts (Flato et al., 2013). If the 
present rate of greenhouse gas emissions continues in the future as well, 
it will be highly unlikely to limit global warming to the internationally 
agreed-upon target (UNFCCC, 2015) of 2 ◦C above the pre-industrial 
baseline (Knutti et al., 2016; Roe et al., 2019; Rogelj et al., 2016). 
However, how this global-scale warming will manifest at smaller spatial 
and temporal scales - remains a key question to the scientific community 
for understanding the changing pattern of climate, and hence for plan
ning local- or national-scale adaptation and mitigation strategies. 
Therefore among this potential spatial heterogeneity in the climatic 

responses, there exists a need to identify the ‘climate change hotspots’, i. 
e. the places with the strongest and most robust aggregated response to 
global-scale climatic forcing. Identification of such hotspots and their 
underlying mechanisms have been a topic of central interest in the Earth 
system research since many years now (Stocker et al., 2013). In partic
ular, depicting such hotspots in a map format with strong visual ele
ments, termed as ‘hotspots map’, is highly beneficial from academic, as 
well as policy-makers’ point of view. Such hotspot mapping can 
communicate multiple key-information in an easier and user-friendly 
manner than a simple text document. Sometimes, along with the cli
matic exposure, the societal vulnerability is also included in identifica
tion of hotspots, which includes socio-economic status, sensitivity, 
coping capacity etc. of the concerned region (de Sherbinin, 2014). 
However, the quantitative estimates of these measures is always ques
tionable, along with their lack of availability and reliability. Thus, 
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although the impacts of climate change are closely associated with so
cietal vulnerability, identification of most responsive regions under 
changing climate is the primary and most crucial step in risk assessment 
and adaptation strategies. 

Towards this, we have considered the entire Indian mainland as our 
study area. India, and South Asia as a whole, has been identified as one 
of the highly vulnerable regions under the changing climatic scenario 
owing to combination of various climatic and socio-economic factors, 
such as strong signals of climate change, high population density, low 
per capita income, developing economy etc. (De Souza et al., 2015; Mani 
et al., 2018). Consequently, enormous challenges are expected to be 
imposed on the agricultural productivity, water resources management, 
infrastructure, and livelihood of millions of people residing in this part 
of the globe, including India (Mishra et al., 2020). Therefore, develop
ment of hotspot maps for India as the preliminary step for adaptation 
and mitigation strategies will be decidedly required in near future to 
alleviate the detrimental effects of climate change and to help build 
resilience against the worst (Costello et al., 2009; De Souza et al., 2015). 
These hotspot maps can be developed for different climatic variables or 
phenomena which are predominantly affected by the changing climate 
such as temperature, precipitation, sea-level rise, cyclonic activities, etc. 
However, various recent incidents of floods and flash floods in different 
parts of India and their damaging impacts suggest a significant alter
ation in spatio-temporal pattern of precipitation across the country, for 
instance, the Coromandel Coast flood in 2015, East and West Godavari 
district flood in 2019, Kerala flood in 2018, 2019 and 2020, Assam flood 
in 2020, 2021, Bihar flood in 2019 etc. to name a few. On the other 
hand, studies report about 20–50% of the Indian mainland to be prone to 
moderate to extreme droughts (Suman and Maity, 2021) by the end of 
this century, with an increasing pattern in both intensity and areal 
extent (Mallya et al., 2016; Niranjan Kumar et al., 2013; Sharma and 
Mujumdar, 2017). Given such challenges, the changes in the regular 
spatio-temporal characteristics of precipitation are expected to have 
widespread implications on the overall availability of water resources 
and its management, thus, in turn affecting the food security of a country 
like India, whose economy primarily depends on rain-fed agriculture 
(Kishore et al., 2015). Hence, developing a precipitation-based hotspot 
map for India is indispensable, which sets the primary objective of this 
study. 

India is a developing country with the second highest population in 
the world at present. Most of its cities are very ancient, ill-planned, and 
densely populated. Further, the inadequate drainage system in most of 
the cities is likely to cause water-stagnation and urban flooding under 
this future scenario of wet climate. Thus, crores of people living in those 
cities will face the nuisances created by urban flooding ranging from loss 
of property, disruption in transport and power supply to outbreak of 
epidemics and even deaths. Therefore, management of urban flooding 
and identification of such cities vulnerable to increased precipitation is 
also highly required – which sets another objective of this study. 

Overall, such precipitation-based hotspot maps, as well as identifi
cation of key-vulnerable cities are expected to be immensely beneficial 
to combat future climate change–induced precipitation hazards in key- 
locations well in advance. However, to develop such precipitation- 
based hotspot map, an estimate of future-projected precipitation at a 
finer spatio-temporal scale is essential, which is mostly provided by 
General Circulation Models (GCMs). The GCMs are considered the most 
advanced tool for climate projection under different scenarios of 
greenhouse gas emissions, currently available worldwide (Flato et al., 
2013). However, the spatial resolutions, at which GCMs run, are often 
too coarse to get reliable projections at the regional level for the impact 
assessment studies (Barbero et al., 2017; Kusumastuti et al., 2021; 
Maurer et al., 2010; Mishra et al., 2020). Moreover, the GCMs are found 
to produce precipitation output having significant amount of systematic 
bias due to their coarse resolution or model parameterizations (Ashfaq 
et al., 2017; Mishra et al., 2014), and thus, limiting their applicability to 
various research domains. Hence, bias-correction is a mandatory step 

before using any GCM output, especially precipitation data (Mehrotra 
and Sharma, 2021; Sarkar and Maity, 2020a). Bias-correction method
ologies have a long history in the literature (Kusumastuti et al., 2021; Li 
et al., 2010; Maraun, 2013; Mehrotra and Sharma, 2019, 2016; Vrac and 
Friederichs, 2015), including techniques, such as linear (Lenderink 
et al., 2007), non-linear (Leander et al., 2008; Leander and Buishand, 
2007), distribution-based quantile mapping (Mao et al., 2015; Pierce 
et al., 2015), empirical quantile mapping (Piani et al., 2010; Themeßl 
et al., 2011), etc. However, most of the bias-correction methods suffer 
from one of the following two limitations: (a) they reduce bias in a 
selected precipitation quantile (e.g., either mean or extreme values) and 
(b) they exclude zero values from the analysis, even though their pres
ence is significant in daily precipitation. Therefore, a recently developed 
copula-based bias-correction technique by Maity et al., (2019) (hence
forth RMPH model) is used in this study, which de-biases the entire 
range of the precipitation- including the mean and different levels of 
extremes, and is particularly suitable for zero-inflated precipitation 
climatology like India. Comparing it with one of the most popular bias- 
correction methods, i.e., Quantile Mapping (QM) method, Suman et al., 
(2022) reported improved performance for both the mean and extreme 
precipitation values from the Coordinated Regional Climate Down
scaling Experiment (CORDEX). Hence, the RMPH method is used in this 
study to correct the bias present in the precipitation output from GCMs. 
Nonetheless, we further compare the performance of RMPH and QM 
methods for the entire study area using GCM-simulated precipitation 
data from the latest version of Coupled Model Intercomparison Project, 
i.e., CMIP-6. Finally, the future-projected bias-corrected precipitation 
dataset for India using both RMPH and QM methods from multiple state- 
of-the-art CMIP-6 GCMs following various shared socio-economic 
pathways is made public by this study by keeping it in an open-source 
data repository (see ‘Results and Discussion’ section for details). We 
expect that this high-resolution, multi-model, multi-scenario dataset 
will be highly beneficial for different impact assessment studies over 
India. 

Apart from just identification of hotspots, understanding their un
derlying mechanism is also very important. Towards this, we present a 
detailed and comprehensive spatio-temporal analysis on likely changes 
in various attributes of precipitation over future. Climatologically, the 
precipitation pattern across the Indian mainland varies significantly 
over space as well as time. Approximately 70% of the annual precipi
tation is received in four monsoon months (June through September) in 
India. The monsoon pattern is also different in different parts of the 
country, and is highly influenced by the steep topography of the 
Himalayas and the Western Ghats. Apart from the southwest monsoon, 
there is also the northeast monsoon, sometimes known as return 
monsoon that causes rainfall at some parts of India (mostly in the 
southern part of the country) during October to December. So, just an 
overall pan-India analysis of future changes in precipitation will not 
capture the complete picture of changing precipitation characteristics. 
Therefore, to conduct a holistic spatio-temporal analysis for India, we 
need to perform a spatio-temporal division as follows- (a) by dividing an 
entire year into some number of seasons and (b) by dividing the Indian 
mainland into some zones of spatially coherent precipitation pattern, 
namely Homogeneous Precipitation Zones or HPZs (See ‘Methodology’ 
section). 

