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[1] There is an established evidence of climatic teleconnection between El Niño–
Southern Oscillation (ENSO) and Indian summer monsoon rainfall (ISMR) during June
through September. Against the long-recognized negative correlation between ISMR and
ENSO, unusual experiences of some recent years motivate the search for some other
causal climatic variable, influencing the rainfall over the Indian subcontinent. Influence of
recently identified Equatorial Indian Ocean Oscillation (EQUINOO, atmospheric part of
Indian Ocean Dipole mode) is being investigated in this regard. However, the dynamic
nature of cause-effect relationship burdens a robust and consistent prediction. In this study,
(1) a Bayesian dynamic linear model (BDLM) is proposed to capture the dynamic
relationship between large-scale circulation indices and monthly variation of ISMR and
(2) EQUINOO is used along with ENSO information to establish their concurrent effect
on monthly variation of ISMR. This large-scale circulation information is used in the form
of corresponding indices as exogenous input to BDLM, to predict the monthly ISMR. It is
shown that the Indian monthly rainfall can be modeled in a better way using these two
climatic variables concurrently (correlation coefficient between observed and predicted
rainfall is 0.82), especially in those years when negative correlation between ENSO and
ISMR is not well reflected (i.e., 1997, 2002, etc.). Apart from the efficacy of capturing the
dynamic relationship by BDLM, this study further establishes that monthly variation of
ISMR is influenced by the concurrent effects of ENSO and EQUINOO.
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1. Introduction

[2] Indian summer monsoon rainfall (ISMR) is crucial for
socio-economic status of India. For instance, deficit of 19%
in the Indian summer monsoon in 2002 caused a significant
decrease in agricultural production and economic status of
the country. Although reliable prediction of monthly rainfall
is more challenging as compared to seasonal forecast, it is
essential for planning and devising agricultural strategies,
decision making and better management of water resources.
Among the various approaches of rainfall prediction, incor-
poration of climate information as an external input influ-
encing the rainfall is gaining more and more interest in
recent years.

1.1. El Niño–Southern Oscillation and Indian
Summer Monsoon

[3] El Niño–Southern Oscillation (ENSO) is one of the
main sources of interannual variability in weather and

climate around the world [Kiladis and Diaz, 1989].
Attempts were made to forecast hydrologic variables, like
rainfall, streamflow, etc., using ENSO information all over
the world [Ropelewski and Halpert, 1987; Kahya and
Dracup, 1993; Dracup and Kahya, 1994; Eltahir, 1996;
Jain and Lall, 2001]. Association of Southern Oscillation
and ISMR was recognized long ago [Walker, 1923, 1924;
Normand, 1953]. Significant correlation between ENSO
and ISMR was a major advancement to explain interannual
variation of the ISMR [Pant and Parthasarathy, 1981;
Rasmusson and Carpenter, 1983]. General impact of an
El Niño event on the Indian monsoon is shown to be
associated with lower-than-normal rainfall and opposite in
case of a La Niña event [Rasmusson and Carpenter, 1983;
Khandekar and Neralla, 1984; Mooley and Paolino, 1989].
Regarding the teleconnection mechanism between ISMR
and ENSO events, Rasmusson and Carpenter [1983] con-
cluded that ‘‘episodes of above normal SST’s (Sea Surface
Temperature) over the eastern and central equatorial Pacific
are associated with a low SOI (Southern Oscillation Index),
i.e., negative pressure anomalies in the southeast Pacific,
and positive anomalies over the Indian Ocean region,
weaker than normal southwest monsoon over the Arabian
Sea, and below normal rainfall over India.’’ However,
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contrary to the long-recognized negative correlation be-
tween the ISMR and El Niño events, India received slightly
above normal rainfall in 1997 [Li et al., 2001] when El Niño
was observed in the Pacific Ocean. On the other hand, in
2002 the failure of Indian summer monsoon was completely
unanticipated, although it was a weak El Niño year. No
model could predict such a large deficit of ISMR in 2002
[Gadgil et al., 2003]. According to Kane [1998], the
relationship is not unique for all the El Niño events.
According to him, ‘‘. . .. in some years, some other factors
might be playing important roles. . .. . .’’ Krishna Kumar et
al. [1999] have shown that the historical relationship has
been broken after 1970. These unanticipated experiences
suggest that the response of monsoon to El Niño is not yet
assessed adequately [Gadgil et al., 2003; Gadgil, 2003] or
more importantly that there are some other causative climate
forcing events which are also influencing the Indian rainfall
concurrently.

