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ABSTRACT

Changes in extreme precipitation due to climate change often require the application of methods to bias

correct simulated atmospheric fields, including extremes. Most existing bias correction techniques (i) only

focus on the bias in the mean value or on the extreme values separately, and (ii) exclude zero values from

analysis, even though their presence is significant in daily precipitation. We developed a copula-based bias

correction scheme that is suitable for zero-inflated daily precipitation data to correct the bias in mean as well

as in extreme precipitation at any specific statistical quantile. In considering the whole of Germany as a test

bed, the proposed scheme is found to work well across the entire study area, including the German Alpine

regions. The joint distribution between observed and regional climate model (RCM)-derived precipitation is

developed through copulas. In particular, the joint distribution is modified to make it discrete at zero in order

to account for zero values. The benefit of considering zero precipitation values is revealed through the im-

proved performance of bias correction both in the mean and extreme values. Second, the quantile that best

captures the bias (whether in the mean or any extreme value) is determined for a specific location and varies

spatially and seasonally. This relaxation in selecting the location-specific optimal quantile renders the pro-

posedmethodology spatially transferable. By acknowledging possible changes in extreme precipitation due to

climate change, the proposed scheme is expected to be suitable for climate change impact assessments for

extreme events worldwide.

1. Introduction

The systematic under or overestimation of hydro-

climatic variables by any climate model is known as

bias, and may be contingent on geographical and cli-

matological factors as well as the specific choice of the

climate model (Christensen et al. 2008; Maraun et al.

2010; Hagemann et al. 2011; Mao et al. 2015; Maraun

et al. 2017). In spite of some recent advancements,

simulated climate variables are often found to have

significant biases (Wilby et al. 2000; Christensen et al.

2008; Teutschbein and Seibert 2010; Jang and Kavvas

2013). For example, many regional climate models

(RCMs) generate excessive numbers of wet days with

light rainfall (also known as the drizzle effect), un-

derestimate heavy rainfall values, and/or produce in-

correct seasonal variations in rainfall (Schmidli et al.

2006; Fowler et al. 2007; Christensen et al. 2008;
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Teutschbein and Seibert 2010; de Elía et al. 2017;

Maraun et al. 2017). The existence of bias is also rec-

ognized in statistical downscaling tools such as localized

constructed analogs (LOCA) (Pierce et al. 2014) and

multivariate adaptive constructed analogs (MACA)

(Abatzoglou and Brown 2012). Moreover, bias in ex-

treme values is even greater due to the higher level

of uncertainty associated with these events (Nikulin

et al. 2011).

Although bias correction can be a controversial topic

of discussion among the scientific community (Ehret

et al. 2012), the adverse effects of biases in climatolog-

ical forcing data on hydrological models are widely

studied (e.g., Kunstmann et al. 2004; Christensen et al.

2008; Ott et al. 2013). Therefore, before using any sim-

ulated climate variable in hydrological impact studies,

bias correction is required due to the still limited per-

formance of RCM raw output for hydrological purposes.

Bias correction approaches can be categorized as either

linear (Lenderink et al. 2007; Hempel et al. 2013),

nonlinear (Leander and Buishand 2007; Leander et al.

2008; Hempel et al. 2013), or empirical- or distribution-

based quantile mapping (Wood et al. 2004; Block et al.

2009; Michelangeli et al. 2009; Li et al. 2010; Piani et al.

2010; Dosio and Paruolo 2011; Johnson and Sharma

2011; Thrasher et al. 2012; Mao et al. 2015; Pierce et al.

2015). Reviews of the different bias correction methods

can be found in the literature (Teutschbein and Seibert

2010; Lafon et al. 2013; Pierce et al. 2015; Dang et al.

2017). However, the majority of existing approaches

suffer from at least one of the following shortcomings:

(i) the models try to correct the bias in the mean,

sometimes median and standard deviation, but not the

bias in the extreme values; (ii) the models ignore the

presence of zero values and consider only the nonzero

values (however, the number of zero values may be

significant in daily precipitation at many locations);

(iii) the models are unable to preserve the shape of the

probability distribution of the variable, mostly at the tail

ends. A thorough discussion is presented by Pierce et al.

(2015). Different types of bias correction schemes

include quantile mapping (QM) (Thrasher et al. 2012),

cumulative distribution function transform (CDF-t)

(Michelangeli et al. 2009), equidistant quantile matching

(EDCDFm) (Li et al. 2010), and an extension of

EDCDFm that preserves the ratio between the model-

predicted future change in mean precipitation (PresRat)

(Pierce et al. 2015). A few studies focus on biases in

extreme values separately (Rojas et al. 2011; Cai et al.