Thus, in brief, this study attempts to develop a future precipitation- 
based hotspot map across India based on multi-model multi-scenario 
bias-corrected precipitation dataset from CMIP-6. Based on this map, the 
vulnerability of all tier-I cities in India (with more than 1 lakh popula
tion as per census 2011) is also identified using various socio-economic 
factors. In general, the future precipitation-based hotspot maps, as well 
as the list of key-vulnerable cities will be highly beneficial not only for 
academic or research purposes, but for decision-making, risk analysis, 
impact assessments, and planning suitable adaptation and mitigation 
strategies. Additionally, this study publishes a multi-scenario, bias-cor
rected precipitation dataset from 14 state-of-the-art CMIP6-GCMs that 
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may be highly useful for other studies as well. 

2. Data used 

Different versions of CMIP, as established and monitored by the 
World Climate Research Programme (WCRP), provide a fundamental 
basis for a coordinated international climate research with an incredible 
technical contribution from several climate modelling centers (Eyring 
et al., 2016). Phase 6 of CMIP, i.e., CMIP6, is the most recent version that 
offers substantial improvements over its earlier versions in multiple 
aspects, such as finer horizontal resolution, better representation of the 
synoptic processes, and better agreement with the global energy balance 
(Supharatid et al., 2022). Thus, more reasonable and reliable projections 
can be obtained from CMIP6 outputs as compared to its previous ver
sions (Chen et al., 2021; Di Luca et al., 2020; Li et al., 2021; Wang et al., 
2021). We employ daily precipitation data from 14 state-of-the-art 
CMIP6-GCMs under r1i1p1f1 initial condition. Details of these models 
are shown in Table 1 (URL: https://esgf-node.llnl.gov/search/cmip6/ 
accessed in December 2021). Total 80 years (2021–2100) of future 
data is obtained that is further divided into two equal parts, viz. near- 
future period (2021–2060) and far-future period (2061–2100), to cap
ture the temporal changes in the precipitation characteristics w.r.t. the 
base period (1981–2010). Two different Shared Socioeconomic Path
ways (SSPs), viz., SSP245 and SSP585, are considered for each GCM to 
understand two possible pathways of changes in the future. For instance, 
SSP585 is the most pessimistic scenario, i.e., SSP-5 with a target radia
tive forcing of 8.5 W/m2 by 2100 in a world with strong economic 
growth, abundant use of fossil fuel resources, rapid technological ad
vances, but no suitable climate policy (Gidden et al., 2019). On the other 
hand, SSP245 depicts a ‘middle of the road’ scenario, i.e., SSP-2 with 
moderate population growth, uneven development and income growth 
across countries, and having a target radiative forcing of 4.5 W/m2 at the 
end of the century. Thus, comparison of results obtained between 
SSP585 and SSP245 will help us to understand the possible impact of 
higher anthropogenic activity and greenhouse gas emissions in the 
future. 

The bias present in this GCM simulated dataset is corrected w.r.t. a 
gridded observational dataset, obtained from India Meteorological 

Department (IMD). This 0.25◦ × 0.25◦ dataset was developed by Pai 
et al. (2014) using observed records of daily rainfall data from 6995 
rain-gauge stations across India. This gridded precipitation dataset from 
IMD perfectly captures the precipitation climatology over India and has 
been successfully used for various hydroclimatic studies in recent times 
(Dash and Maity, 2019; Mishra et al., 2020; Mukherjee et al., 2018; 
Sarkar and Maity, 2020b). 

3. Methodology 

As per the set objectives of this study, the analysis is done in four 
stages. Firstly, the raw GCM precipitation data from all 14 models are 
regrided and bias-corrected. In the second stage, this bias-corrected 
multi-model multi-scenario dataset is undergone meticulous spatio- 
temporal analysis to understand the impact of changing climate on 
future precipitation. Next, the precipitation-based hotspot map is 
developed for the country, and finally, the most-vulnerable tier-I cities 
are identified across the country. The following sections explain the 
aforesaid steps in the methodology in detail. 

3.1. Re-gridding and bias correction of future-simulated rainfall data 
from GCMs 

The mismatch between spatial resolutions of 14 CMIP6-GCMs 
(Table 1) is taken care of by a standard re-gridding technique, namely 
bilinear interpolation, and all the datasets are re-gridded to a common 
resolution of 0.25◦ latitude × 0.25◦ longitude, same as that of IMD data. 

Next, the RMPH method is adopted to correct the bias in GCM 
simulated precipitation values, as explained earlier (Maity et al., 2019; 
Suman et al., 2022). In this method, the concept of bivariate copula is 
used to model the association between observed (OBS) and historically 
simulated precipitation values (HSV) by developing a joint distribution 
function over a common historical time period (here, 1961–2014). Then, 
the conditional distribution function obtained from this joint distribu
tion is modified as a mixed distribution with a discrete probability mass 
at zero to take care of the zero rainfall days. This is done by first dividing 
all the pairs of OBS and HSV into three groups: (i) pairs with both OBS 
and HSV having nonzero positive values, (ii) pairs with OBS = 0, and 
(iii) pairs with HSV = 0. Using these categorized pairs, primarily three 
sets of information are extracted while developing the RMPH model- (a) 
parameters for the best-fit copula model for the first set of pairs, (b) a 
suitable decay function capturing the probability for the second set, i.e., 
zero OBS conditioned on HSV over its entire range, and (c) conditional 
probability distribution of OBS values when HSV = 0, i.e., for the third 
set of pairs. Finally, by combining all this information, a set of condi
tional probability distribution of OBS values, given any value of HSV is 
obtained. These are used to obtain the bias-corrected precipitation 
values (BCV). Next, considering the future-simulated precipitation 
values as input (in place of HSV) to this set of conditional distribution 
function, bias-corrected precipitation values are obtained for future, and 
used for subsequent analysis. For further details about the RMPH 
method and its mathematical background, readers may refer to Maity 
et al. (2019). 

Although the superiority of the RMPH method over the Quantile 
Mapping (QM) – another efficient and very popular bias correction 
technique, is already established in detail by Suman et al. (2022) for 
CMIP5-CORDEX simulations, we further compare their performance 
using the state-of-the-art CMIP6-GCMs. For applying the QM, the best-fit 
probability distributions are identified and fitted to both OBS and HSV 
over a common historical period. The selection of the best-fit marginal 
distribution is based on 12 candidate parametric probability distribu
tions (e.g., beta, exponential, gamma, generalized pareto, inverse 
Gaussian, logistic, log logistic, lognormal, normal, Rayleigh, Rician, and 
Weibull) and two statistical criteria: (i) the fitted marginal distribution 
should pass the chi-square test at 5% significance level, and (ii) it should 
yield the lowest Bayesian information criterion (BIC). 

Table 1 
Details of GCMs used in this study, participating in CMIP6.  

Sl. 
No. 

Model name Horizontal resolution 
(latitude × longitude) 

Source institute 

1 ACCESS-CM2 1.25◦× 1.875◦ Commonwealth Scientific 
and Industrial Research 
Organisation, Australia 

2 ACCESS-ESM1- 
5 

1.25◦×1.875◦

3 BCC-CSM2-MR 1.1121◦×1.125◦ Beijing Climate Center, 
China 

4 CanESM5 2.7673◦×2.8125◦ Canadian Centre for Climate 
Modelling and Analysis, 
Canada 

5 EC-Earth3 0.70◦×0.70◦ EC-Earth-Consortium 
6 EC-Earth3-Veg 0.70◦×0.70◦

7 CESM2_WACCM 0.9424◦×1.25◦ National Center for 
Atmospheric Research, USA 

8 CMCC-CM2-SR5 0.9424◦×1.25◦ Fondazione Centro Euro- 
Mediterraneo sui 
Cambiamenti Climatici, 
Italy 

9 MPI-ESM1-2-HR 0.935◦×0.9375◦ Max Planck Institute for 
Meteorology, Hamburg, 
Germany 

10 MPI-ESM1-2-LR 1.8652◦×1.8750◦

11 IPSL-CM6A-LR 1.2676◦×2.5◦ Institut Pierre Simon 
Laplace, France 

12 IITM 1.9048◦×1.8750◦ Indian Institute of Tropical 
Meteorology Pune, India 

13 INM-CM4-8 1.5◦×2.0◦ Institute for Numerical 
Mathematics, Russian 
Academy of Science, Russia 

14 INM-CM5-0 1.5◦×2.0◦
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3.2. Spatio-temporal analysis of future changes in precipitation 