1.2. Equatorial Indian Ocean Oscillation (EQUINOO)

[4] Equatorial Indian Ocean Oscillation (EQUINOO) is
the atmospheric part of Indian Ocean Dipole (IOD) mode
[Gadgil et al., 2004]. IOD mode is basically an anomalous
state of air-sea interaction over eastern and western part of
tropical Indian Ocean, which alters the atmospheric circu-
lation as well as the weather pattern over Indian Ocean
and its surroundings [Saji et al., 1999; Webster et al.,
1999; Ashok et al., 2001]. During the summer monsoon
season (June–September), the convection over the eastern
part of the equatorial Indian Ocean (EEIO, 90�E–110�E,
10�S–equator) is negatively correlated to that over the
western part of the equatorial Indian Ocean (WEIO,
50�E–70�E, 10�S–10�N). The anomalies in the sea level
pressure and the zonal component of the surface wind
along the equator are consistent with the convection
anomalies. When the convection is enhanced (suppressed)
over the WEIO, the anomalous surface pressure gradient,
high to low, is toward the west (east) so that the
anomalous surface wind along the equator becomes easterly
(westerly). The oscillation between these two states is
called the Equatorial Indian Ocean Oscillation (EQUINOO)
and equatorial zonal wind index (EQWIN) is considered as
an index of EQUINOO. EQWIN is defined as the negative
of the anomaly of the zonal component of surface wind in
the equatorial Indian Ocean region (60�E–90�E, 2.5�S–
2.5�N) normalized by its standard deviation [Gadgil et al.,
2003, 2004].
[5] Recent meteorological observations indicate a strong

link between ISMR and EQUINOO. This may be due to the
association of large-scale monsoon rainfall over the Indian
region with the northward propagation of convective system
generated over the Indian Ocean region [Gadgil et al., 2003,
2004]. Gadgil et al. [2004] suggested that an educated guess
could be made about the Indian summer monsoon rainfall
by knowing the prior EQUINOO status. For example, in
1983 and 1994, ENSO was small but EQUINOO was
positive and India received excess rainfall. On the other
hand, in 1979 and 1985, ENSO signal was favorable for
monsoon but EQUINOO was unfavorable and India re-
ceived drought. In 2002, both the ENSO and EQUINOO
were unfavorable and a severe drought occurred. Gadgil et
al. [2004] show that all the extremes in the Indian summer

monsoon rainfall (greater than ±1 standard deviation) from
1958 to 2003 are statistically associated with favorable
(unfavorable) phases of ENSO or EQUINOO or both.
Hence EQUINOO has significant relation with Indian
monsoon along with ENSO.

1.3. Bayesian Dynamic Linear Models (BDLMs)

[6] The relationship between ISMR and large-scale at-
mospheric circulation is dynamic and nonstationary owing
to the effect of climate change. A simple non-Bayesian
multiple linear regression model is investigated to predict
the ISMR using the information of ENSO and EQUINOO.
However, owing to its inherent stationarity assumption and
static nature, it is unable to capture the dynamic relationship
and shows poor prediction performance (please refer to
section 5). On the other hand, dynamic nature of the
relationship between climate information and corresponding
responses of hydrological events motivates use of a dynamic
model with Bayesian updating of the parameters. Research,
development and usability of this type of model can be
found elsewhere [Pole et al., 1994; Besag et al., 1995].
Dynamic nature of such models makes them potential for
various application fields [Bernier, 1994; Berger and Insua,
1998; Krishnaswamy et al., 2000; Berliner et al., 2000;
Krishnaswamy et al., 2001]. Stationarity assumption of data
set can be relaxed for these models which is a very useful
property. Such models also allow incorporation of exoge-
nous inputs. Finally, incorporation of all prior information,
with allowance for on-line external intervention, makes it
possible to use the principle of management by exception,
which is fundamental in the Bayesian forecasting philoso-
phy [West and Harrison, 1997]. In the present study, a
Bayesian dynamic linear model (BDLM) is proposed and
used to capture the monthly variation of Indian summer
monsoon rainfall using ENSO and EQUINOO index as
external input. A complete description of the model is
presented in section 3.
[7] The objective of this paper is to capture the dynamic

