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A B S T R A C T

Information on vertical Soil Moisture Content (SMC) profile is important for several hydro-meteorological
processes. This study borrows the idea of coupling the memory and forcing from a previous study and develops a
spatially-varying Statistical Soil Moisture Profile (SSMP) model to estimate the vertical SMC profile. It uses only
surface soil moisture (0–5 cm) values and Hydrological Soil Groups (HSGs) information of the location. The focus
of the study is incorporation of the HSG information to ensure the spatial transferability of the proposed model
by capturing the spatial variations of soil moisture profile with the change in soil hydraulic properties. The wide
range of soil moisture data for model development as well as for spatial validation is obtained from 171 stations
from different networks of International Soil Moisture Network (ISMN) at five different depths, i.e., 5, 10, 20, 51
and 102 cm. The HSG information at the locations are extracted from the Web Soil Survey (WSS) database. The
potential of spatial transferability of the SSMP model is assessed by applying it to the new stations within the
corresponding HSG. Model performances are promising for all four depth pairs (5–10, 10–20, 20–51 and
51–102 cm) of all four HSGs during both model development and spatial validation given the model complexity.
Hence, the spatially-varying SSMP model is suitable at the ungauged locations by incorporating the HSG in-
formation. The potential application of the proposed model shows the future scope to assimilate the satellite
based surface SMC data into the model to develop a vertical soil moisture profile map over a large area.

1. Introduction

Soil Moisture Content (SMC) of the unsaturated zone i.e. the vertical
soil moisture profile plays a significant role in determining the water
and energy fluxes between soil and atmosphere (Famiglietti et al.,
1998) as well as vegetation growth (Yang et al., 2012). Recently, the
retrieval of surface SMC from remote sensing data is in the research
interest due to its large scale and fine resolution estimation (Bertoldi
et al., 2014). However, the remote sensing is capable of retrieving the
soil moisture information only for the top few centimeters (5–10 cm) of
surface layer (Kerr et al., 2010).

The surface SMC is associated with the root-zone SMC and it is
possible to obtain soil moisture profile assessment using the surface soil
moisture information (Calvet and Noilhan, 2000; Albergel et al., 2008;
Singh, 2010) since it is coupled to root-zone SMC through diffusion
processes (Singh, 2010). Utilizing this concept many studies have at-
tempted to estimate the root zone soil moisture by extrapolating the
surface soil moisture (Wagner et al., 1999; Manfreda et al., 2014;
Manfreda et al., 2014; Renzullo et al., 2014; Dumedah et al., 2015). The
data assimilation techniques and the exponential filter proposed by

Wagner et al. (1999) are the most extensively used methods among
these. The exponential filter needs the wilting level, field capacity, and
porosity information and can be applied to the regions with same cli-
matic and crop conditions. These pre-requisites limit the application of
exponential filter as the information may not be available for the other
ungauged locations. Its application is based on the assumption of a
constant hydraulic conductivity of soil, whereas, in practical scenario it
can vary by several degrees of magnitude. Soil moisture profile esti-
mation from remote sensing data has focused on data assimilation into
Land Surface Models (LSMs) based on the association of near-surface
soil moisture and the root-zone soil moisture through diffusion pro-
cesses. LSMs use the soil hydraulic property information derived from
the pedotransfer function by Cosby et al. (1984) and a set of default or
spatially uniform model parameters (Li et al., 2011). These simplified
and empirically derived default soil hydraulic parameters are in-
adequate to describe the soil moisture variability in spatially hetero-
geneous landscapes. Thus, the uncertainties due to the inaccurate
physical description of the water and energy balance hinder the ap-
plication of such techniques (Sabater et al., 2007).