In order to perform a holistic analysis on future-projected changes 
over the diverse landscape of India, we perform a temporal decompo
sition, as well as a spatial decomposition. Temporally, we divide the 
entire year into four different seasons- (i) Summer (March-April-May), 
(ii) Monsoon (June-July-August-September), (iii) Post-monsoon 
(October-November-December), and (iv) Winter (January-February). 
Summer in India is mostly characterized by hot and dry weather with 
seldom occurrences of local-scale thunderstorms, followed by a four- 
month long monsoon season, with huge amount of rainfall (though 
spatially diverse) for most parts of the country due to humid south- 
westerly monsoon wind. During the post-monsoon season, a different 
monsoon cycle, the northeast (or “retreating”) monsoon, brings dry, 
cool, and dense air masses to large parts of India and causes heavy 
rainfall mostly in the southern part of the country (Tamilnadu and 
Kerala). Finally, the cold and dry winter season comes with very less 
amount of precipitation across the country. 

Spatially also, we divide India into six different zones of spatially 
coherent precipitation characteristics, namely Homogeneous Precipita
tion Zones (HPZs) (Sarkar and Maity, 2022). This zoning is done by 
coupling two important features of precipitation- (i) average annual 
precipitation (P) and (ii) seasonal variation of monthly precipitation 
over the base period (1981–2010) using the observational records from 
IMD. The seasonality is quantified using an information theory-based 
metric named Apportionment Entropy (AE). Further details on this 
zoning can be found in the supplementary information (section A1). The 
HPZ map of India and its development from the scatter plot between P 
and AE are shown in Fig. 1. The originally obtained HPZ map in Fig. 1b is 
slightly modified in Fig. 1c with a hatched portion in the north-most part 
of the country (Jammu-Kashmir and Ladakh region). This portion is not 
considered in subsequent analysis in this study because of questionable 

reliability of the IMD data in this region (Kothawale and Rajeevan, 
2017). Detailed information on these six HPZs, their selection criterion, 
full name, abbreviation, etc. are listed in supplementary Table S1. 
Nevertheless, the HPZ-1 or ‘Low Precipitation-High Seasonality’ zone 
can be seen in the western part of India, predominantly consisting of 
Gujrat and Rajasthan. The HPZ-2 or ‘Moderate Precipitation-High Sea
sonality’ zone can be found in the central part of India, mostly spanning 
eastern Uttar Pradesh and Madhya Pradesh, and Chhattisgarh. The 
windward side of Western Ghats forms the HPZ-3 or ‘High Precipitation- 
High Seasonality zone’. The HPZ-4 or ‘Low Precipitation-Low Season
ality zone’ can be mainly observed in the Peninsular India. The HPZ-5 or 
‘Moderate Precipitation-Low Seasonality zone’ is rather dispersed at 
multiple places across India; mostly in the eastern part of the country, 
parts of the eastern coast in Southern India, parts of Northern India 
(Uttarakhand and Himachal Pradesh) and some portion in North-east 
India as well. Lastly, the HPZ-6 or ‘High Precipitation-Low Seasonality 
zone’ can be mostly found in northeast India and Kerala. 

Now, using this spatial and temporal decomposition, we perform 
three different sets of analysis. In the first set of analysis, the projected 
changes in seasonal precipitation are explored. The second set of anal
ysis is designed to capture the changes in different levels of precipitation 
extremes over future. And, the likely changes in monthly variation of 
precipitation is examined in the third set of analysis. In the first and 
second set of analysis, the changes in different precipitation variables 
are expressed in terms of absolute changes (i.e., the changes in magni
tude), and percentage changes w.r.t the base period (1981–2010). 
Additionally, a trend analysis is also performed to identify the places 
with statistically significant trend and its magnitude. The Mann-Kendall 
test at 5% significance level is performed to detect the significant trend, 
and Sen’s slope method (Sen, 1968) is used to evaluate the magnitude of 
the trend. 

Fig. 1. Homogeneous Precipitation Zones (HPZs) across India. (a) Scatter plot between mean annual precipitation (P) and seasonality (AE) across India over the base 
period 1981–2010, and its delineation into six zones, (b) accordingly obtained HPZ map of India with six zones with different colours, and (c) modified HPZ map used 
in this study, with hatched portion in the north – not considered due to unreliable data quality. 
Source: Sarkar and Maity, 2022 
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3.3. Identification of precipitation-based climate changes hotspots 

Here, we use a climate response based approach to identify the 
‘precipitation-based climate changes hotspots’ across India over future. 
In this approach, hotspot is defined as a region where climate variables 
(here, precipitation) are showing particularly pronounced response 
under a certain scenario of global climate change. Characterization of 
such climate response-based hotspots can provide key information to 
identify and investigate primary processes of regional-scale climate 
change (Giorgi, 2006). 

Similar to Diffenbaugh and Giorgi, (2012), here we also use the 
concept of Standard Euclidean Distance (SED) to quantify a new index, 
named Precipitation based Hotspot Index (PHI) which encapsulates the 
total change in multi-dimensional precipitation characteristics between 
the baseline and future periods. This new index considers some addi
tional precipitation change indictors (Δ), compared to some other 
similar indices used in earlier studies such as Diffenbaugh and Giorgi, 
(2012) and Turco et al. (2015), and thus presents a more inclusive 
scenario of changing characteristics of precipitation comprising the 
changes in the mean and variability of seasonal precipitation, along with 
the extremes, their magnitude, frequency, and intensity. Mathemati
cally, it is expressed as, 

PHI =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑NΔ

i=1

∑NS

j=1

(
Δij

max(
⃒
⃒Δij
⃒
⃒
)

)2
√
√
√
√ (1) 

where, Δij is the ith change indicator in the jth season at each grid 
point. Here, we consider total 7 precipitation change indicators (thus, 
NΔ = 7) for 4 seasons separately: summer, monsoon, post-monsoon and 
winter (so, NS = 4). These 7 indicators include (i) percentage change in 
mean precipitation (ΔP), (ii) percentage change in the inter-annual co
efficient of variation of the detrended precipitation (ΔPvar), (iii) per
centage change in the 95th percentile precipitation (ΔPex), (iv) 
frequency of wetter seasons, i.e., seasons with higher than the maximum 
precipitation in the base period (fwet), (v) percentage increase in average 
precipitation in the wetter seasons w.r.t the maximum in the base period 
(ΔPfwet), (vi) frequency of drier seasons, i.e., seasons with lower than the 
minimum precipitation in the base period (fdry), (vii) percentage 
decrease in average precipitation in the drier seasons w.r.t the minimum 
precipitation in the base period (ΔPfdry). 

Additional inclusion of three indicators, viz, ΔPex, ΔPfwet, and ΔPfdry 
makes the index PHI more informative than some similar indices as 
stated earlier. For instance, ΔPex considers the changes in the level of 
extreme precipitation. On the other hand, fwet and fdry take care of the 
number of seasons with higher than maximum and lower than minimum 
precipitation in the future and thus consider the frequency information. 
However, the intensity perspective remains absent, i.e., by what extent 
this maximum or minimum will shoot above or fall below, respectively, 
in the future. Hence, the present study includes ΔPfwet (ΔPfdry), which 
indicates the percentage change in the average precipitation in the 
future exceeding (subceeding) the maximum (minimum) precipitation 
in the base period. Thus, the inclusion of these three additional in
dicators takes care of the magnitude, frequency, as well as intensity 
aspect of extreme precipitation. For further clarification about all 7 in
dicators, readers can see the section A2 of supplementary information, 
where one hypothetical example is illustrated. 