2013; Jeon et al. 2016). However, consideration of the

entire range of the variable is necessary to provide a

complete (stochastic) representation of the association

between downscaled and observed values that in turn

helps to correct the bias in extremes values, where rel-

evant. Moreover, the use of a joint probability distri-

bution between the observed and simulated climate

variable may lead to better results. Hence, we propose a

stochastic copula-based bias correction scheme that is

able to take care of the aforementioned issues in cor-

recting biases in extreme values, besides the mean bias

of zero-inflated daily precipitation. The performance of

the proposed bias correction scheme is compared with

another copula-based methodology that does not con-

sider zero values in precipitation [i.e., without zero

values (WZV)] (Mao et al. 2015). The proposed method

is additionally compared with QM as another popular

bias correction method.

Copulas are statistical tools used to model the de-

pendence between two or more random variables in

order to develop a joint distribution between them

(Nelsen 2006). Multivariate studies involving copulas in

hydrology include the analysis of droughts (e.g., Laux

et al. 2009; Madadgar and Moradkhani 2013; Zhang

et al. 2013; Borgomeo et al. 2015), rainfall (Maity and

Nagesh Kumar 2008), evaluation of the modeling of

the spatial dependence of rainfall by regional climate

models (Hobaek Haff et al. 2015), downscaling of rain-

fall (van den Berg et al. 2011; Ben Alaya et al. 2014;

Lorenz et al. 2018), soil moisture prediction (Das and

Maity 2015; Pal et al. 2017), streamflow prediction in

ungauged catchments (Samaniego et al. 2010), floods

(Sraj et al. 2015), and catchment compatibility studies

(Grimaldi et al. 2016). Copula-based models are also

used for the bias correction of RCM output (Laux et al.

2011; Mao et al. 2015). However, these studies have

considered only nonzero pairs while ignoring other

possible combinations, that is, zero observed value

and nonzero simulated downscaled value, nonzero

observed value and zero simulated downscaled value,

or both being zero (Mao et al. 2015). The assumption

of ignoring zero values in either observed or simu-

lated downscaled values can be accepted only if

their number is small. However, the presence of such

cases is often significant for variables like daily pre-

cipitation. Thus, consideration of zero values is es-

sential for accurate bias correction. Here lies the

motivation of the present study.

2. Methodology

The methodology utilizes copulas to capture bivariate

association between observed (OBS) and simulated

downscaled values (SDV). However, the existence of

significant zero values in both OBS and SDV leads to a

mixed marginal distribution with a probability mass at

zero values. Therefore, in order to study the dependence
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structure between OBS and SDV, the pairs are divided

into three groups: (i) pairs where both OBS and SDV

are nonzero positive values, (ii) pairs where OBS 5 0,

and (iii) pairs where SDV5 0. Using these groups, three

sets of information are extracted from the categorized

pairs as part of the model’s development. These are

(i) parameters for the best-fit copula model for the pairs

where both OBS and SDV are nonzero positive values,

(ii) a suitable decay function capturing the probability of

zero OBS, conditioned on SDV over its entire range,

and (iii) conditional probability distribution of OBS

values when SDV 5 0. Furthermore, by combining this

information, a set of simulation curves for the condi-

tional probability distribution of OBS values given any

value of SDV is obtained, which is used to obtain bias-

corrected precipitation [hereafter bias-corrected values

(BCV)].

a. Model for nonzero positive SDV

The model for nonzero positive SDV uses two sets

of information: (i) parameters of the best-fit copula

model for the pairs where both OBS and SDV are

nonzero and (ii) a suitable decay function capturing

the probability of zero OBS, conditioned on SDV over

its entire range.

1) BEST-FIT BIVARIATE COPULA MODEL FOR

NONZERO POSITIVE PAIRS OF SDV AND OBS

The bivariate association between positive pairs of

SDV and OBS is captured by fitting an appropriate bi-

variate copula function. To fit a copula function, the

variables are converted to their reduced variate using

appropriate marginal distributions. The best-fit mar-

ginal distributions are determined for both associated

random variables, that is, precipitation values from

nonzero pairs of OBS and SDV. In this study, a total of

12 parametric probability distributions (beta, exponen-

tial, gamma, generalized pareto, inverse Gaussian, lo-

gistic, log logistic, lognormal, normal, Rayleigh, Rician,

and Weibull) are fitted to the nonzero pairs of OBS and

SDV individually, and the best-fit distribution is selected

as the marginal distribution for the respective variable.

The selection of the best-fit marginal distribution is

based on two criteria: (i) the fitted marginal distribution

should pass the chi-square (x2) test at the 95% signifi-

cance level, and (ii) it should have the lowest Bayesian

information criterion (BIC) (Schwarz 1978; Wit et al.

2012). If no probability distribution is found to fulfill

both criteria, then a nonparametric Gaussian kernel-

based estimate of probability distribution (hereafter

nonparametric distribution) is selected as the marginal

distribution. TheOBS and SDVare transformed to their

respective reduced variate (nonexceedance probability),

that is, FX1
(x1) and FX2

(x2).