It is established that the mutual association of SMC values decreases
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with the increase in the gap between two soil layers (Mahmood et al.,
2012). However, the mutual association between SMC at different soil
depths and the stochastic features of soil moisture dynamics can be
evaluated through statistical methods such as cross-correlation method
and Vector Auto Regression (VAR) method (Kim and Kim 2007; Kim
2009; Kim et al. 2011; Mahmood et al. 2012; Pal et al., 2016). This
study borrows the idea of coupling the memory (temporal persistence)
and forcing (input from overlying layers) from Pal et al. (2016). The
memory of SMC is a measure of the time length when a moisture
anomaly caused by wet or dry conditions is identifiable and impacts the
atmosphere. The importance of soil moisture memory has been in-
vestigated in many studies with autocorrelation-based approaches,
Markov chain, chaos theory along with studying from observations,
integrations with LSMs and Atmospheric General Circulation Models
(AGCMs) (Sridhar et al., 2002; Seneviratne et al., 2006; Yan et al.,
2015; Sivakumar, 2017). The autocorrelation-based approaches used in
AGCMs represent the variability of soil moisture memory component
(Seneviratne et al., 2006). Using this soil moisture memory concept,
many studies have used the coupling in a particular region or season
with meteorological forcings such as evapotranspiration, precipitation
or net radiation (Ghannam et al., 2016; Sörensson and Menéndez, 2011;
Seneviratne et al., 2006). Pal et al. (2016), used the concept of coupling
the soil moisture memory with the soil moisture information of the
overlying layer which is considered the forcing to assess the root-zone
soil moisture by autocorrelation-based approach. However, the spatial
transferability was not investigated which is important so as to apply
the developed model at ungauged locations. The spatial variation of soil
moisture is controlled by its association with soil texture, vegetation,
topography, precipitation and other hydroclimatic variables. Each of
these interdependent controlling factors impacts the spatial distribution
of SMC depending on the characteristics of heterogeneity present in the
area and varies with time and scale. However, the water holding ca-
pacity in the unsaturated zone and the variability of soil moisture dis-
tribution is directly influenced by the soil hydraulic properties (Price
et al., 2010; Kim and Barros, 2002) and soil texture (Jawson and
Niemann, 2007). The hydraulic properties of soil determine the hy-
draulic conductivity, matric potentials affecting the flow of water
through soil, moisture available to plants (Gaur and Mohanty, 2013)
and quantity of precipitation inflowing and retained in subsurface
storage (Farres, 1987; Rawls et al., 1993; Cerda, 1996). Hence, the
incorporation of soil hydraulic properties in estimation of vertical soil
moisture profile is beneficial. The Hydrological Soil Groups (HSGs) are
categorized based on their infiltration characteristics which in turn
mainly depend on the soil hydraulic properties especially the hydraulic
conductivity. The classification of various soil types based on these soil-
hydrologic factors is defined in the US National Engineering Handbook
as four major HSGs, viz., A, B, C, and D. Originally, the soils were as-
signed to the four HSGs based on measured precipitation, runoff and
infiltration data (Musgrave 1955). Simply, the water transmitting soil
layer with the lowest saturated hydraulic conductivity, depth to any
layers that is more or less water impermeable and depth to a water table
(if present) determines the HSG. The rate of infiltration decreases from
HSG-A to HSG-D (USDA, 2009). A brief description on different HSGs is
provided in Table 1. The Web Soil Survey (WSS) operated by the USDA
Natural Resources Conservation Service (NRCS) suggests that the soils
are allotted to one of the four HSGs according to the infiltration rate
when the soils are not protected by vegetation, thoroughly wet, and get
rainfall from long-duration storms. However, the proposed approach
utilizes the surface SMC that already bears the signature of the above
mentioned factors. Summarizing the aforementioned discussion, the
consideration of the HSGs implies the integration of the effects of the
physical controls into the SMC profile estimation and may provide a
potential information to develop spatially varying statistical model to
estimate vertical SMC profile.

In brief, based on the research gaps, the objective of the study is to
develop a spatially-varying, statistical approach linking the surface soil

moisture to the deeper layers to estimate vertical SMC profile bor-
rowing the already established concept of coupling memory (temporal
persistence) and forcing (input from overlying layers). The developed
model is named as Statistical Soil Moisture Profile (SSMP) model. The
spatial transferability of the proposed statistical approach is explored
through incorporating the HSG information since it demonstrates the
effect of the physical controls viz. soil texture, hydraulic conductivity,
runoff and infiltration.

2. Data and study area

The soil moisture time series data is obtained from the International
Soil Moisture Network (ISMN) website (Dorigo et al. 2011) (http://
www.wcc.nrcs.usda.gov/scan/) initiated by Vienna University of
Technology, Austria. The worldwide in situ soil moisture measurements
from different networks and validation operations are collected, syn-
chronized, and made accessible to users through the ISMN. This study
utilizes the soil moisture data from three different networks to develop
the SSMP model as well as for the spatial validation which are described
in the previous sections. The daily time series of SMC data is used from
Soil Climate Analysis Network (SCAN), U.S. Climate Reference Network
(USCRN) and SNOwpack TELemetry (SNOTEL) networks.

The SNOTEL system measures the soil moisture with the hydra-
probe sensor. The temperature range of the probes is from −10 °C to
+65 °C and these are able to measure water only in the liquid state.
Therefore, the studies using the soil moisture at different depths uses
the soil moisture values corresponding to soil temperatures> 0° C. The
hourly SMC data is collected from total 171 monitoring stations from
these three different networks at five different depths of 5, 10, 20, 51
and 102 cm and converted to daily SMC data. The observed SMC data
from at least 20 stations with good quality data from each HSG (HSG A-
21, HSG B-28, HSG C-33 and HSG D-21) is used for the model devel-
opment to incorporate the properties of vast range of SMC variability
into the proposed models. Henceforth these stations are called as model
development stations. It may be noted that the model testing is also
carried out with these stations but for different time period. Remaining
stations are used for spatial validation, henceforth called spatial vali-
dation stations. Numbers of such stations from each HSG are as follows:
HSG A-17; HSG B-22; HSG C-17; and HSG D-17. The HSG of each
monitoring stations are determined from the Web Soil Survey (WSS)
(https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm). It pro-
vides soil data and information produced by the National Cooperative
Soil Survey and operated by the USDA Natural Resources Conservation
Service (NRCS).

3. Methodology

3.1. Data preprocessing

3.1.1. Missing value treatment
Missing data periods may be present in observed daily soil moisture

data. Extensive periods (> 20 days) of missing data are discarded since
it cannot be filled up with reasonable accuracy. Moreover, some time
steps consist of the complete time series for deeper layers except the
surface layer information. Such time steps are also discarded since the
study attempts to obtain the complete vertical SMC profile using only
surface soil moisture information. However, shorter periods of missing
values (20 days or less) are substituted by simple linear interpolation
from its preceding and successive soil moisture values (Pal et al., 2016)
(Fig. 1).