Overall, these seven change indicators (Δij) are designed to incor
porate various attributes of precipitation such as, mean, variability, 
extremes – its frequency and intensity into the PHI. Hence different 
change indicators will have different ranges of their values. Therefore, 
the Δij values need to be scaled before summing up to determine PHI, as 
depicted in eqn. (1). This scaling is done by dividing each change in
dicator by their maximum absolute value (max| Δij |) across the study 
area. As our analysis considers two future scenarios (SSP245 and 
SSP585) and two time periods (Near-future and Far-future), we rescaled 
each indicator of both the scenarios and time periods using the 

maximum value in the far-future period under the highest forcing (i.e., 
SSP585) across the study area. Thus, this approach yields a relative 
metric of aggregated precipitation changes that can be directly 
compared between any regions within the study area, forcing pathways, 
and future time periods. Overall considering 7 precipitation change in
dictors for 4 different seasons gives a total of 28 dimensions at each grid 
point, thus by limiting the values of PHI between zero and 

̅̅̅̅̅̅
28

√
= 5.29. 

However, it must be noted that similar to other earlier indices, the PHI is 
also a comparative index, which means a small PHI value does not 
necessarily imply a small absolute change, but only a small climate 
response compared to other places within the study area. Moreover, 
from eq. (1) it is evident that this PHI index is bi-directional in nature, i. 
e., the index cannot differentiate between a place with a strong increase 
in precipitation and a place with a strong decrease in precipitation, and, 
designate them as equally problematic under climate change. 

3.4. Identification of key-vulnerable cities 

In order to identify the key-vulnerable cities, we have considered all 
tier-I cities (total 493 cities within our study area) i.e., the cities with 
more than 1 lakh population as per census, 2011 in India (https://www. 
census2011.co.in/city.php accessed on August 2021). Vulnerability is 
an important issue in climate change adaptation and mitigation studies. 
As per Flato et al., 2013, vulnerability is defined as the propensity of a 
region to be adversely affected by climate hazards. In other words, 
vulnerability is the degree to which a system is susceptible to and unable 
to cope with, the adverse effects of climate change (Parry et al., 2007). 
Thus, vulnerability becomes a function of (i) climatic exposure or hot
spots, and (ii) the coping capacity or adaptability of the region. The 
coping capacity or adaptability of a region depends on various socio- 
economic factors such as population density, per-capita income, 
educational facilities, heath infrastructure, technological advancement, 
economic development, etc. However, the availability and reliability of 
such socio-economic data are highly questionable. Hence, based on 
some earlier studies (Ionescu et al., 2009; Torres et al., 2012), we 
considered two internationally accepted Vulnerability Factors (VFs) 
with reliable data sources– (i) Population Density (PD) and (ii) inverse of 
Human Development Index (HDI). 

Socio-economic vulnerability is higher for densely populated regions 
for various obvious reasons such as higher sewage demand, more traffic, 
more impervious area, etc. On the other hand, socio-economic vulner
ability is higher for the regions with lower HDI value. HDI is one of the 
key global indictors for development, which conveniently combines 
three important social indicators – health, income, and education, into a 
single non-dimensional measure between 0 and 1. Low HDI implies a 
generally low standard of living, such as a poor sanitation system, 
inadequate health infrastructure, slow economic growth, and low liter
acy levels. All these factors significantly influence the population’s 
adaptive capacity for climate change, particularly for extreme precipi
tation. Hence, the inverse of HDI is used as one VF in this study. 
Therefore, using these two VFs (PD and HDI) along with PHI, we define 
another index, named Precipitation-based Vulnerability Index (PVI) to 
identify the key-vulnerable cities across India. PVI can be formulated as, 

PVI = sPHI ×
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∏N

i=1
sVFi

N

√

(2) 

where, PVI is the multiplication of standardised PHI (sPHI) and the 
geometric mean of the standardised Vulnerability Factors (sVF). N (=2) 
is the number of VFs, including PD and inverse HDI. Thus, eq. (2) gets 
modified as, 

PVI = sPHI ×
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

sPD ×
1

sHDI

√

(3) 

where, sPD is the standardised population density and sHDI is the 
standardised human development index. As the theoretical ranges of 
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PHI (0–5.29), PD (0-∞) and HDI (0–1) are completely different from 
each other, they need to be standardised to the same scale before using 
in eq. (3), which is done by some empirical cumulative distribution 
function (ecdf). Therefore, the values of PVI get limited between 0 and 1. 

To determine future PVI values, the PHI values can be obtained from 
the future-simulated GCM output, as explained earlier in section 3.3. 
However, to get future-projected values of PD are obtained from a recent 
publication by Jones and O’Neill (2016). They developed a new set of 
global, spatially explicit future population scenarios that are consistent 
with the new SSPs, and made publicly available (data source: htt 
ps://www.cgd.ucar.edu/iam/modeling/spatial-population-scenarios.ht 
ml, accessed in August 2022). However, in case of HDI, no such future- 
projections are available. Hence, here we use the latest available data 
(for the year 2015) for HDI from Kummu et al. (2018) with a reasonable 
assumption that its relative spatial distribution will remain more-or-less 
same over future. This global sub-national scale gridded HDI dataset was 
prepared based on various Human Development Reports (HDRs) by 
United Nations Development Programme (UNDP). This data is also 
publicly available through https://doi.org/10.5061/dryad.dk1j0 
(accessed in August 2022). 

4. Results and Discussion 

4.1. Efficacy of RMPH method for bias correction 

Both the RMPH and QM methods of bias-correction are developed 
between daily-scale IMD observed precipitation data and historically 
simulated precipitation from each of those 14 GCMs over a common 
time period 1961–2014. As, both the bias-correction methods are 
applied on the daily-scale data, it would be indeed required to judge the 
model performance from the statistics of the bias-corrected series at 
aggregated time scales (such as monthly or annual). Therefore, the ef
ficacy of these two bias-correction techniques in correcting the bias in 
daily, as well as aggregated time-scale is examined by considering five 
precipitation- derived statistics, viz., (i) annual precipitation (P), (ii) 
monthly precipitation (MP), (iii) 95th percentile of wet day (greater 
than1 mm/day) precipitation (P95), (iv) annual maximum daily pre
cipitation (AMDP), and (v) monthly variation of precipitation. Needless 
to mention, the variables P and MP will be used to judge the effective
ness of bias-correction in aggregated time-scale, P95 and AMDP will be 

for two different levels of extremes, and monthly variation will help to 
confirm the correctness of the seasonal pattern. Further to judge their 
performance in capturing the low-frequency variability, we considered 
the standard deviation (SD) of these five statistics, along with their 
mean. 

The results for the first four variables are shown in Fig. 2a for the 
mean level. It can be observed that the raw simulated GCM output 
(panel b) mostly underestimates observed precipitation (panel a), 
especially in case of extremes. On the other hand, the bias-corrected data 
from both techniques (panels c and d) shows a reasonably improved 
agreement with the observed data. In particular, the RMPH method 
shows superiority over the QM method – both in terms of mean and 
specifically extremes, thus resulting in near-zero value of residual bias 
(panel g) all over India. This can be further confirmed by Table 2, which 
shows the quantitative outcome of this comparative analysis between 
QM and RMPH methods in terms of the all-India averaged value of the 
multi-model mean bias in both mean, as well as SD. From this table, we 
can see that although the QM method is successful in reducing the 
existing bias in raw GCM simulations, the performance of the RMPH 
method is even better, particularly in case of extremes, both at mean and 
SD levels. Thus the effectiveness of RMPH method of bias-correction in 

Fig. 2a. Results of QM and RMPH method of bias correction, (a) observed mean over 1961–2010, (b) Multi-model mean of raw GCM output, (c, d) Multi-model mean 
of bias-corrected GCM output using QM and RMPH method, (e) Existing bias in the multi-model raw GCM, and (f, g) residual bias in the bias-corrected GCM output 
after using QM and RMPH method. 

Table 2 
Comparison of QM and RMPH method of bias correction.  