relationship between monthly all India summer monsoon
rainfall and large-scale circulation indices of ENSO and
EQUINOO using BDLM. Useful transformation of raw
climate index series is also explained for effective extraction
of climatic signal for dynamic linear model.
[8] Organization of this paper is as follows. Data used for

this study and their sources are mentioned in sections 2. In
section 3, Bayesian dynamic linear model is described.
Methodology is described in section 4. In section 5, results
and discussions are presented. Finally, conclusions are
presented in section 6.

2. Data

[9] To represent the ENSO, sea surface temperature
anomaly from Niño 3.4 region (5�S–5�N, 170�W–
120�W) (Niño 3.4 SSTA) is used in this study (Figure 1).
Monthly Niño 3.4 SSTA data are obtained from the web site
of National Weather Service, Climate Prediction Centre of
NOAA (http://www.cpc.noaa.gov/data/indices/) for the pe-
riod January 1958 to December 2003. Negative of Niño 3.4
SSTA data is used to represent the ENSO index to make it
positively correlated with Indian rainfall during monsoon
months.
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[10] On the basis of Gadgil et al. [2004], equatorial zonal
wind index (EQWIN) is used to represent EQUINOO index
(Figure 2). To compute this index, monthly surface wind
data were obtained from National Center for Environmental
Prediction [Kalnay et al., 1996] (http://www.cdc.noaa.gov/
Data sets) for the period January 1958 to December 2003.

[11] All India monthly rainfall data are obtained from the
web site of Indian Institute of Tropical Meteorology, Pune,
India (http://www.tropmet.res.in/data.html) for the period
January 1901 to December 2003. These data are also
available on the web site of International Research Institute
for Climate Prediction (http://iridl.ldeo.columbia.edu/).

Figure 1. Plot of ENSO index during monsoon months for the period 1959–2003.

Figure 2. Plot of EQUINOO index during monsoon months for the period 1959–2003.
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Month-wise long-term (1901–1958) mean rainfall values
are shown in Table 1. These are considered as long-term
climatological mean values and are used to obtain the
corresponding monthly anomalies.

3. Bayesian Dynamic Linear Models

[12] Mathematical framework of Bayesian dynamic linear
models (BDLMs) was developed by West and Harrison
[1997]. In this paper, detailed mathematical proof and
related issues are not presented. Rather the model has been
discussed for two different causative variables, which will
be used in the present study. Continuously changing rela-
tionship between the target time series of Indian monthly
rainfall and two regressor time series (ENSO index and
EQUINOO index) is captured by this model. The target
time series is assumed to have a deterministic part (monthly
climatological mean) and a stochastic part. The stochastic
part of the time series is being captured by using the
information from two regressor time series and added to
the deterministic part. The complete model is described
below. Observation equation is

Yi;j ¼ FT
i;jQi;j þ ni;j; ð1Þ

where Yi,j is the observed value of the target time series for
the jth month (j = 1, . . .., 12) of ith year; Fi,j

T is the transpose
of regression vector for jth month of ith year; Qi,j is the
regression parameter vector for jth month of ith year; ni,j is
the normally distributed observational error for jth month of
ith year with mean 0 and unknown variance V, i.e., ni,j �
N[0, V].
[13] Regression vector for jth month of ith year is

Fi;j ¼
1

f * ENi;j�k
1� fð Þ * EQi;j�l

2
4

3
5; ð2Þ

where ENi,j�k is the transformed ENSO index for k months
prior to jth month of ith year; EQi,j�l is the transformed
EQUINOO index for l months prior to jth month of ith
year; k and l are the lead times (in months) for ENSO index
and EQUINOO index respectively; f is the relative
weightage factor for ENSO index; and (1 � f) is the
relative weightage factor for EQUINOO index.
[14] Regression parameter vector for jth month of ith year

is

Qi;j ¼
Yj
qeni;j
qeqi;j

2
4

3
5; ð3Þ

where �Yj is the long-term climatological mean value for jth
month; qi,j

en is the regression parameter for ENSO index for
jth month of ith year; qi,j

eq is the regression parameter for
EQUINOO index for jth month of ith year.
[15] Relative weightage factors for ENSO index and