Copula functions can be utilized to model the de-

pendence between random variables as they are able to

estimate the joint probability distribution using the re-

duced variate of the random variables. According to

Sklar’s theorem, the joint distribution between ran-

dom variables X1 and X2 [FX1,X2
(x1, x2)] is expressed as

(Nelsen 2006; Maity 2018):

F
X1,X2

(x
1
, x

2
)5C F

X1
(x

1
),F

X2
(x

2
)

h i
, (1)

where C is the bivariate copula function and FXi
(xi)

(i5 1, 2) are the marginal distributions of the ran-

dom variable Xi. There are different theoretical bi-

variate copula functions, and the best-fit copula is

selected. The conditional distribution of any one of

the random variables (say X1) can be expressed as

(Joe 1996):

F
X1/X2

(x
1
jx

2
)5

›C F
X1
(x

1
),F

X2
(x

2
)

h i
›F

X2
(x

2
)

. (2)

In the above expressions, an appropriate copula

function C is required to model the dependence be-

tween nonzero pairs of OBS and SDV. Different copula

functions exist to model different kinds of dependence

(Nelsen 2006; Schmidt 2007; Mao et al. 2015). In this

study, four copula functions (namely Clayton, Gumbel,

Gaussian, and Frank) are used. Two of the most popular

statistics used to select the most appropriate (best fit)

copula are Kolmogorov–Smirnov (Tn) and Cramér–von
Mises (Sn). The Tn statistics measure the absolute dis-

tance between the empirical copula Cn, obtained di-

rectly from data and a parametric copula function Cu

(Genest et al. 2009; Das and Maity 2015). The empirical

copula function Cn is defined by

C
n
(u, y)5

1

n
�
n

i51

[(U
i
# u) ^ (V

i
# y)], 0# u, y# 1, (3)

where n is the number of data points, Ui 5FX1
(x1i) and

Vi 5FX2
(x2i). The terms x1i and x2i are the ith value

from series X1 and X2, respectively. The symbol ‘‘^’’
indicates the logical ‘‘and’’, that is, the occurrence

of both arguments. The Kolmogorov–Smirnov statistic

(Tn) is defined as

T
n
5maxj ffiffiffi

n
p

[C
n
(u, y)2C

u
(u, y)]j. (4a)

The Cramér–von Mises statistic (Sn) is the sum of the

square of the difference between the empirical and fitted

copula, that is,
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n
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n

i51

[C
n
(u, y)2C

u
(u, y)]2, (4b)

where Cn and Cu are as explained before. Lower values

of these statistics indicate a better fit. In the case of a

conflict, importance is given to Sn as its power is higher

than Tn (Genest et al. 2009). Thus, the copula func-

tion showing the lowest value of these statistics is se-

lected as the best-fit copula function to model the

dependence.

Following the selection of the best-fit copula func-

tion, the conditional probability distribution of OBS

conditioned on SDV is computed using Eq. (2), con-

sidering OBS as X1 and SDV as X2. Next, the ob-

tained conditional distribution needs to be modified

considering the possibility of zero precipitation, con-

ditioned on SDV, which is explained in the following

section.

2) PROBABILITY OF NO PRECIPITATION (ZERO

OBS) CONDITIONED ON SDV

The second group of data, that is, pairs where OBS5
0, is used to calculate the probability of OBS being zero

given some value of SDV. First, the entire range of

SDV is divided into a number of classes (bins) and

the frequency of the corresponding OBS being zero in

these classes is calculated. These probabilities are ex-

pected to decrease with increasing values of SDV.

Thus, an exponential decay curve is used to model this

probability of no observed precipitation (zero OBS)

as a function of the SDV value. The function is in the

form of

Y5 aebX, (5)

where Y is the probability of no precipitation (zero

OBS) and X is the value of SDV. The parameters a

and b are estimated by a least squares error approach

during model calibration from the second group of

data, considering X as the mean of the upper and

lower bound of the respective class of SDV, and Y

as the computed probability of no precipitation for

different classes. It is obvious that the negative

values of b will indicate decay and goodness-of-fit

can be assessed through the coefficient of determi-

nation r2.

This fitted curve is used to compute the probability of

zero precipitation for a given value of SDV. The com-

puted probability is taken as the probability mass for

zero BCV at the given SDV and is used to update the

conditional probability distribution obtained from the

copula. This is carried out as follows: knowing a specific

value of SDV, the probability of zero precipitation is

obtained from the fitted curve (say p). Assigning this

value of p as the probability mass for zero precipitation,

the rest of the conditional probability distribution of

BCV is updated (Maity 2018). The updated condi-

tional probability distribution of BCV, ~FX1/X2
(x1jx2), is

expressed as

~F
X1/X2

(x
1
jx

2
)

5

(
p, for x

1
5 0, x

2
. 0

p1 (12 p)F
X1/X2

(x
1
jx

2
), for x

1
. 0, x

2
. 0

,

(6)

where FX1/X2
(x1jx2) is obtained from Eq. (2) considering

C as the most appropriate copula selected as explained

in the previous section and p is as defined before.