3.1.2. Data transformation
The transformation of data to a common probability distribution

form is another important step since the soil moisture data at any two
locations mostly do not follow the same range and distribution. Keeping
spatial transferability as a focus of the developed model, the data
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transformation to a common distribution is necessary. Secondly, the
proposed SSMP model is motivated by concept of the Box-Jenkins ap-
proach to couple memory and forcing as established in an earlier study
(Pal et al., 2016), however, with an additional consideration of spatial
transferability. As a requirement of any Box-Jenkins approach, the data
should follow normal distribution, which is the requirement of the
proposed SSMP model as well (Box et al., 2015). However, the SMC
data may deviate (sometime significantly) from normal distribution
(Choi and Jacobs, 2007). Thus, the data is transformed to follow an
approximate normal distribution. Kernel density approach is used to
transform the observed SMC data to follow a normal distribution since
any parametric distribution could not describe the observed SMC data
for any layers to develop the SSMP model. The steps to transform the
data (x) are as follows. These steps can be read along with the Fig. 2 for
an easy understanding.

Step-1: Non-parametric kernel density approach is applied to obtain
a non-parametric Probability Density Function (PDF), which is con-
verted to Cumulative Distribution Function (CDF).

Step-2: Non-exceedence probability of each data point is obtained
using this CDF. These values are also known as reduced variate (shown

as ‘u’ in Fig. 2).
Step-3: The reduced variates are transformed through an inverse to

standard normal distribution. These values are shown as ‘U’ in Fig. 2.
Step-4: The transformed standard normal variates are used for model

development (details are discussed in the subsequent sections).
Step-5: The model estimated values are back transformed through a

reverse process described in Step 3. These values are shown as û in
Fig. 2.

Step-6: The û values are back transformed through the inverse CDF
developed in Step 1 to obtain the corresponding estimated SMC values

̂x( ) as shown in Fig. 2.
It may be noted that the non-parametric distribution using kernel

density can be estimated as (Zambom and Dias, 2012),

̂ ∑= ⎛
⎝
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where n is the sample size, ∙K ( ) is the kernel smoothing function which
defines the curve used to generate the PDF and h is the bandwidth
which is a function of number of data-points and vary accordingly for
each station of each HSG. Normal kernel function is used in the present

Table 1
The description of four HSGs (Das and Maity, 2015; USDA, 2009).

HSG Description Infiltration Rate (mm/h)

A Soils in this group have high infiltration rates even when thoroughly wetted and have a high rate of water transmission. Group A soils typically
consists of less than 10% clay and well to excessively drained sand (more than 90%) or gravel and have gravel or sand textures. Some soils
having loamy sand, sandy loam, loam or silt loam textures may be considered in this group if they are well aggregated, having low bulk density,
or consists of greater than 35 percent rock fragments.

> 25

B Soils in this group have moderate infiltration rates when thoroughly wetted. Water transmission through the soil is unhindered and thus it has a
moderate rate of water transmission. Group B soils typically have between 10% and 20% clay and 50% to 90% sand and have loamy sand or
sandy loam textures. It consists of mainly moderately deep to deep, moderately well to well-drained soils. Some soils having loam, silt loam, silt,
or sandy clay loam textures may be considered in this group if they are well aggregated, have low bulk density, or contain greater than 35
percent rock fragments.

12.5–25

C Soils in this group have moderately slow infiltration rates when thoroughly wetted. Water transmission through the soil is somewhat restricted
and it has a moderate rate of water transmission. Group C soils typically consists moderately well to well-drained soils having between 20% and
40% clay and less than 50% sand and have loam, silt loam, sandy clay loam, clay loam, and silty clay loam textures. Some soils having clay, silty
clay, or sandy clay textures may be considered in this group if they are well aggregated, have low bulk density, or contain greater than 35
percent rock fragments.

2.5–12.5

D Soils in this group have very slow infiltration rates when thoroughly wetted. Water movement through the soil is restricted. Group D soils
typically consists of greater than 40% clay with a high swelling potential, less than 50%sand, and have clayey textures. All soils with a depth to
a water impermeable layer less than 50 cm and all soils with a water table within 60 cm of the surface are in this group. It consists of soils with a
permanent high water table, soils with a clay pan or clay layer at or near the surface, and shallow soils over nearly impervious material.

< 2.5

Fig. 1. The study area showing the SMC monitoring stations from SCAN, USCRN and SNOTEL.
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study to estimate the density of the observed SMC data for all the
depths. The Normal kernel function is represented by the following
equation,

= −K x
π

e( ) 1
2

x1
2

2

(2)

After the data transformation, the coupling approach is applied to
the transformed data obtained from the observed data of each model
development station of all four HSGs. The following sub-section de-
scribes the coupling equation to estimate the soil moisture at deeper
layers which is based on the approach proposed by Pal et al. (2016).