EQUINOO index are incorporated to the model to investi-
gate their relative influences on monthly variation of all
India rainfall. Instead of using raw circulation indices

(ENSO and EQUINOO), transformed indices will be used,
as described later.
[16] As the first element of Qi,j, i.e., �Yj, is the known

long-term climatological mean value for jth month, step by
step updating of it is done by substituting the known long-
term mean value for the corresponding month. Other
elements, i.e., qi,j

en and qi,j
eq, are updated sequentially by the

system of equations at each time step. For generality in
description, suffixes ‘‘en’’ and ‘‘eq’’ are omitted for those
equations which are applicable for both qi,j

en and qi,j
eq.

[17] System of equations is as follows:

qi;j ¼ qi;j�1 þ wi;j for 8 i and j ¼ 2 . . . 12; ð4aÞ

qi;j ¼ qi�1;12 þ wi;j for 8 i and j ¼ 1 ð4bÞ

where wi,j is the Student-T distributed system evolution
error with degree of freedom n, for jth month of ith year
with parameter 0 and Wi,j, i.e., wi,j � Tn b0, Wi,jc. Degree of
freedom n, for jth month of ith year is

n ¼ i� 1ð Þ * 12þ j� 1: ð5Þ

[18] Model parameters are updated at each time step, to
obtain one-step-ahead forecast and posterior distribution for
the next time step. Procedure to update the model param-
eters is described below. Suffixes of the parameters indicate
the time step. In general, the first suffix denotes year and the
second denotes month. In the following expressions, Tn, N
and G stand for Student-T distribution with n degrees of
freedom, Normal distribution and Gamma distribution,
respectively.
[19] 1. To initiate the model, initial information D1,0 is to

be provided by the forecaster with which initial distribu-
tional form of regression parameters will be decided, i.e.,
(q1,0/D1,0) � T0 bm1,0,C1,0c. Again, (f/D1,0) � G bn1,0/2,
d1,0/2c, where f is the precision parameter and defined as
f = V�1. The parameters m1,0, C1,0, n1,0 and d1,0 are the
initial beliefs of the forecaster. Generally, initial information
D1,0 consists of past experience and information available to
the forecaster. In general, Di,j consists of all available
information and observation up to the end of jth month of
ith year. Thus initial information is improved at each time
step as new observations are made.
[20] 2. To discuss the parameter updating methodology,

without the loss of generality, let us assume, at some

Table 1. Long-Term (1901–1958) Mean Monthly Rainfall

Month Mean Monthly Rainfall, cm

Jan 1.26
Feb 1.44
March 1.52
April 2.72
May 5.24
June 16.0
July 27.67
Aug 24.35
Sep 17.09
Oct 7.84
Nov 3.28
Dec 1.08

D07104 MAITY AND NAGESH KUMAR: INDIAN SUMMER MONSOON RAINFALL MODELING

4 of 12

D07104



particular time step (i, j � 1), the posterior distribution for
regression parameters qi,j�1 and distributional form of
precision parameter f is known.

qi;j�1=Di;j�1

� �
� Tn mi;j�1;Ci;j�1

� �

and f=Di;j�1

� �
� G ni;j�1=2; di;j�1=2

� �
;

with n as defined in equation (5) for the time step (i, j � 1).
[21] 3. Prior distribution for qi,j is obtained as follows:

qi;j=Di;j�1

� �
� Tn mi;j�1;Ri;j

� �
;

with n as defined in equation (5) for the time step (i, j � 1)
and

Ri;j ¼ Ci;j�1 þWi;j; ð6Þ

where Wi,j is the system evolution variance for jth month of
ith year. It is practically difficult to assign the sequence of
evolution variance {Wi,j} without relating it to some previous
known variance. Therefore a discount factor d (0 < d <1) for
both qi,j

en and qi,j
eq is introduced such that

Ri;j ¼ Ci;j�1 d:= ð7Þ

This reflects the real fact that Ri,j > Ci,j�1. Using equation (7)
in equation (6) it can be shown that

Wi;j ¼ Ci;j�1 d�1 � 1
� �

: ð8Þ

[22] 4. One-step ahead forecast distribution is obtained as
follows:

Yi;j=Di;j�1

� �
� Tn Fi:j;Qi;j

� �
;

Figure 3. Q-Q plots between different combinations among ENSO index, EQUINOO index, and
rainfall anomaly.