Precipitation 
Attributes 

Statistics All India averaged Bias in multi-model ensemble 
mean 
Raw 
GCM 
data 

Bias corrected 
data using QM 

Bias 
corrected 
data 
using RMPH 

Annual 
precipitation 
(mm) 

Mean  175.56  47.97  45.15 
SD  148.62  20.94  3.55 

Monthly 
precipitation 
(mm) 

Mean  14.91  3.76  3.99 
SD  34.08  16.00  15.06 

95th percentile 
precipitation 
(mm) 

Mean  23.09  4.22  0.93 
SD  9.30  2.65  0.54 

Annual max daily 
precipitation 
(mm) 

Mean  42.65  28.51  0.51 
SD  23.82  16.37  1.14  
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debaising mean, variability, as well as extremes is established. Similarly, 
Fig. 2b depicts a better conformity between the observed and bias- 
corrected monthly variation of precipitation from RMPH method than 
QM method, averaged over entire Indian mainland. On the contrary, the 
performance of multi-model raw GCM output is quite poor in capturing 
the month-wise variation of precipitation over India, even with a very 
high uncertainty range. This result further strengthens the efficacy of the 
RMPH method of bias correction. However, in case of bias in trend, 
although the RMPH method shows comparatively better performance 
than the QM method, it cannot capture the overall spatial distribution of 
trend accurately. From supplementary Table S2, it can be noticed that 
the observed all-India averaged multi-model mean trend in annual 
precipitation is 0.36 mm/year, the same from QM method is 1.18 mm/ 
year and from RMPH method is 0.81 mm/year. Though the result from 
RMPH method is closer to the observations, still there is a good scope of 
improvement in capturing overall spatial pattern of trend. Overall, the 
RMPH method is found as an effective bias-correction tool, and hence it 
is used in the present study to debias the raw GCM simulated future 
precipitation data from 14 CMIP6-GCMs, and used for subsequent 
analysis. However, we have kept the multi-model multi-scenario dataset 
from both the bias-correction techniques in an open-source data re
pository (https://figshare.com/s/9d978fcff33e86bbf56b) and expect it 
to be helpful for impact assessment studies, hydrologic modelling etc. 

4.2. Future-Projected changes in precipitation across India 

4.2.1. Changes in seasonal variation of precipitation 
In this section, we present the future projections of annual precipi

tation, as well as for four different seasons (viz., summer, monsoon, 
postmonsoon, winter) and its spatio-temporal evolution across India 
from an aggregated analysis of 14 state-of-the-art bias-corrected (RMPH 
method) CMIP6-GCMs. The summery of this assessment for all seasons, 
two emission scenarios (SSP 245 and 585) and over two future time 
periods (near- and far-future period) is provided in Figs. 3, 4 and 5 in 
terms of spatial distribution of changes and trend, bar plots of multi- 
model ensemble (MME) mean changes and future-projected time se
ries along with uncertainty, respectively. The quantitative outcome of 
this analysis (i.e., MME mean and its 95% confidence interval), averaged 
over entire India (except the north-most hilly region) is provided in 
Table 3. Similar table for all six HPZs can be found in Table S3 of sup
plementary information. 

Fig. 3 (first row) depicts an overall increase in annual precipitation in 
all parts of India over future under both the scenarios, except a small 
portion of northeast India, where some minor reduction is visible in 
near-future under SSP245. Overall in terms of absolute changes (panel 
a), the central part of India, Western Ghats, and northeast India show 
considerable increase, thus resulting in maximum amount of increase in 

the high-precipitation zones such as, HPZ-3 and HPZ-6 (see Fig. 4). 
However, in terms of percentage change (panel b), low precipitation 
zones (HPZ-1 or HPZ-4) shows the highest amount of increase, causing a 
substantial increase in northwest and southern part of the country, as 
confirmed by panel b of Fig. 3. Also, we see the extent of increase (both 
absolute and percentage) gets stronger with the passage of time (in far- 
future) and under higher forcing scenario (i.e., SSP585). Annual pre
cipitation is projected to increase by 188.85 mm (147.99 mm) in near 
future, and by 530.04 mm (288.99 mm) in the far future period under 
SSP585 (SSP245) scenario, over its average value of 1152 mm in the 
base period (1981–2010). If we observe the time series plot or proba
bility density functions (pdfs) of annual precipitation (Fig. 5), not much 
difference is visible between both the scenarios in near-future period, i. 
e. up-to 2060. However, the far-future period, the difference between 
SSP245 and SSP585 becomes significantly pronounced; the time series 
becomes more or less stationary in SSP245 (green line), but keeps on 
increasing significantly under SSP585 (red line) - probably indicating 
more anthropogenic activities towards end of this century (EOC). This 
observation is also reflected in the trend plots of annual precipitation 
(panel c of Fig. 3), where mostly similar pattern and magnitude of trend 
can be seen in near-future period under both the scenarios. However, in 
far-future period, most part of India is not showing any significant trend 
(at 5% significance level, shown by grey colour in maps) under SSP245, 
whereas on the contrary, almost entire India is having some statistically 
significant trend towards EOC under SSP585. In quantitative terms, 
MME mean trend of 55.20 mm/decade (51.08 mm/decade) in near- 
future period across India gets strengthened (weakened) in the far- 
future period with a MME mean trend of 107.77 mm/decade (23.48 
mm/decade) following SSP585 (SSP245). Now it will be interesting to 
investigate how this increase in annual precipitation gets distributed 
among four different seasons. 

Similar to annual precipitation, summer or pre-monsoon precipita
tion (MAM) also shows an overall increasing pattern across India which 
gets more intense from near- to far-future period and under SSP585 
(second row, Fig. 3). In terms of absolute changes, maximum amount of 
increase is visible in the eastern and north-eastern part of the country. In 
contrast, the high-seasonality zones (HPZ-1, 2 and 3) shows the 
maximum amount of percentage increase in summer precipitation 
(Fig. 4). The average summer precipitation magnitude of 120.47 mm 
over the base period is projected to increase by 24.97 mm (12.67 mm) in 
the near-future and, by 56.69 mm (22.94 mm) in the far-future period 
following SSP585 (SSP245). Unlike annual precipitation, most part of 
India does not show statistically significant trend in summer precipita
tion over future, with a maximum MME mean trend of 9.59 mm/decade 
across India in the far-future period under the worst emission scenario. 

The changing pattern of monsoon precipitation (JJAS) is quite 
similar (third row, Fig. 3) to that of annual precipitation (because of its 

Fig. 2b. All-India monthly variation of precipitation from observed data (black), raw GCM data (red) and bias-corrected GCM data from RMPH (blue) and QM 
(green) method. The shaded area represents uncertainty (range) of all 14 CMIP6-GCMs. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.) 
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Fig. 3. MME mean changes in seasonal precipitation and trend across India over future.  
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~ 70% contribution in total annual precipitation). Here also, we observe 
the same portion in northeast India is showing some slight reduction in 
monsoon precipitation in near-future under SSP245. Likewise, the 
Western Ghats and central part of India is showing good amount of 
absolute changes, whereas the low-precipitation zones (HPZ-1 and 4) 
are having the maximum amount of percentage changes w.r.t the base 
period (Fig. 4). The average monsoon precipitation of 785.85 mm over 
the base period is expected to be increased by 408.47 mm (200.04 mm) 
towards EOC following SSP585 (SSP245). The observations of trend 
analysis and time series plots are again quite similar to that of annual 
precipitation, i.e., a more or less similar pattern up to mid-century and 
then gradual weakening or strengthening of trend following SSP245 and 
SSP585, respectively. 

In case of post-monsoon precipitation (OND), a very interesting 
observation is made. Unlike earlier cases, higher extent of increase is 
witnessed under the lower forcing scenario, i.e., SSP245 than SSP585 in 

case of post-monsoon precipitation. Even in case of SSP585, some 
reduction is noticed in eastern part of India, together with northeast 
India and along the Himalayan foothills (fourth row, Fig. 3). As ex
pected, maximum amount of absolute changes can be seen in the 
southern part of the country, where the influence of northeast monsoon 
is most. However, in terms of percentage changes, HPZ-1, i.e. the 
northwest part of India shows the highest level of increase than other 
HPZs (fourth row, Fig. 4). Overall 38.52 mm and 66.46 mm increase 
over the average value of 181.10 mm is projected in near- and far-future 
period, respectively under SSP245 scenario. Whereas, the same under 
SSP585 is quite less; only 9.05 mm and 58.55 mm in near- and far-future 
period, respectively. These observations can further be confirmed from 
the time series and pdf plots as in Fig. 5 (fourth row), which shows a 
clear dominance of SSP245 over SSP585, except the last decade of the 
century. Trend analysis of post-monsoon precipitation reveals maximum 
trend in the southern part of the country, whereas the northern India 

(a) Absolute changes (mm) (b) Percentage changes (%) (c) Trend (mm/decade)
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mostly remains statistically insignificant. Across India, MME mean trend 
of 15.66 mm/decade is expected in the far-future period following 
SSP585 scenario. 