Thus, the updated conditional probability distribution

becomes a mixed distribution. A schematic representa-

tion of this modification of conditional distribution is

shown in Fig. 1. Henceforth, the updated conditional

probability distribution of BCV is simply referred to

as the conditional probability distribution of BCV. It

is noted that the conditional probability distribution is

valid for nonzero SDV only. The case of zero SDV is

explained in the following section.

b. Model for zero SDV

For this part of the model, the final group of data

(pairs where SDV 5 0) is used. With these data, the

frequencies of no precipitation (zero OBS) are com-

puted and a suitable probability distribution for the

nonzero OBS is ascertained, resulting in a mixed dis-

tribution having a probability mass at zero OBS. Thus,

the form of final distribution is similar to Eq. (6) (but

with different parameters) and is expressed as

F
X1/X250

(x)

5

(
M, for x

1
5 0, x

2
5 0

M1 (12M)G
X
(x), for x

1
. 0, x

2
5 0

, (7)

whereM is the frequency of zero OBS, determined from

the y intercept of the fitted curve for probability of no

precipitation [Y5 aebX , explained in section 2a(2)] and

GX(x) is the distribution for nonzero OBS for the pairs

where SDV 5 0. Therefore, M is eventually equal to

parameter a in Eq. (5), and the method to ascertain

GX(x) is the same as that for the marginal distribution,

explained in section 2a(1).

It is noted that these two parts of the model result in

a complete set of probability simulation curves for the

entire range of SDV, including zero. Finally, Eqs. (2), (5),

(6), and (7) provide complete information for different
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combinations including zero values and can hence be

used for bias correction for any desired quantile values.

The obtained conditional distribution varies spatially

and the probability mass at zero also varies owing to its

geographical location and climatology. Consequently,

the quantile that best represents the observed value for a

particular percentile including extremes needs to be

ascertained at each location. The optimal quantile is a

parameter of the model that varies with location and the

target percentile of the observed precipitation. For ex-

ample, which quantile of the conditional distribution

(derived from the copula) best corresponds to the 50th

quantile, that is, the median of the observed precipita-

tion? Or which quantile of the conditional distribution

(derived from the copula) best corresponds to the 95th

quantile of the observed precipitation (extreme values)?

It varies over space and is thus location specific. It needs

to be determined from the historical data during model

calibration. Estimation of the optimal quantile is straight-

forward because it is based on minimizing the mean ab-

solute distance between observed and bias-corrected

values. In other words, the quantile that yields the

lowest mean absolute deviation (ADmean, discussed in

the subsequent section) between the observed values

and BCV is considered as the optimal quantile. The

optimal quantile for BCV at any desired statistics is

ascertained during the calibration period and tested

during the validation period.

c. Model performance evaluation

To evaluate the model performance, the level of

correspondence between SDV and BCV is assessed.

Monthwise statistics (mean and extreme values) are

obtained from daily SDV and BCV, and the Pearson

correlation coefficient r, degree of agreement Dr, un-

biased root-mean-square error (uRMSE), and mean

absolute distance (ADmean) are used to assess their

correspondence. The statistics are obtained by pooling

all of the data from each month separately and com-

puting the statistics across the months of the study pe-

riods. It should be noted that climate model outputs

cannot be time-tagged, thus monthwise statistics are

extracted to evaluate the model performance at a

monthly or seasonal scale. The Pearson correlation co-

efficient r is a measure of linear association (if any) be-

tween variables; better model performance is indicated

by higher values of r. The deviation between BCV and

OBS against the deviation between OBS and its mean

is compared by the degree of agreement Dr, and may

range between 21 and 1 (Willmott et al. 2012; Maity

et al. 2016). For the best possible model, theDr is 1. The

uRMSE is the root-mean-square error calculated be-

tween the deviations of OBS and BCV from their re-

spective means. The ADmean is the mean of absolute

deviations between OBS and BCV. Lower values of

uRMSE and ADmean indicate better model perfor-

mance. Further mathematical details of these perfor-

mance statistics are provided in section 1 of the online

supplemental material.

3. Study area and data

The proposed bias correction scheme is applied to

daily precipitation across Germany from 1971 to 2000.

Regionalisierte Niederschlagshöhen (REGNIE) data,

obtained from theGermanWeather Service (DWD), are

FIG. 1. Schematic representation of modifying the conditional distribution to accommodate

the occurrence of zero values in observed precipitation. The modified value, i.e., P1p(12P),

is rearranged as p1P(12p) and presented in Eq. (5).
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used as the observed gridded precipitation data product.

These data are available from 1951 to the present for

approximately 2000 DWD observation stations. The

station values are transferred to gridded values by spatial

interpolation (inverse distance weighting) of the anoma-

lies (compared to long-term means of each grid cell).

For the long-term climatological mean field, a multilinear

regression approach is applied, considering the geo-

graphical position, elevation, and wind exposure of

the stations. The REGNIE data are available at a 1-km

resolution but are upscaled in this study to match the

resolution of the regional climate data. More detailed

information about the dataset and the interpolation

technique applied is provided in DWD (2011).