Figure 4. Normal probability plots for ENSO index, EQUINOO index, and rainfall anomaly.
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with n as defined in equation (5) for the time step (i, j) and

Fi;j ¼ Y j þ ENi;j�k * f * men
i;j�1 þ EQi;j�l * 1� fð Þ * m

eq
i;j�1 ð9Þ

Qi;j ¼ ENi;j�k * f
� �2

* Ren
i;j þ EQi;j�l* 1� fð Þ

	 
2
* R

eq
i;j þ Si;j�1;

ð10Þ

where

Si;j�1 ¼
di;j�1

ni;j�1

: ð11Þ

[23] 5. Posterior distribution for qi,j is obtained as follows:

qi;j=Di;j

� �
� Tn mi;j;Ci;j

� �
;

with n as defined in equation (5) for the time step (i, j) and

mi;j ¼ mi;j�1 þ Ai;jei;j; ð12Þ

Ci;j ¼ Ri;jSi;j Qi;j

�
; ð13Þ

Si;j ¼ di;j=ni;j; ð14Þ

ei;j ¼ Yi;j � Fi;j; ð15Þ

Aen
i;j ¼ ENi;j�k * f * Ri;j Qi;j

�
; ð16Þ

A
eq
i;j ¼ EQi;j�l * 1� fð Þ * Ri;j Qi;j

�
: ð17Þ

Distributional form of scale parameter f at time step (i, j) is
obtained as follows:

f=Di;j

� �
� G ni;j=2; di;j=2

� �
;

where

ni;j ¼ ni;j�1 þ 1 ð18Þ

di;j ¼ di;j�1 þ Si;j�1e
2
i;j Qi;j

�
: ð19Þ

[24] It is also important to note that the discount factor d
plays an important role, indicating the loss of information
between successive observations. For instance, large value
of d indicates smaller rate of decay of past information. In
fact, d = 1 yields a static model. On the other hand, small
value of d implies faster rate of decay of past information
[West and Harrison, 1997]. Optimal choice of d can be
made on the basis of the model performances.
[25] Another important point is that the model could

predict the uncertain future rainfall values as a distributional

Figure 5. Histogram distributions with superimposed fitted normal density for ENSO index,
EQUINOO index, and rainfall anomaly.

Table 2. Scale Factors and Shift Factors for ENSO Index and

EQUINOO Index

Indices

Period of Considered Monthly Rainfall Anomaly

All Months in the Year
Only Monsoon Months

(June Through September)