In general, India receives very less amount of precipitation (~6% of 
annual precipitation) in winter season (JF). However, this multi-model 
analysis projects even lesser amount of winter precipitation in future. 
From spatial analysis, a decline in winter precipitation is observed in 
most part of the country, especially in eastern part, southern part and 
along Himalayan foothills. However, this extent of declination gets 

reduced with the passage of time and under higher forcing scenario. 
Nonetheless, some amount of increase is also visible in the northwest 
part of the country (HPZ-1), especially in the far-future period. The 
Fig. 5 (last row) depicts the time series of winter precipitation having no 
clear trend, remains mostly same as of its base period. Similarly, the 
underlying pdfs in future periods do not show any shift from that of base 
period. Overall across India, MME mean reduction of 3.60 mm and 0.45 
mm is projected in near- and far- future period following SSP245. On the 
other hand, under SSP585, MME mean reduction of 0.72 mm is 

 (a) Time series plots (b) Probability density functions (pdfs) 
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Table 3 
MME mean absolute changes, percentage changes and trend in seasonal precipitation in future, averaged over entire India along with its 95% confidence interval 
following two different scenarios.  
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projected in near-future, which will be evolved as 6.03 mm increase in 
far-future period. Trend analysis also reveals that more than 90% of 
Indian mainland does not show statistically significant trend in winter 
precipitation, barring a few scattered places. 

Overall this multi-model analysis gives a robust signal of wetter 
climate for entire India, having the obvious spatial diversity and inter- 
model uncertainty, with major contribution coming from summer and 
monsoon season, and relatively weaker or negative contribution from 
post-monsoon and winter precipitation. Generally, the low-precipitation 
zones, especially HPZ-1 is showing consistent increase in precipitation in 
all seasons. Further, the level of increase in precipitation across all HPZs 
are getting enhanced with time and under the highest forcing, indicating 
the possible impacts of anthropogenic activities towards changing 
pattern of climate. 

4.2.2. Changes in different levels of (extreme) precipitation 
In this section, we present the multi-model projected changes in 

different levels of extreme precipitation in future across India. Towards 
this, we have considered two different levels of measures for extreme 
precipitation- (a) 95th percentile of wet-day precipitation (P95), and (b) 
annual maximum daily precipitation (AMDP). Additionally, to compare 
the changes in the level of extremes with that in the level of mean, we 
have also considered the median or 50th percentile of wet-day precipi
tation (P50). The analysis is exactly same as in case of seasonal pre
cipitation, i.e., the absolute changes, percentage changes in different 
levels of precipitation are evaluated, along with a trend analysis under 
two forcing pathways. The results are summarized in Figs. 6, 7 and 8 in 
terms of spatial distribution, bar plots, and time series plots with un
certainty in projection, respectively. Furthermore, the quantitative 
outcomes of this analysis are presented in Table 4 in terms of MME mean 
changes along with its uncertainty band (95% confidence interval). 

In general, a similar pattern of increase is noticed in case of 50th and 
95th percentile precipitation in terms of the spatial distribution (Fig. 6). 

The increase is mostly observed in the Westerns Ghats, Gujrat portion, 
and north-central part of India. Largely the high-seasonality zones such 
as, HPZ-1, 2 and 3 are projected to have the maximum amount of in
crease (Fig. 7). Similar to seasonal precipitation, here also, the amount 
of increase gets more intensified towards EOC and under the worst 
scenario (SSP585). However the extent of percentage increase is higher 
in case of 95th percentile than 50th percentile. For instance, 22.66% 
(12.84%) MME mean increase is projected for 50th percentile in the far- 
future period, whereas the same for 95th percentile is 25.66% (13.74%) 
following SSP585 (SSP245). The difference becomes even more pro
nounced in case of the higher level extreme, i.e., AMDP, which is re
ported to be increased by 44.85% (24.87%) w.r.t the base period 
towards EOC following SSP585 (SSP245) - almost double increase than 
the increase in median precipitation. This indicates that, though both 
mean and extreme precipitation are increasing under the changing 
climate, the rate of increase is much higher in case of extremes than 
mean, which is expected to have more detrimental impacts on society 
including flooding, crop damages, health hazards, erosion, and water 
contamination problems (Guhathakurta et al., 2011; Pall et al., 2011; 
Rajeevan et al., 2008). 

From the trend analysis (panel c, Fig. 6), we see that most southern 
India and some part of western India is having statistically significant 
trend in future, whereas northern India mostly remains statistically 
insignificant except in far-future period under SSP585. Generally the 
high-seasonality zones are showing maximum amount of trends, 
although the HPZ-6 is also showing good amount of trend in AMDP 
towards EOC. Averaging the trends over entire India, MME mean value 
of 0.35, 2.33 and 7.07 mm/decade is reported for P50, P95 and AMDP, 
respectively in the far-future period under SSP585. 

The key observations from time series plots and underlying pdfs 
(Fig. 8) of all three levels of precipitation for future time periods remain 
mostly same as that in seasonal precipitation. A continuous temporal 
evaluation towards wetter side is observed in all three levels following 

(a) Absolute changes (mm/day) (b) Percentage changes (%) (c) Trend (mm/decade)
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Fig. 7. MME mean of (a) absolute changes, (b) percentage changes, and (c) trend in various levels of (extremes) precipitation across India over future following 
two scenarios. 
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both the emission pathways. However till the year 2060, i.e., in the near- 
future period, not much difference is observed between SSP245 and 
SSP585. However, after 2060, the time series of all three levels of pre
cipitation mostly remains stationary under SSP245 (green line), whereas 

the plots for SSP585 (red line) keep on increasing, thus resulting in 
almost two-times more increment towards EOC than SSP245. Further
more, the time series plots depict more pronounced increase above the 
baseline in case of extremes (especially AMDP) than median 

 (a) Time series plots (b) Probability density functions (pdfs) 
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Table 4 
MME mean absolute changes, percentage changes and trend in different levels (extremes) of precipitation in future, averaged over entire India along with its 95% 
confidence interval following two different scenarios.  
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precipitation. Similar observations can also be confirmed from the pdfs 
(panel b, Fig. 8). The pdfs in near-future period under SSP245 and 
SSP585 does not have much difference, however in the far-future period, 
considerable shift towards higher values is observed. Moreover the 
general nature of shift in pdfs in future periods is more noticeable in case 
of extremes than that in median precipitation. 

4.2.3. Changes in monthly variation of precipitation 
Fig. 9 shows the MME mean monthly cycle of precipitation over 

future periods across India and its six HPZs following two scenarios. A 
common observation from all the plots is an unequivocal increase in 
monthly precipitation, especially for the high-rainfall months. However 
the dry months (Dec to March) mostly remain dry or gets even drier. 
Noticeable amount of increase starts since summer months like April and 
May, and reaches maximum in late monsoon months like August and 
September. In general, the seasonal pattern does not get disturbed, 
rather get intensified across all six HPZs over future. Similar to our 
earlier findings, here also maximum amount of increase is visible in case 
of low-precipitation zones such as, HPZ-1 and 4, and least increase in 
high-precipitation zones (HPZ-3 and 6). 

4.3. Precipitation-based climate changes hotspots across India over future 

As explained in section 3.3, seven precipitation change indicators are 
evaluated and rescaled for all four seasons for each 14 CMIP6-GCMs, 
followed by calculation of their MME mean and finally the PHI over 
future periods following two forcing pathways. The final result is shown 
in Fig. 10 in the form of spatial distribution of PHI or in other words, 
precipitation change susceptibility maps over near- and far-future 
period, under SSP245 and SSP585. The places with high (low) values 
of PHI indicates high (low) susceptibility to precipitation changes. Thus 
the dominant changing pattern with high values of PHI emerges in 
northwest, western coast and northeast part of the country towards EOC 

under both scenarios. Western states like Gujrat, Maharashtra, Rajas
than, and north-eastern states like Assam show the maximum values of 
PHI indicating significant level of precipitation changes in future. On the 
other hand, northern states such as, Punjab, Haryana, Uttarakhand, 
Uttar Pradesh- mostly in the Gangetic plain, Gangetic west Bengal, or 
eastern coastal regions of Andhra Pradesh shows comparatively lower 
values of PHI, depicting lesser degree of changes in precipitation. 
However, all these less susceptible places also exhibit increase in PHI, i. 
e., increasing susceptibility with the passage of time in future. 