3.2. SSMP model

Firstly, all the available stations (both for model development stations
and spatial validation stations) are categorized into four groups ac-
cording to the HSGs where the stations belong to. At a particular model
development station, the estimation of soil moisture at deeper layers is
based on the concept of coupling the ‘memory’ and ‘forcing’ as proposed
by Pal et al. (2016). In the context of SSMP, the memory may be defined
as the previous values of soil moisture in the same layer (underlying
layer) and the forcing may be defined as the current and previous va-
lues of the soil moisture of the overlying layer.

3.2.1. Model at a location
Adapted from Pal et al. (2016), the basic formulation of SSMP

model at a location is represented by the following form of equation
which is applied on the transformed data,

∑ ∑= − + − +
= =

+ −
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q d
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where SM t( )k is the transformed standard normal variate of soil
moisture at the target depth k at time step t . The −SM t i( )k are the
transformed standard normal variates of soil moisture at the target
depth at preceding time steps where =i p1, 2, . ., . The −−SM t j( )k 1
are the soil moisture of the overlying layer at preceding time steps
where, = −j q0, 1, . ., 1. The weighting function coefficients for

−SM t i( )k and −−SM t j( )k 1 are represented as ai and bj; the orders of
the memory and forcing components are represented as p and q re-
spectively; and e t( ) represents the white noise. The relative delay be-
tween the input soil moisture time series −SM t i( )k and the output soil

moisture time series SM t( )k is shown as d. The output is delayed with
respect to the input if the values of >d 0. However, at daily scale this
delay factor can be considered to be zero.

Parameters of this model are the orders (p and q) and the corre-
sponding coefficients (a a a, , ... p1 2 and −b b b, , ... q0 1 1) of the memory and
forcing components. The orders of memory and forcing components
show the number of days (for a daily time series) of the contribution of
memory and forcing respectively. The estimation of model order is
based on a few statistical measures, such as Model Fit (MF), Mean
Square Error (MSE) and Akaike’s Final Prediction Error (FPE), and the
coefficients are estimated using the least square method which mini-
mizes the summation of the square of the residuals as also used in Pal
et al. (2016). The details of the parameter estimation criteria and
methods are described in Appendix A.

Using this approach, individual models at each station are devel-
oped for four depth pairs (the adjoining layers) i.e. 5–10 cm, 10–20 cm,
20–51 cm and 51–102 cm. The next step is to define the specific model
order and coefficient values for each HSG from the individual models
developed to impart spatial transferability, which is discussed in the
next section.

3.2.2. Model with spatial transferability
Individual models, developed at model development stations, are

grouped according to the HSGs. The median value of the model orders
corresponding to each depth pairs across all the stations within a par-
ticular HSG is computed. These values are used as the final model or-
ders for that particular depth pair and HSG. This is repeated for all the
depth pairs and HSGs. Subsequently, the model coefficients are re-
computed with the final model orders at each station within a particular
HSG used for model development. Next, the mean values of the coef-
ficients are computed. These values are used as the final coefficients for
that particular depth pair and HSG subject to the validity of stationarity
assumption. Generally, averaging the coefficients of different Box-
Jenkins models may lead to non-stationarity of the resulting model.
Hence, the stationarity is checked before finalizing the set of SSMP
model.

3.3. Spatial validation

Spatial validation of the developed SSMP model should be carried
out at new locations having daily time series of only surface SMC values
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Fig. 2. The illustrative figure of data transformation to standard normal distribution using kernel density approach.
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and known HSG. For this purpose, the spatial validation stations are used.
The step-wise description of the spatial validation is described as fol-
lows,

Step-1: For a new location, firstly the HSG information is noted and
the observed surface SMC values are transformed to standard normal
variates using non-parametric kernel density approach (as explained in
data transformation section, Steps 1–3).

Step-2: A Cumulative Distribution Function (CDF) of SMC values at
each depth from all the model development stations within a particular
HSG is generated using non-parametric kernel density approach (as
explained in data transformation section, Steps 1–2). This is denoted as
‘reference CDF’. Since at ungauged stations, the SMC data at deeper
layers is not available, the reference CDF is assumed to be valid for the
same depth within the same HSG.

Step-3: According to the HSG of the new station, the SSMP model is
applied and the estimates values are obtained. These are back trans-
formed using standard normal distribution (Step 5 in data transforma-
tion section) and then using the reference CDF (for corresponding depth
and HSG), which is similar to the method explained in Step 6 in data
transformation section (Fig. 2).

Step-4: The back transformed values for all the depths are finally

corrected by adding the Deviation in Mean (DM) between the soil
moisture regimes of the new locations and the model development sta-
tions. The DM is computed by taking the difference between the mean of
the surface SMC values of the model development stations (for the par-
ticular HSG) and the target station. This is due the fact that the soil
moisture regimes of the new station may differ from the soil moisture
regime of the model development stations. The estimated SMC values,
before and after DM correction, are compared to the observed SMC
values.