Scale Factor Shift Factor Scale Factor Shift Factor

ENSO index 2.62 �0.025 3.90 �0.184
EQUINOO index 2.46 �0.104 3.66 �0.301

Table 3. Performance Statistics for Different Combinations of

Lead Times for ENSO and EQUINOOa

EQUINOO Lead
Time, Months

ENSO Lead Time, Months

1 2 3 4

1 0.49 0.50 0.46 0.39
0.87 0.87 0.87 0.85

�279.47 �277.08 �280.01 �286.07
8.68 8.61 8.97 9.76

2 0.41 0.40 0.37 0.27
0.86 0.85 0.85 0.83

�283.87 �282.33 �285.40 �292.41
9.60 9.67 9.93 11.08

3 0.40 0.39 0.35 0.27
0.85 0.85 0.85 0.83

�282.27 �281.47 �284.40 �290.60
9.70 9.77 10.11 11.00

4 0.45 0.44 0.40 0.31
0.86 0.86 0.86 0.84

�277.92 �277.77 �280.95 �286.62
9.14 9.26 9.60 10.49

aFrom top to bottom in each cell, the statistics are as follows: correlation
coefficient (CC) between observed and predicted rainfall anomaly; CC
between observed and predicted rainfall; log likelihood; and mean square
error (MSE). Higher values of first three statistics and lower value of last
statistics indicate better model performance. Performance statistics in the
cell corresponding to best combinations of lead times are shown in boldface.
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form as against the point forecast by most of the other
models like multiple linear regression, Box-Jenkins model,
etc. Prediction as a distributional form is useful for making
probabilistic inferences which are of considerable practical
use. Computation of confidence interval (CI) for the fore-
casted values is possible, which is an advantageous property
for many fields of application.

4. Methodology

[26] Raw climate indices are transformed to extract the
climate signal more effectively. It is done by transforming
both the regressor series in such a way that the transformed
regressor series will have identical distribution to that of the
target series. Before transforming the raw data set, it should
be verified that all the regressor series as well as target
series have similar distribution.
[27] To illustrate the data transformation, let two series, X

and Y, have similar distribution but not necessarily identical
parameters. Also, let Y be the target series and X be the
regressor series. Series X will be transformed in such a way
that the transformed X series will have identical distribution
as that of Y. To do this X is transformed using following
equations:

X 0 ið Þ ¼ X ið Þ *
sY
sX

ð20Þ

X 00 ið Þ ¼ X 0 ið Þ þ mY � mX 0ð Þ þ C; ð21Þ

where sX, sY are the standard deviations of series X and Y
respectively; mY is the mean of series Y; mX0 is the mean of
the transformed series X0; C is any constant to shift the
entire time series by some desirable amount. In the above

expressions,
sy
sx

is known as scale factor and (mY � mX0) + C

is called shift factor. After transforming the series X using
equations (20) and (21) (putting any value of C), the
obtained series X00 will have identical parameters as those of
series Y (both mean and standard deviation).
[28] It can be shown that X00 and Y will be closer to each

other as compared to X and Y, irrespective of the nature of
relationship between them. If there is some relationship
between the target and the regressor time series, then an
obtained closeness between the target series and the trans-
formed regressor series will be better. If X00 is used, instead
of X, as the causal variable of Y, it will be more effective and
it is observed that the performance of the model has
enhanced by using the transformed regressor time series.
[29] The technique described above is used in the present

study to transform the time series of ENSO index and
EQUINOO index, to have same mean and standard devi-
ation as that of rainfall anomaly series. However, time
series of ISMR, ENSO index and EQUINOO index are
statistically tested to check whether they have similar
distribution or not. From the Q-Q plots between different
combinations among ENSO index, EQUINOO index and
rainfall anomaly (Figure 3), it can be inferred that all these
data sets follow a similar distribution. Again normal
probability plots (Figure 4) and histogram distributions
with superimposed fitted normal density (Figure 5) indicate
that all of them follow normal distribution, if few outliers
are neglected.
[30] Both ENSO and EQUINOO index are transformed

using equations (20) and (21), so that finally all three series
(rainfall anomaly, ENSO index and EQUINOO index)
become identically distributed. From this analysis a set of
scale factors and shift factors for ENSO index and

Table 4. Best Values of the Subjective Parameters

Data Set C Values
Relative

Weightages d Values
Lead Time,
months

Rainfall anomaly 15 . . . . . . . . .
ENSO index 20 0.61 0.89 2
EQUINOO index 20 0.39 0.95 1

Figure 6a. Comparison between observed and predicted monthly rainfall (January 1986 to December
1990).
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EQUINOO index is obtained (Table 2). However, India
receives more than 80% of annual rainfall during the mon-
soon months of June, July, August and September (JJAS).
Hence a similar analysis is performed considering monthly
rainfall anomaly series for these four monsoon months. From
this analysis another set of scale factors and shift factors for
ENSO index and EQUINOO index is obtained. Both the sets
of scale factors and shift factors are shown in Table 2. It is
noticed from Table 2 that there is significant difference
between two sets of scale factors. As it is necessary to give
more prominence to the monsoon months, the ENSO index
and the EQUINOO index are transformed as per the second
case. The variable C for the above analysis was assumed to be

0. However, its value will be determined by the model
performance during calibration of themodel. Other subjective
variables will also be determined in a similar way.