Downscaled regional climate information across

Germany at high resolution constitutes a product of the

regional climatemodel named theWeatherResearch and

Forecasting (WRF)Model using the Advanced Research

version of WRF core (WRF-ARW) (Skamarock et al.

2008). The model is forced by ERA-40 reanalysis data

(Uppala et al. 2005) for the period 1971–2000. A double-

nesting strategy is used to downscale the ERA-40 to a

horizontal resolution of 49km and 7km, respectively,

using 40 vertical levels. Further details about the WRF

setup, the physics parameterization options applied and

its biases can be found in Berg et al. (2013).

To maintain spatial homogeneity, the REGNIE data

are upscaled to a 49-km horizontal resolution onto the

WRF grid in such a way that the total amount of pre-

cipitation is conserved. Henceforth, the REGNIE data

are referred to as OBS (or simply observed precipita-

tion) and the WRF-ARW output is referred to as SDV

(or simply RCM). The data are divided into two equal

periods, 1971–85 and 1986–2000, for model calibration

and validation, respectively.

4. Results and discussion

The OBS data are found to possess a few unusual

values that are more than the mean plus 5 times the

standard deviation. These are not extreme events and

may have resulted from the existence of erroneous re-

cords in the observed data. Such outliers and their

corresponding SDVs are removed from the model

development. The model calibration is carried out

separately for different seasons to account for the

seasonal climatology. Four different seasons are

chosen, that is, spring (March–May), summer (June–

August), autumn (September–November), and winter

(December–February). The model is run over the

whole of Germany and bias-corrected precipitation

fields are produced. In addition, four specific locations

(marked as A, B, C, and D) are selected on the basis of

different mean bias characteristics during the cali-

bration period in order to discuss the model perfor-

mance. These locations are shown in Fig. S1 in

the supplemental material. Location A (grid center

51.528N, 12.928E) shows a significant mean wet bias

throughout the year. The bias is very small at location

B (grid center 51.088N, 14.248E) throughout the year.

Location C (grid center 49.328N, 11.608E) and location

D (grid center 49.328N, 8.088E) show variations be-

tween dry and wet bias during different seasons of the

year. Apart from the entire bias-corrected pre-

cipitation fields, the results at these four locations will

assist in discussing the model performance for all pos-

sible bias characteristics.

As described in the methodology, three sets of in-

formation are extracted from the data during the cali-

bration period for each season at a particular location:

(i) parameters for the best-fit copula model for the pairs

where both OBS and SDV are nonzero positive values,

(ii) a suitable decay function capturing the probability of

zero OBS, conditioned on SDV over its entire range,

and (iii) the conditional probability distribution of OBS

values when SDV 5 0.

As discussed in section 2a(1), 12 different parametric

distributions are used to estimate the marginal distri-

bution. If no parametric probability function is deemed

suitable, a nonparametric probability density function is

fitted over the data. It is found that the best-fitting

probability distribution for OBS across the study area

belongs to only four distributions, that is, exponen-

tial, generalized pareto, lognormal, and nonparametric.

Similarly, for SDV, the best-fitting probability distribu-

tion belongs to only five different distributions, that is,

exponential, generalized pareto, lognormal, logistic, and

nonparametric. Next, the best copula function is de-

termined at each grid point over the study area and

across different seasons, as discussed in section 2a(1).

The grid-wise spatial variations of the best-fit probabil-

ity distribution functions and copula functions for dif-

ferent seasons are shown in Figs. S2 and S3, respectively,

in the supplemental material. The Gaussian copula is

found to be the most suitable over most regions. From

the best-fit copula, the conditional distributions of pre-

cipitation, conditioned on positive SDV only, are ob-

tained at each location and for each season.

As explained in the methodology, the conditional

distribution is modified to accommodate the proba-

bility of zero precipitation. Therefore, the parameters

of the exponential decay function showing the proba-

bility of no precipitation corresponding to some SDV is

estimated. A typical example (location D during the

winter season) is shown in Fig. 2a to fit an exponential

decay curve that can be used to compute the probability
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of observed precipitation being zero for a specific SDV

over the entire range of SDV. It is noticed that the fre-

quency of no precipitation (zero OBS) decreases with

increased values of SDV. A typical fitted curve with

estimated parameters showing the probability of no

precipitation conditioned on SDV over its entire range

for location D during the winter season is also shown in

Fig. 2a. Such fitted curves are used to calculate the

probability of no precipitation corresponding to some

value of SDV. This information is used as p in Eq. (6)

(when SDV is a nonzero positive number) and as M in

Eq. (7) (when SDV is zero). A typical set of modified

conditional distribution curves is shown in Fig. 2b at

location D during the winter season for different values

of SDV. These conditional distributions are used to

debias precipitation at any desired quantile. The anal-

ysis is carried out at all grid points across the study re-

gion for different seasons. Hence, four sets of calibrated

models (one corresponding to each season) are obtained

for each grid point.