4. Results and discussions

4.1. Model orders and coefficients

To determine the model orders, the SSMP models for individual
stations with the corresponding observed SMC data from each HSG are
developed. During model development at each station, the ranges of p
and q are varied between 1 and 10 from which a parsimonious choice of
the model order is identified using three criteria i.e., MF, MSE and FPE.
Figs. 3a and 3b shows the box plots of orders of memory and forcing of
all the four depth pairs of these individual models. The median values

Fig. 3a. The boxplot of the memory orders for each HSG and each depth pair obtained from the observed SMC data of all the stations.
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of the model orders observed, in this step from each station corre-
sponding to each HSG and each depth pair are finally assigned as the
memory and forcing orders for that particular HSG. The selected values
of the model orders for all the depth pairs for each HSG are shown in
Table 2. With these selected model orders, data from the model devel-
opment stations are used to determine the model coefficients. The ob-
tained coefficients are averaged across all the stations within a HSG.

The mean values obtained for each depth pairs for a HSG are specified
as the set of final coefficients of the SSMP model. These values of the
coefficients are shown in Table 3.

A close inspection of Tables 2 and 3 reveals a few points. The total
number of model orders decreases from HSG A to HSG D, i.e. with the
decreasing infiltration capacity of the HSG. It indicates that the total
number of model orders decreases with the decrease in infiltration
capacity of the HSGs. A few more detailed observations especially the
values of the model coefficients indicate some physical interpretation.
Firstly, it can be noted that the memory coefficients tend to be low to
high from HSG A to HSG D in general, indicating the dominating role of
memory at deeper layers for the soils having low infiltration rate (e.g.
HSG D). On contrast, the forcing coefficients are distinctly noted to
decrease from HSG A to HSG D for all the four depth pairs except a few
aberrations. It indicates that the forcing varies directly with the in-
filtration rate of the soil layer as the infiltration rate decreases from
HSG A to HSG D. Hence, it can be expected that the values of forcing
coefficients for a particular depth accurately capture the infiltration
trend across the four HSGs. It is also noted that first few coefficients are
much higher than the rest. However, these are not discarded because

Fig. 3b. The boxplot of the forcing orders for each HSG and each depth pair obtained from the observed SMC data of all the stations.

Table 2
Memory and forcing orders of the models for HSG A, B, C and D for each depth
pair.

D1 D2 HSG A HSG B HSG C HSG D

p q p q p q p q

5 10 9 8 3 7 5 7 7 8
10 20 6 8 6 7 5 6 3 4
20 51 4 6 4 3 3 3 4 3
51 102 7 4 5 6 2 3 5 3

Note: D1: Depth of forcing layer; D2: Target depth of estimation.
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the model fitting criteria were already fixed and, whatever small, these
coefficients may have some contribution to the model performance.

Moreover, it is observed that the memory coefficient of immediate
previous time step (a1) increases, in general, with the increase in depth

for all the four HSGs. Inversely, the forcing coefficients of same and
immediate previous time steps (and b1) decrease with the increase in
depth for all the HSGs. It is established in the literature that the memory
dominates over the forcing component at the deeper layers whereas the

Table 3
The memory −a a( )1 10 and forcing −b b( )1 10 model coefficients developed corresponding to their assigned model orders for HSG A, B, C and D for each depth pair.

Coefficients 5_10 10_20 20_51 51_102

A B C D A B C D A B C D A B C D

a1 0.887 0.908 0.965 0.924 0.877 0.946 1.014 0.993 0.939 0.972 1.064 1.094 0.995 0.953 1.067 1.049
a2 −0.090 −0.089 −0.152 −0.134 −0.065 −0.127 −0.177 −0.162 −0.114 −0.078 −0.152 −0.219 −0.111 −0.123 −0.121 −0.143
a3 0.042 0.092 0.072 0.067 0.026 0.071 0.056 0.090 0.044 0.035 0.043 0.082 0.059 0.077 – 0.058
a4 0.015 – 0.010 −0.011 0.016 −0.010 0.014 – 0.046 −0.001 – −0.014 −0.013 0.013 – −0.022
a5 0.029 – 0.039 0.030 0.021 0.027 0.033 – – – – – 0.009 0.021 – 0.023
a6 0.010 – – 0.011 0.039 0.022 – – – – – – 0.006 – –
a7 0.023 – – 0.033 – – – – – – – – −0.003 – –
a8 −0.008 – – – – – – – – – – – – – –
a9 0.011 – – – – – – – – – – – – – –
a10 – – – – – – – – – – – – – – –

b0 0.736 0.689 0.611 0.698 0.663 0.614 0.589 0.580 0.525 0.431 0.401 0.368 0.269 0.397 0.291 0.262
b1 −0.533 −0.468 −0.450 −0.513 −0.415 −0.424 −0.463 −0.433 −0.283 −0.267 −0.269 −0.245 −0.093 −0.283 −0.170 −0.178
b2 −0.028 −0.054 −0.010 −0.010 −0.072 −0.038 0.004 −0.014 −0.090 −0.091 −0.087 −0.066 −0.083 0.001 −0.071 −0.050
b3 −0.003 −0.058 −0.026 −0.019 0.006 −0.022 −0.011 −0.054 −0.006 – – – −0.036 −0.018 – –
b4 −0.029 −0.011 −0.022 −0.010 −0.024 −0.017 −0.023 – −0.039 – – – – −0.011 – –
b5 −0.023 −0.003 −0.027 −0.020 −0.029 −0.009 −0.036 – −0.017 – – – – −0.029 – –
b6 −0.009 −0.004 −0.010 −0.018 −0.028 −0.030 – – – – – – – – – –
b7 −0.030 – – −0.030 −0.014 – – – – – – – – – – –
b8 – – – – – – – – – – – – – – – –
b9 – – – – – – – – – – – – – – – –

Fig. 4a. Spatial variability of RMSE across the stations of HSG A, B, C and D at 10 cm depth during development period.
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forcing dominates over memory components at near-surface layers (Pal
et al., 2016; Mahmood et al., 2012). This hypothesis is reinforced by the
estimated coefficients of the proposed spatially-varying SSMP model.