Interestingly, in the near-future period, some parts of coastal Odisha 
shows distinctly high values of PHI than other obvious aforementioned 
places like northwest or western coastal regions of India. This can be 
explained with the help of supplementary Fig S2 or S4, which shows the 
actual and rescaled values of all 7 indicators for all 4 seasons in near- 
future period following SSP245 and SSP585. From these figures, we 
observe that, the variability of precipitation especially in post-monsoon 
season has particularly increased in that region. Along with that, the 
number of drier seasons has significantly increased over most of the 
seasons, with reduction in winter and post-monsoon precipitation in that 
portion in near-future. Though this indicates drying in true sense, and 
the PHI being bidirectional in nature, gives a very high value compared 
to other places in India. However in the far-future period, various places 
in northwest India, western coast, southern part, and northeast India 
emerges as highly susceptible hotspot regions because of high values of 
various indicators such as, ΔP, ΔPvar, ΔPex, fwet, ΔPfwet (See supple
mentary Fig. S3 and S5) - all indicating wetter future over those regions. 
In general, increase in PHI values is observed across the country with the 
passage of time and under the worst emission scenario SSP585-very 
similar to our earlier observations on changes in seasonal or extreme 
precipitation. 

Therefore, considering the PHI map over far-future period and 
SSP585, the precipitation based climate changes hotspots are identified 
over India. At first, a non-parametric Kernel pdf of PHI is developed for 

Fig. 9. MME mean changes in monthly variation of precipitation, averaged across entire India and its six HPZs over future following two scenarios.  
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Fig. 10. Temporal evolution of precipitation-based climate changes hotspots across India over future following two scenarios.  

Fig. 11. Development of precipitation changes hotspot map for India in far-future under SSP585. (a) Actual spatial distribution of PHI in far-future under SSP585, (b) 
Transformed hotspot map having 4 zones, using (c) the pdf of PHI across India. (c) Average values of PHI across HPZs and (d) % of spatial extent under all four colour 
zones across HPZs. 
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all grid-points across India for the aforementioned time period and 
scenario. Then the area under the pdf is split into four different parts on 
the basis of 25th, 50th, and 75th percentile of PHI values, and accord
ingly the entire India mainland is categorised into four susceptibility 
zones- (i) Severely susceptible zone (Red zone): PHI > PHI75, (ii) Highly 
susceptible zone (orange zone): PHI50 < PHI < PHI75, (iii) Moderately 
susceptible zone (yellow zone): PHI25 < PHI < PHI50, and (iv) Less 
susceptible zone (green zone): PHI < PHI25. Out of these four zones, the 
first two (red and orange zones) are recognised as “precipitation-based 
climate changes hotspots” in this study. The finally obtained zoned 
hotspot map is shown in Fig. 11b. Further analysis on spatial distribution 
of these hotspots across HPZs reveals that the HPZ-1 and HPZ-6 have the 
maximum spatial extent of hotspots. More than 75% area in these two 
zones are susceptible to high to severe changes in precipitation over 
future (Fig. 11d). Moreover, the area-averaged values of PHI over both 
these two zones are higher than PHI75 (~1.83) - hence marked as red bar 
in Fig. 11d. Interestingly, the fundamental reason for both these zones of 
completely different nature of precipitation characteristics (HPZ-1: Low 
precipitation-high seasonality; HPZ-6: High precipitation-low season
ality), to be recognised as hotspots is different. The high value of PHI 
over HPZ-1 is attributed from very high level of increase in mean and 
extreme precipitation, but variability of precipitation has hardly 
changed (rather some reduction is noticed) over all four seasons in that 
zone (supplementary Fig. S5). On the contrary, the HPZ-6 shows lesser 
extent of increase in ΔP or ΔPex, but the precipitation variability has 
increased substantially in this zone, with consequently increasing values 
of fwet and fdry for various seasons (supplementary Fig. S5). Thus, both 
these zones of drastically distinct precipitation climatology gets simul
taneously identified as hotspots, but for different reasons. Apart from 
these two zones, the HPZ-3 i.e., the Western Ghats region also shows 
high value of area-averaged PHI (~1.74) with approximately 70% area 
exposed to high to severe changes in precipitation. However, unlike 
HPZ-1 and 6, here major contribution towards this 70% area of hotspot 
comes from orange zone, not from red zone. Thus the average PHI value 
(~1.74 < PHI75) is also quite lesser than HPZ-1 or 6, hence marked as 
orange in Fig. 11d. On the other hand, in cases of HPZ-2, − 4 and − 5, less 
than 50% of their area is exposed to hotspots. For HPZ-5, the spatial 
extent is least- only 20%, thus in turn resulting in the minimum value of 
area-averaged PHI (~1.55; yellow bar in Fig. 11d) as well. Overall, 
approximately, 50% of Indian mainland is expected to be precipitation- 
based climate changes hotspots towards EOC. 

Additionally, we developed the hotspot map for India over the recent 
past (1981–2020), with reference to 1951–1980 period using the IMD- 
gridded observations (supplementary Fig. S6). A reasonably good simi
larity can be noticed between the observed and future-projected hotspot 
maps (e.g., the north-east portion, Western Ghats, southern India, parts 
of north-west India) along with some expected mismatches as well (e.g., 
parts of eastern coast, northern and western India). It is now well- 
established fact that, Earth’s climate has changed in past (Sarkar and 
Maity, 2021; Trenberth et al., 2003), and will continue to change in 
future too (Madakumbura et al., 2019). However, the spatio-temporal 
pattern of changes might not remain same over the time. Thus, such 
alteration in the hotspot pattern between the observed or historical and 
future hotspot is expected, and does not contradict our findings. 

4.4. Key-vulnerable cities for precipitation change across India over future 

Similar to the hotspot maps, we further develop the future 
precipitation-based vulnerability map for India using the proposed index 
PVI for near- and far-future periods, following both SSP245 and SSP585 
scenario. To develop these maps, the earlier obtained PHI values are 
used, along with future-projected PD data (for the year 2060 and 2100) 
and latest-available HDI data (year 2015). The final result is shown in 
supplementary Fig. S7, which shows the spatial distribution of PVI or in 
other words, precipitation-based vulnerability maps. Similar to hotspot 
map, the entire Indian mainland is categorised into four different zones 

of vulnerability (supplementary Fig. S8) on the basis of the PVI values in 
far-future period following SSP585. A compare between the final hot
spot map (Fig. 11b) and the vulnerability map (supplementary Fig. S8b) 
reveals an interesting observation. Although the parts of western India 
including the Thar desert, Rann of Kutch, parts of northeast India, parts 
of Kerala are identified as hotspots with high climatic exposure, these 
are not highly vulnerable because of very less PD or high HDI (for 
Kerala). On the contrary, in spite of having low to moderate climatic 
exposure, Himalayan foothills including parts of Uttar Pradesh, Bihar 
and North Bengal, parts of Odisha and Chhattisgarh are identified as 
highly vulnerable regions, because of very high PD or low HDI over 
those places. 

Finally, on the basis of the vulnerability map in far-future period 
following SSP585, we identify the key-vulnerable cities with changing 
precipitation characteristics. Towards this, we have considered all tier-I 
cities (total 493 cities within our study area) i.e., the cities with more 
than 1 lakh population as per census, 2011 in India (https://www.cens 
us2011.co.in/city.php accessed on August 2021). Out of those 493 cit
ies, 202 cities, i.e., 41% cities are identified as vulnerable cities (red +
orange zone) with expected high to severe changes in future precipita
tion. That means four out of ten tier-I cities will be exposed to hotspots 
towards EOC, which is quite alarming. The list of these 202 hotspot cities 
along with their PVI values is provided in Table-S3 of supplementary 
information. However for brevity in representation, we filtered out 89 
cities with population more than 5 lakhs out of total 493 tier-I cities, and 
identified 41 cities (approximately 46%) among them to be hotspots to 
precipitation changes. The location of these 89 cities with different 
coloured markers (Red, orange, yellow and green) is shown in Fig. 12 to 
distinguish them under different zones of vulnerability. We expect this 
will serve as a useful piece of information for urban planners and policy 
makers to plan adequately before facing the challenging future. How
ever, it is worthwhile to mention that, consideration of sub-daily scale 
precipitation could have been more meaningful for identification of 
vulnerable cities. However, sub-daily scale analysis is beyond the scope 
of the current study due to non-availability of reliable data over entire 
India – both from observation and model-simulations, and therefore, 
kept as a future scope of the study. 