FIG. 2. (a) A typical example of fitting an exponential decay curve to compute the probability of observed

precipitation being zero for a specific SDV over the entire range of SDV; (b) conditional CDF obtained from the

fitted copula function and exponential decay curve for zero precipitation. In the legend, ‘‘0_cdf’’ refers to the

probability mass for zero OBS, or in other words, the probability of no observed precipitation corresponding to a

specific SDV (quantile value mentioned in parentheses). The conditional CDF can be generated for any specific

SDV (quantile values) and 10 such typical conditional CDFs are shown in the figure. This example (both panels) is

for location D (Fig. S1 in the supplemental material) in the winter.
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To obtain the optimal quantile at a particular location,

BCVs are estimated from the final conditional distri-

bution for different quantiles during the calibration

period. The optimal quantile for the best correction of

bias in the mean is found to vary from one location to

another, within the range of 63rd and 71st across the

study region (Fig. 3a). It is generally higher on the

eastern than the western side.

The variation in the monthwise mean of BCV, SDV,

and OBS precipitation during the calibration and vali-

dation periods at different locations (A, B, C, and D) is

shown in Fig. S4 in the supplemental material, and

the corresponding association measures are shown in

Table 1. It can be noticed that the proposed bias cor-

rection approach is successful in reducing the mean bias

of SDV precipitation at all locations. Even when the

type (dry or wet) and magnitude of the bias during the

validation period differ from the calibration period (e.g.,

locations A and D; Fig. S4b), the proposed method is

found to be successful in correcting such biases, too.

However, at these locations, model performance is

slightly poorer but still better than SDV, with BCV be-

ing closer to OBS for most months. Table 1 also dem-

onstrates that the error measures uRMSE and ADmean

FIG. 3. Variation of optimal quantile for best correction of bias in (a) monthly mean precipitation and (b) the 95th

percentile (used as a typical example of extreme magnitude) of monthly precipitation.

TABLE 1. Correspondence of monthwise mean of SDV and mean of bias-corrected precipitation through BCV (proposed) and existing

methods (WZV and QM) with observed values. Figure S4 in the supplemental material may be used for visual comparison.

Location Precipitation values

Calibration period performance Validation period performance

r Dr uRMSE ADmean r Dr uRMSE ADmean

A SDV 0.52 20.37 0.35 0.62 0.37 0.06 0.40 0.45

BCV 0.85 0.69 0.14 0.12 0.63 0.36 0.23 0.31

WZV 0.44 0.37 0.24 0.25 0.25 0.11 0.32 0.43

QM 0.77 0.54 0.23 0.18 0.46 0.34 0.31 0.32

B SDV 0.62 0.58 0.34 0.28 0.49 0.32 0.41 0.50

BCV 0.59 0.59 0.33 0.26 0.69 0.52 0.33 0.36

WZV 0.58 0.22 0.33 0.51 0.54 20.05 0.37 0.78

QM 0.77 0.62 0.29 0.25 0.64 0.46 0.35 0.40

C SDV 0.72 0.50 0.38 0.36 0.52 0.19 0.47 0.63

BCV 0.90 0.75 0.20 0.18 0.77 0.62 0.33 0.30

WZV 0.87 0.49 0.22 0.36 0.45 0.16 0.45 0.66

QM 0.88 0.73 0.24 0.20 0.57 0.40 0.45 0.47

D SDV 0.54 0.24 0.40 0.52 0.38 20.34 0.41 0.91

BCV 0.78 0.68 0.23 0.22 0.70 0.43 0.30 0.34

WZV 0.87 0.07 0.18 0.63 0.68 20.39 0.30 0.97

QM 0.80 0.73 0.28 0.18 0.79 0.20 0.28 0.48
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are lower in BCV than in SDV. Moreover, the r and Dr

are higher for BCV compared to SDV. During the val-

idation period, the association measures are slightly

poorer than for the calibration period. Moreover, in

some cases, the level of correspondence between SDV

andOBS during the calibration and validation periods is

found to vary (e.g., locations A and D), whereas BCV is

found to exhibit a considerable improvement in corre-

spondence with OBS during both periods, indicating the

efficacy of the proposed bias correction scheme. The

proposed bias correction method is trained seasonally

and parameters are calibrated for different locations

separately; this perhaps helps in better capturing the

regional and seasonal behavior of the bias.

Analysis is undertaken across the study area for each

calendar month of the year. The spatial variation in

monthly mean BCV for a few selected months, that is,

February, May, August, and November (one month

from each season) along with the corresponding monthly

mean of SDV and OBS during the calibration and vali-

dation periods is shown in Figs. 4 and 5, respectively. It

can be observed that the spatiotemporal variation in

mean BCV better corresponds to that of mean OBS as

compared to the SDV. This indicates that themean bias is

successfully corrected throughout Germany.