4.2. Model performance

Four different performance metrics are used in this study, namely,
Correlation of Coefficient (CC), Refined Degree of Agreement (Dr), Root
Mean Square Error (RMSE) and unbiased Root Mean Square Error
(uRMSE). The performance of the SSMP model is evaluated at each
station (SSMP performance). This performance is compared with the
performance of the model developed individually at each station (in-
dividual performance). The SSMP performance is expected to be bit
inferior as compared to individual performance. The model perfor-
mances are carried out in terms of the average values of the perfor-
mance metrics across the stations for each depth pair of each HSG. The
complete range of performance metrics i.e. the minimum, maximum
and average values of the performance metrics for all four depth pairs
of all HSGs for the two cases mentioned are represented in Tables S1 to
S4 in the supplementary document. It has been observed for all the
depth pairs of all four HSGs that the model performances are almost
comparable between two cases, SSMP performance being a bit inferior
for model development and testing periods. Further, it is noticed that
for both the cases and for all four HSGs the model performances de-
crease with increase in depth. At some depths the model performance is
better with the SSMP model for that particular HSG than the model
developed with the observed data. This implies that the HSG driven
spatial transferability of the SSMP model is beneficial as reflected

through the comparable SSMP and individual performance. For rest of
the manuscript, model performance refers to SSMP performance.

The model performance at each station for all the HSGs at all four
depths during development and testing periods is assessed through
RMSE (Figs. 4a and 4b at 10 cm depth, for other depths refer to Figs.
S1–S4 in the Supplementary document) and other performance metrics
(not shown). In these figures, different tones are used to depict the
variation of the model performance; the stations with deeper tones
indicate even better performance (lower RMSE) as compared to lighter
tones. Comparing the performance for all the depths, it is noticed that
for each HSG more number of stations are showing better performance
towards the near-surface layers compared to deeper layers.

A typical time-series plots of observed and estimated SMC using the
SSMP model at one station from each HSG at all four depths are shown
in Fig. 5 (for HSG A) and Figs. S5–S7 in the supplementary document
(for HSG B to HSG D). From the figures, it is noticed that the model is
able to capture almost all the peaks of SMC variation for the upper
layers i.e. 10 and 20 cm depths for all four HSGs. However, for the
deeper layers (i.e. 51 and 102 cm) higher deviation of estimated SMC
from the observed SMC is noted.

The performance of SSMP model is also checked in terms of the
variation of mean and standard deviation values of the estimated SMC
values for each depth pair and each HSG which are shown in Fig. 6 (for
HSG A) and Figs. S8–S10 in the supplementary document (for HSG B to
HSG D). In these figures, the average value of these mean and the
standard deviation values of observed and estimated SMC are shown by
the white diamonds in the boxes. It has been investigated that these
average values for observed and estimated SMC vary insignificantly

Fig. 4b. Spatial variability of RMSE across the stations of HSG A, B, C and D at 10 cm depth during testing period.
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within the order of∼0.001 both during model development and testing
periods indicating a good model performance.

4.3. Spatial validation

4.3.1. Reference Cumulative Distribution Function (CDF)
For spatial validation of the developed SSMP model, the reference

CDFs for all the depths except the surface layer of all HSGs are prepared
as discussed in methodology. The depth wise CDFs obtained from the
SMC time series of all the model development stations are shown in Fig. 7
for HSG A and Figs. S11–S13 in the Supplementary document for HSG B
to HSG D respectively. It is noted that the SMC values mostly vary from
0 to 0.65 for almost all the depths of all HSGs. This general tendency is
violated only for two cases i.e. the SMC varies from 0 to 0.98 at 10 cm
depth for HSG B and at 20 cm depth for HSG D. We assume that the
mean soil moisture at a real location may change but the distribution
shape will remain same.

4.3.2. Model performance
During the spatial validation, firstly, the developed SSMP model for

each HSG is applied with the observed surface SMC (5 cm) at new lo-
cations to estimate the SMC at 10, 20, 51 and 102 cm depths. However,
the systematic bias i.e. the difference between the mean of observed
SMC and estimated SMC at deeper layers are noted to be high for each
HSG. It can be attributed to the diverse regime of SMC values of the
model development stations than the SMC values of spatial validation
stations. Therefore, as discussed in the methodology of spatial valida-
tion, the regimes of observed surface SMC values for the model devel-
opment and the target station are matched by computing the Deviation
in Mean (DM) for the surface layer. The mean values of the surface SMC
time series of all the model developing stations are found to be 0.141,
0.171, 0.198 and 0.239 for HSG A, B, C and D respectively. The DM for
each station for a particular HSG is obtained by subtracting the mean

SMC of surface layer of the target station from the mean value of the
surface layer from the model development stations for that particular
HSG. The DM is added to the estimated SMC values for the deeper
layers of the target stations to obtain the final DM-corrected SMC of the
deeper layers. This helps to correct the model bias to some extent and,
maintain the soil moisture regime for the target station. In this process,
possible occurrences of negative SMC values, if any, are replaced by
zero.