Although the hotspot patterns are apparently robust under different 
emission scenarios, the results can be subjected to some sources of un
certainty. For example, in spite of using state-of-the-art CMIP6-GCMs, 
the number of models and realizations used may not be sufficient 
enough to capture the full range of uncertainty in the perspective of 
global climate sensitivity and regional response to global warming 
(Taylor et al., 2012). Thus despite considering MME mean, the final 
results could be sensitive to the number of models and its realizations 
considered. Another source of uncertainty can arise from the temporal 
scale of this analysis, which is multi-decadal here. Hence, the identified 
precipitation changes patterns could be overwhelmed by the internal 
climatic variability for shorter time scales such as, decadal or sub- 
decadal periods. Moreover, the assumption of stationary bias in the 
data is another limitation of the approach. In general, most of the 
existing bias-correction methods including RMPH method inherently 
assume stationarity in the bias, which questions the model applicability 
in the future, particularly in the far-future period. Notwithstanding, the 
overall findings of this study cannot be denied for adopting better pre
paredness and informed policy formulation for future. 

5. Conclusions 

This study proposes a new and more inclusive index named Precip
itation based Hotspot Index (PHI) to identify the ‘hotspots’ across the 
Indian mainland considering the most expected changes in the precipi
tation pattern in the future. Future simulated precipitation data from 14 
state-of-the-art GCMs, participating in CMIP6, under two possible 
climate change scenarios – SSP245 and SSP585 have been utilised for 
this purpose. The raw GCM data is properly bias-corrected using a latest 
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copula-based technique (i.e., RMPH method) and made available in 
public domain (https://figshare.com/s/9d978fcff33e86bbf56b). Next, 
an analysis of this bias-corrected future precipitation is carried out at 
various temporal as well as spatial scales to understand the underlying 
mechanisms of these hotspot regions. Finally, all the cities (a total of 
493) across the country with more than 1 lakh population are considered 
to identify the most vulnerable cities in India. Overall the key observa
tions of this study are listed below.  

1. In general, a wetter climate is projected across Indian mainland with 
approximately 290 ± 150 mm to 530 ± 260 mm increase in annual 
precipitation towards the end of this century under various models 
and scenarios. The increase is persistent over the future years and 
gets more intense with time, particularly under the higher emission 
scenario- indicating a potential impact of increased anthropogenic 
activities on the extreme precipitation.  

2. This increase in annual precipitation has considerable spatio- 
temporal variations considering different seasons and HPZs. 
Season-wise, the summer and monsoon precipitation contributes the 
most towards the total increase in annual precipitation, whereas the 
post-monsoon shows a relatively weaker level of increase, and winter 
precipitation shows an overall decline. Thus, the wet months are 
projected to be wetter and dry months will remain mostly the same 
or even may get drier. Spatially, the low-precipitation zones (HPZ-1 
and HPZ-4) show the maximum increase (in percentage), whereas 
the high-precipitation zones like HPZ-6 shows the least increase.  

3. The increase is projected in both the levels of precipitation-mean and 
extremes. However, the increase (in percentage) is more in case ex
tremes than the mean level. For instance, the increase in AMDP 
(~45%) towards the end of the century is almost two-fold than the 
increase in precipitation median (~23%) following SSP585. As ex
pected, such an alarming level of increase in extreme precipitation is 

 

 

Highly Vulnerable cities Moderately Vulnerable cities Less Susceptible cities 
Rank Name PVI Rank Name PVI Rank Name PVI 

18 Ajmer 0.297 42 Firozabad 0.175 66 Chennai 0.092 
19 Rajkot 0.296 43 Jabalpur 0.171 67 Nanded Waghala 0.086 
20 Lucknow 0.289 44 Asansol 0.170 68 Loni 0.083 
21 Navi Mumbai 0.279 45 Madurai 0.169 69 Gurgaon 0.080 
22 Jhansi 0.279 46 Thane 0.155 70 Noida 0.070 
23 Cuttack 0.275 47 Bhiwandi 0.155 71 Vijayawada 0.068 
24 Bikaner 0.274 48 Hyderabad 0.148 72 Faridabad 0.066 
25 Hubli and Dharwad 0.264 49 Thiruva0thapuram 0.144 73 Nagpur 0.062 
26 Moradabad 0.245 50 Warangal 0.139 74 Dehradun 0.061 
27 Kanpur 0.239 51 Salem 0.137 75 Jamshedpur 0.059 
28 Siliguri 0.217 52 Aurangabad 0.132 76 Meerut 0.056 
29 Kolapur 0.217 53 Sangli Miraj Kupwad 0.129 77 Durgapur 0.054 
30 Nashik 0.203 54 Tiruchirappalli 0.128 78 Visakhapatnam 0.052 
31 Pimpri and Chinchwad 0.197 55 Kolkata 0.126 79 Varanasi 0.043 
32 Jaipur 0.197 56 Howrah 0.126 80 Kochi 0.039 
33 Pune 0.195 57 Dhanbad 0.124 81 Delhi 0.035 
34 Vasai Virar 0.194 58 Allahabad 0.112 82 Agra 0.020 
35 Mira and Bhayander 0.194 59 Ghaziabad 0.108 83 Ludhiana 0.017 
36 Gulbarga 0.192 60 Mysore 0.106 84 Saharanpur 0.015 
37 Aligarh 0.189 61 Gwalior 0.103 85 Amritsar 0.012 
38 Bareilly 0.188 62 Solapur 0.102 86 Jammu 0.008 
39 Coimbatore 0.184 63 Guntur 0.100 87 Jalandhar 0.005 
40 Kalyan and Dombivali 0.183 64 Bangalore 0.099 88 Chandigarh 0.000 
41 Ulhasnagar 0.183 65 Amravati 0.098    

 

Severely Vulnerable cities 
Rank  Name  PVI  

1 Guwahati 0.62 
2 Indore 0.58 
3 Ujjain 0.50 
4 Raipur 0.42 
5 Bhubaneswar 0.41 
6 Ahmedabad 0.41 
7 Gorakhpur 0.40 
8 Surat 0.40 
9 Kota 0.40 
10 Bhavnagar 0.39 
11 Vadodara 0.39 
12 Patna 0.38 
13 Bhilai Nagar 0.37 
14 Bhopal 0.36 
15 Jodhpur 0.34 
16 Ranchi 0.33 
17 Mumbai 0.31 

Fig. 12. Name and location of all 88 cities with more than 5 lakh population in India and their categorisation into four vulnerability groups, red, orange, yellow and 
green. The red and orange marked cities are considered as precipitation change vulnerable cities in this study. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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likely to have detrimental impacts on various socio-economic sectors 
of the country. 

4. Based on these future projected changes in various aspects of pre
cipitation, such as mean, variability, and extremes (magnitude, fre
quency and intensity), the PHI is evaluated and accordingly entire 
Indian mainland is categorised into four susceptibility zones -red, 
orange, yellow, and green. Out of these four color-coded regions, the 
red and orange colored zones together are identified as hotspot re
gions, which are projected to have high to severe changes in pre
cipitation towards the end of century under SSP585 scenario. These 
hotspot regions mostly spans in northwest, west-central, west-coast, 
northeast and some sub-Himalayan regions in India. 

5. Zone-wise analysis reveals that HPZ-1 and HPZ-6 are most exten
sively occupied by the hotspot region as compared to other HPZs. 
Almost three-fourth of the areal extent of HPZ-1 and HPZ-6 are 
exposed to high to severe changes in precipitation. On the other 
hand, moderate precipitation zones (e.g., HPZ-2 and HPZ-5) are 
projected to face the lowest areal extent exhibiting changes in 
precipitation.  

6. Finally, considering two important socio-economic factors viz., 
population density (PD) and human development index (HDI) along 
with the PHI, another index named Precipitation-based Vulnerability 
Index (PVI) is defined. Based on that, the key-vulnerable tier-I cities 
are identified across India. The analysis with 493 Indian cities with 
more than 1 lakh population reveals four out of ten tier-I cities will be 
exposed to high vulnerability towards the end of this century. 

Overall, the findings of this study on future-projected changes in 
precipitation over India is expected to be beneficial for management of 
water resources considering in future change. Such an extent of rise of 
various levels of precipitation will pose multi-dimensional challenges. 
Hence, suitable adaptation and mitigation strategies are required to be 
formulated in advance to build resilience against the worst-case climate 
change scenario. The precipitation-based hotspot map along with 
identified vulnerable cities within various susceptibility zones may be 
helpful for the urban planners and decision-makers to formulate suitable 
strategies and for sustainable planning and development in future. 
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