Next, the efficiency of correcting biases in extreme

precipitation is investigated. The 95th percentile of ob-

served precipitation during the calibration period is

considered as an example threshold. The analysis is

carried out all over the study area, and the range of the

optimal quantile for best correction of bias at this ex-

treme value is found to vary between the 93rd and

96th percentile across Germany (Fig. 3b). The range is

smaller than the range of the optimal quantile for cor-

rection of the mean bias. The monthly means of the

extreme BCVs are compared with the extreme OBS

and SDV to evaluate the model performance. Specifi-

cally, comparison of the four locations selected and their

correspondence is shown in Fig. S5 in the supplemen-

tal material. The performance statistics are shown in

Table 2. It can be noticed from Fig. S5 that the extreme

BCV corresponds very well with the extreme OBS, al-

though the correspondence between extreme OBS and

SDV is not good. For location D, the type of bias in the

validation period differs from the calibration period and

SDV is also very poor with respect to OBS, which may

have resulted in the BCVnot having the same seasonality

as OBS. However, lower values of ADmean compared to

SDV suggest that the bias is reduced. It is worth noting

here that any bias correction scheme cannot be regarded

as a remedy for the inconsistency of RCM (WRF-ARW

in this case). The bias correction methods heavily depend

on the output quality of the driving climate models. If

they fail to capture the relevant regional process, the re-

sults from the bias correction methods should be treated

with caution (Maraun et al. 2017).

The spatial variation of the 95th percentile of OBS,

SDV, and the mean of extreme BCV throughout

Germany is shown in Figs. 6 and 7 for a few selected

months (same as before) during the calibration and val-

idation periods, respectively. It can be observed that the

spatial variation of the monthly mean extreme BCV

matches with the extreme observed precipitation condi-

tion to a greater extent than the extreme SDV, indicating

the robustness of the proposed bias correction scheme.

It is further noticed that comparison between SDV

and OBS indicates that the mean conditions are repro-

duced more effectively than for extreme cases. This

indicates that WRF is simulating the mean condition

better when compared to the extreme conditions. In

such cases, a uniform correction factor (used in some

existing bias correction methods, except QM) or trans-

fer function for the entire range of precipitation is not

expected to work satisfactorily, whereas our proposed

bias correction scheme is able to reduce the bias for both

the mean and extreme values simultaneously. The per-

formance of the proposed bias correction scheme is

compared with two different existing bias correction

schemes as mentioned before. The first was proposed by

Mao et al. (2015) and used a copula-based approach

without considering zero values (WZV). The second

scheme is the QM, which is another popular bias cor-

rection method. For QM, the appropriate probability

distribution is fitted to OBS and SDV during the cali-

bration period and the resulting transfer function is used

for simulation during the validation period. The fitting

of the probability distribution is undertaken as per sec-

tion 2a(1). Hence, 12 different probability distributions

are used [as listed in section 2a(1)] for fitting and the best

is selected on the basis of passing the chi-square (x2) test

at the 95% significance level and the lowest BIC. If no

parametric distribution is deemed appropriate, then a

nonparametric distribution is fitted. The correspon-

dence between the monthwise mean (Table 1) and the

extreme value (Table 2) of BCV (from the proposed

model), WZV, and QM during the calibration and val-

idation periods are evaluated in terms of different per-

formance statistics. Furthermore, comparison between

the BCV, WZV, and QM results are shown in Figs. S4

(for mean) and S5 (for extreme values) in the supple-

mental material. The spatial variation of the bias-

corrected mean and extreme variables (BCV, WZV,

and QM) are compared with that of OBS in Figs. S6 and

S7 in the supplemental material, respectively. It is ob-

served that BCV has the least bias compared to both

QM and WZV in both the mean and extreme condition
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for most of the locations (Figs. S4 and S5). For instance,

the values of r andDr (0.90 and 0.75, respectively, during

the calibration period and 0.77 and 0.62, respectively,

during the validation period) are higher in the case of

BCV than for WZV and QM (location C). At location

D,QM is found to perform better than BCV for extreme

values. However, the spatiotemporal distribution of

BCV corresponds to OBS better than both WVZ and

FIG. 4. Spatiotemporal comparison for mean monthly precipitation between the observed, SDV, and BCV for

different months across Germany during the calibration period. Some typical months (February, May, August, and

November) from different seasons are shown.
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QM for the mean (Fig. S6) and extreme precipita-

tion (Fig. S7). Among QM and WZV, WZV does not

match with extreme precipitation in most cases. Overall,

the results indicate the superior performance of the

proposed scheme (BCV) in bias correction relative to

the other two schemes. The better performance of BCV

compared to WZV might owe to the fact that the pro-

posed bias correction scheme attempts to reduce bias by

considering the entire range of SDV, including the zero

values, which are ignored in WZV. In the case of QM,

FIG. 5. As in Fig. 4, but during the validation period.
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the bias is corrected by comparing the cumulative dis-

tributions of SDV and OBS. The QM assumes a fixed

relationship between the quantiles of OBS and SDV.

However, this assumption of a fixed relationship may

not always be valid. Mao et al. (2015) have also ob-

served that the performance of QM is not uniform

throughout Germany, and rather it strongly depends

upon the rank correlation between OBS and SDV.