A typical example of the complete process of obtaining the DM-
corrected SMC values at deeper layers for HSG A (similar for all four
HSGs) can be described as following. The SSMP model for HSG A is
obtained from Tables 2 and 3 respectively. For implementing the SSMP
model for spatial validation, a new station belonging to HSG A is se-
lected of which surface SMC information would be utilized. However,
the SMC distribution information of the deeper layers of the newly
selected station is unavailable which is required to back-transform the
reduced variates to attain the corresponding SMC. The unavailability
demands the use of the reference CDFs obtained from the model de-
veloping stations as shown in Fig. 7 and Figs. S13–S15 in the
Supplementary document for each depth. After estimating the SMC at
each layer using the SSMP model the DM correction is performed to
attain the final estimates of the SMC values as discussed. The mean of
surface SMC values of all model development stations from HSG A is
0.141and the mean value of surface SMC of the target station (PauA-
kala) is computed as 0.337. Subsequently, the DM i.e. the difference
between the mean of surface layer SMC of model development stations
and the target station is found to be (−0.1968). Lastly, the DM-cor-
rected final SMC values are obtained after subtracting the DM from the
values estimated from SSMP model. Table S5 in the supplementary
document shows the estimated SMC values of first 10 steps after re-
moving the initial values (Pal et al., 2016).

To check whether the DM can be beneficially used in spatial
transferability the following analysis is carried out. Systematic bias i.e.

Fig. 5. Comparison of observed and estimated SMC for all four depths of one station from HSG A.
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the difference in the mean of estimated SMC and the mean of observed
SMC for each deeper layer for the target station is computed. It has been
noticed that the DM successfully indicates the biases (both magnitude
and direction) for the deeper layers for almost all the stations since in
almost all the cases the biases vary within 10% of the surface DM.
However, there are some stations for each depth from each HSG which
do not follow the trend and number of such stations is shown in Table 4.
Exception of this fact for some cases as seen in Table 4 can be ignored
keeping the possibility of uncertainty in the data in mind.

The comparison of the model performances during spatial valida-
tion for the two cases i.e. i) Case 1: the model performance without the
DM-corrected estimated SMC for deeper layers; and ii) Case 2: the
model performance with the DM-corrected values, are presented to
show the requirement of DM correction in Tables S6–S9 in the sup-
plementary document. It clearly shows that the superiority of the model
performance during the second case i.e. after DM correction. The per-
formance metrics values i.e. CC, Dr, RMSE and uRMSE shows that the
differences of CC of all the four depths from all four HSGs, between the
two cases range from 0.006 to 0.012 which is quite low. However, the
values of Dr, RMSE and uRMSE of all the four depths from all four HSGs
are observed to be significantly improved in the second case where DM-
corrected values are used. Fig. 8 represents a time series plot of ob-
served, estimated SMC values with and without DM correction for all
four depths of a station from HSG A where the improvement of SMC
estimation after DM correction at each depth is evident. Other such

plots from remaining HSGs are also prepared and similar outcome is
observed. Hence, in the manuscript only one such example is shown to
avoid repetition. Therefore, the comparative analyses discussed above
suggests the DM correction of the SSMP model estimated values is es-
sential for ungauged locations and hence is the final step of spatial
validation.

The performances of the SSMP model for each HSG during spatial
validation are also shown by the comparison of the mean and the
standard deviation values of each station for all HSGs of the observed
and estimated SMC in Figs. 9a and 9b respectively for each depth pair.
The difference in average values of the mean and standard deviation of
observed SMC and DM-corrected estimated SMC for all four HSGs vary
from 0.02 to 0.077, and 0.022–0.085 respectively for all four depth
pairs. Hence, it can be concluded that the proposed statistical approach
can almost correctly characterize the mean of SMC for all depths of all
four HSGs although the characterization of standard deviation is com-
paratively poor. However, the values of performance metrics during
spatial validation show a reasonably acceptable model performance
given the possibility of uncertainty present due to various unaccounted
physical controls of the ungauged location. Finally, the theory of using
only the surface SMC information to estimate the vertical SMC profile
for different HSGs in proposed spatially varying SSMP model shows the
efficient applicability to the locations where the SMC information for
deeper layers is not available.

Fig. 6. The boxplots showing the comparison of observed and estimated SMC for HSG A. Comparison of mean values during (a) development period and (b) testing
period. Comparison of standard deviation during (c) development period and (d) testing period. The average values of these mean and standard deviation across all
stations are shown by the white diamond in the plot.
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5. Summary and conclusions

In this study, a spatially-varying Statistical Soil Moisture Profile
(SSMP) model is developed. The key features of the SSMP model are –
1) estimating the vertical SMC profile using only the surface SMC; and
2) imparting the spatial transferability by incorporating the HSG in-
formation. The SMC data are obtained from 171 monitoring stations
from SCAN, USCRN and SNOTEL network scattered over entire USA
from ISMN database at 5, 10, 20, 51 and 102 cm depths and the HSG
information of each monitoring stations are determined from the WSS.

During the model development the forcing components show the
trend of decreasing in the direction of HSG A to HSG D i.e. the forcing
coefficients are higher for high infiltration (HSG A) and low for low
infiltration (HSG D) of the soil. This specific feature of the forcing
components for different HSGs having different infiltration character-
istics including the effects of the of soil hydraulic properties on the SMC
dynamics, justifies the applicability of the spatially varying SSMP
model for each HSG group to new locations.

The potential of spatially-varying SSMP model developed are in-
vestigated by comparison of the model performances of the station-wise
observed-data-specific models and the proposed spatially varying
models. The efficacy of the developed spatially varying SSMP model in
terms of spatial transferability is also investigated by applying the
models to new monitoring stations of each HSG.

The difference in SMC regimes of the model development stations and
the target stations drives the study to compute the Deviation in Mean
(DM) of the model developing stations and stations selected for spatial
validation, for surface layers. The DM-corrected estimated SMC values
of deeper layers obtained during the spatial validation gives better
model performances for all four HSGs. For, both the cases (model de-
velopment and spatial validation), the model performances illustrated,
indicate that the developed spatially varying SSMP model are able to
characterize the SMC at deeper layers from only the surface SMC in-
formation for all HSG and all depths. However, it has also been studied
that the model performance consistently decreases with increase in
depths for all the four HSGs but still acceptable given the complexity of
the model.

Considering the key features of the developed model, future scope
lies in the integration of remotely sensed surface soil moisture content
(0–5 cm) in the estimation of large scale fine resolution, vertical soil
moisture profile (up to root zone). It is expected to be useful informa-
tion in several fields of applications.
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Fig. 7. Reference CDF plots of SMC data using kernel distribution at 10, 20, 51 and 102 cm depths from the model development stations for spatial validation of HSG A.

Table 4
Number of station showing greater than 10% variation from the surface DM for
each HSG.

HSG No. of stations having > 10% bias than DM in surface layer

Total no. of stations Depth Pair

5_10 10_20 20_51 51_102

A 17 1 2 4 4
B 22 0 0 3 7
C 17 2 1 2 6
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Appendix A. Parameter estimation of the SSMP model

A1. The orders of memory and forcing components (p and q)

The orders of the memory and forcing components are represented as p and q respectively. The optimum values of model order of each soil
moisture time series are selected based on the desired model order identification criteria which are discussed in detail in this section. The model
order identification criteria for SSMP model are – a) The prediction focus or the model fit (MF); b) The Mean Square Error (MSE) function; and c) The
Akaike’s Final Prediction Error (FPE).

Higher values of the MF indicate better model performance. On the other hand, the lower values of MSE are preferable for better model
performance since it minimizes the variance. The MF and MSE can be represented by the following equations,
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where SMsim is the estimated transformed standard normal variates, SMobs is the transformed standard normal variates from the reduced variates of
observed soil moisture values using kernel distribution, SM̄ is the mean of the transformed standard normal variates from the reduced variates of
observed soil moisture data using kernel distribution and n is the number of samples in the dataset.

The Akaike’s Final Prediction Error (FPE) can be estimated by the following equation,

Fig. 8. Time series plot of observed, estimated and DM-corrected estimated SMC of all four depths for one station selected for spatial validation from HSG A.
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where m equals to +p q( ) representing the number of estimated parameters n is the number of values in the estimated dataset and V is loss function
which is the determinant of the obtained noise covariance matrix and can be obtained from the following equation,
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where εi is the error at ith time step. In the simulation when < <m n, the FPE is computed with the following equation,
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The FPE criterion is a comparative measure of model performance where the smallest value FPE indicates the most precise model while assessed
on different testing data set. The ranges of p and q are investigated over a range considering the model parsimony and to ensure the desired values of
the aforementioned model order identification criteria. The next step of the SSMP model development is to determine the model coefficients. The
methodology to estimate the model coefficients is described in the following section.

A2. Model coefficients

The coefficients of the SSMP model are estimated by the least square method which minimizes the summation of the square of the residuals.
Therefore, from Eq. (3) the summation of the square of the error terms, i.e. = ⋯e t t λ n( ), , , , can be written as,
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In Eq. (A6), t varies from λ to n, where = +λ p qmax( 1, ) in order to avoid initial few steps to accommodate the lags. Finally, the coefficients are
estimated by differentiating S with respect to each parameter and assigning the differentiated values equal to zero which is shown as,

Fig. 9a. The comparison of mean observed SMC and estimated SMC values (after DM-correction) for all the depths during the spatial validation for a) HSG A; b) HSG
B; c) HSG C; and d) HSG D. The average values of mean values across all stations are shown by the white diamond in the plot.
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For solving the values of the coefficients (ai and bj) in Eq. (A7), the matrix notations are used and is represented as,

= −B X X X Y( )T T1 (A8)

where B is the column matrix consisting of the coefficients (ai and bj); X is the matrix consisting of input variables, i.e. soil moisture values of target
depth at previous time steps equal to values of memory orders and forcing depths at same and previous time steps equal to values of forcing orders
and Y is the output variable matrix i.e. the soil moisture at target depth.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jhydrol.2018.12.042.
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