However, the proposed model considers the condi-

tional distribution of OBS, conditioned on SDV using

their joint distribution. Hence, the modeled relation-

ship is flexible depending on the rank correlation owing

to varying climatology. Moreover, different (modified)

conditional distributions are used for bias correction

for different values of SDV, which is not possible in

QM. These reasons may result in the superior perfor-

mance of BCV compared to QM.

The efficacy of the proposed bias correction scheme is

established for different climate regimes, different sea-

sons, different types of bias, and for bias in the mean as

well as extreme values. However, a sufficiently long

dataset is required, a general drawback of any statistical

approach. A high-performance computing facility is also

recommended to attain a bias-corrected precipitation

field over a large area at a fine resolution. Accepting

these requirements, the proposed scheme is beneficial

for bias corrections in simulated precipitation fields,

particularly when the extremes must be considered.

5. Summary and conclusions

Inherent biases in simulated hydroclimatic variables

limit their use in different climate change impact studies.

A proper assessment of hydroclimatic extremes is thus

essential because climate change has proven to have

profound impacts on changes in extreme events. To this

end, bias correction approaches, which constitute crucial

aspects of climate change impact studies, must focus on

biases in extreme values aside from the mean bias.

Presence and types of bias are influenced by numerous

factors, including climate regime, seasons, and choice of

climate models, and so they may vary both spatially

and across different seasons. In this study, a stochastic

copula-based bias correction scheme is proposed for

zero-inflated daily precipitation.

The proposed scheme is able to correct the biases in

extreme values apart from the mean bias. While copula-

based approaches are established as efficient for the bias

correction of RCM output, zero values are generally

ignored and bias in extreme values is not corrected.

The proposed scheme is developed so that it can

deal with zero-inflated daily precipitation, having

a mixed (discrete 1 continuous) marginal distribu-

tion. Consequently, unlike earlier bias correction

methods, the proposed method is able to debias the

entire range of precipitation, including extreme

values. When comparing the performance of the pro-

posed scheme with existing approaches, the former is

found to be best.

In considering different locations with different

characteristics of bias, it can be seen that the RCM-

simulated values may exhibit different types and mag-

nitudes of bias during different seasons. The proposed

scheme is found to correct both dry andwet bias and/or a

combination of the two. Moreover, the proposed bias

correction scheme is found to reduce bias in cases where

TABLE 2. Correspondence of monthwise extremes of SDV and bias-corrected precipitation through BCV (proposed) and existing methods

(WZV and QM) with observed values (95th percentile). Figure S5 in the supplemental material may be used for visual comparison.

Location Precipitation values

Calibration period performance Validation period performance

r Dr uRMSE ADmean r Dr uRMSE ADmean

A SDV 0.61 0.32 1.31 1.86 0.52 0.40 1.40 1.33

BCV 0.85 0.68 0.84 0.87 0.71 0.40 1.07 1.34

WZV 0.09 20.29 1.67 3.84 0.00 20.50 1.81 4.44

QM 0.73 0.72 1.18 0.76 0.49 0.26 1.45 1.63

B SDV 0.56 0.37 1.88 2.18 0.59 20.01 1.50 2.95

BCV 0.84 0.49 1.24 1.78 0.77 0.22 1.31 2.27

WZV 20.15 20.48 2.48 6.69 20.30 20.59 2.12 7.14

QM 0.59 0.56 1.87 1.53 0.62 0.35 1.50 1.89

C SDV 0.54 0.15 2.09 2.91 0.50 20.19 2.13 3.33

BCV 0.77 0.59 1.38 1.42 0.61 0.32 1.71 1.84

WZV 0.03 20.51 2.31 7.00 20.05 20.61 2.24 6.85

QM 0.63 0.50 1.77 1.70 0.39 0.16 2.43 2.27

D SDV 0.21 20.30 2.07 3.94 0.08 20.51 2.17 5.62

BCV 0.25 0.48 1.77 1.44 0.04 0.16 2.18 2.30

WZV 0.50 20.64 1.53 7.63 0.69 20.70 1.35 9.03

QM 0.74 0.55 1.35 1.26 0.75 0.09 1.49 2.49
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FIG. 6. Spatiotemporal comparison between the 95th percentile of observed, SDV, and BCV (extreme quartile

varies with space as discussed in results) for different months across Germany during the calibration period. Some

typical months (February, May, August, and November) from different seasons are shown.
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(i) the nature of the bias varies spatially between dif-

ferent grid points, and/or (ii) the nature of the bias varies

by season at the same grid point. The optimal quantile

values for the best correction of bias in mean or extreme

values are found to differ across space and by season.

This degree of flexibility in selecting the location-

specific optimal quantile renders the proposed meth-

odology spatially transferable. It is found to provide

satisfactory debiased output all over Germany, in-

cluding the German Alpine region where climatic and

FIG. 7. As in Fig. 6, but during the validation period.
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geographical conditions differ significantly from the rest

of the country. Thus, the proposed scheme might be

applicable for different locations across the world,

and is expected to contribute toward the improved

assessment of climate change impacts on extreme

hydroclimatic events.
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