5. Results and Discussions

[31] The model is calibrated on the basis of prediction
performance of monthly rainfall for monsoon months (June
through September) for the period 1959–1985. Subjective
parameters, like discount factors d, relative weightage
factors (f and 1 � f) and values of C are determined on
the basis of the model performance during this period.
Model performances are judged on the basis of mean square

Figure 6b. Comparison between observed and predicted monthly rainfall (January 1991 to December
1995).

Figure 6c. Comparison between observed and predicted monthly rainfall (January 1996 to December
2000).
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error (MSE), log likelihood and correlation coefficient
between predicted and observed monthly rainfall during
monsoon months. Best values of lead times (k and l) are
selected after investigating all the possible combinations of
lead times varying from 1 to 4 months for both ENSO and
EQUINOO during the model calibration period. Table 3
shows the results for different combinations of lead times.
Each cell shows four different statistics to measure the
model performance. From top to bottom these are (1)
Correlation coefficient (CC) between observed and pre-
dicted rainfall anomaly, (2) CC between observed and
predicted rainfall (3) Log likelihood and (4) Mean Square
Error (MSE). Higher values of first three statistics and lower
value of last statistic indicate better model performance. It
can be noticed from Table 3, that lead times of 2 months and
1 month for ENSO and EQUINOO, respectively, produce
the best performance. It can be also noticed that there is a
minor improvement in performance statistics for EQUINOO
lead time of 4 months, compared to 3 months. However,
existing literature and practical intuition says that EQUI-
NOO is more immediate factor compared to ENSO for
ISMR. Thus lead time for EQUINOO should be less than or
equal to the lead time for ENSO (i.e., 2 months). Consid-
ering all these factors a lead time of 2 months for ENSO and
1 month for EQUINOO is selected.
[32] The best values of all the subjective parameters are

shown in Table 4. Using these parameters, model perfor-
mance is investigated for the period 1986–2003. Correla-
tion coefficient between predicted and observed monthly
rainfall is 0.82 during monsoon months of this period. Apart
from the statistical correlation coefficient, comparison be-
tween predicted and observed monthly rainfall are presented
by bar plots (Figures 6a–6d).
[33] As mentioned in section 1.3, a simple non-Bayesian

multiple linear regression model, which has the mathemat-
ical form

Ri;j ¼ a:ENi;j�k þ b:EQi;j�l þ ni;j; ð22Þ

is investigated to compare its performance with BDLM. In
equation (22), Ri,j is the observed value of the target time
series (ISMR) for the jth month (j = 1, . . .. , 12) of ith year;
ENi,j�k is the ENSO index for k months prior to jth month
of ith year; EQi,j�l is the EQUINOO index for l months
prior to jth month of ith year and ni,j is the noise term for jth
month of ith year. As it is observed that 2 months and
1 month lead time for ENSO and EQUINOO index,
respectively, are most effective, values of k and l are used
as 2 and 1, respectively, in this approach also. First, the
coefficients, a and b are estimated by least squares method
based on the period 1959–1985 and the estimated model is
used for prediction for the period 1986–2003 to test the
model performance, as done in BDLM, too. By doing this,
estimated values of a and b are calculated as �6.173 and
3.056. Thus the estimated model has the mathematical form
as

R̂i;j ¼ �6:173:ENi;j�k þ 3:056:EQi;j�l; ð23Þ

where R̂i;j is the predicted value of the target time series
(ISMR). Now, using this model, prediction is made for the
period 1986 to 2003. Correlation coefficient (CC) between
the observed and this predicted rainfall is obtained as 0.27,
whereas in case of BDLM, CC between observed and
predicted rainfall during this period was obtained as 0.82.
Thus it is clear that BDLM is really superior to a simple
non-Bayesian multiple linear regression model. As it was
also indicated in section 1.3, the extra skill of Bayesian
model comes from its dynamic nature [West and Harrison,
1997] and capability of handling nonstationarity [Bernier,
1994].
[34] As the model can predict the uncertain future rainfall

values as a distributional form, computation of confidence
interval (CI) for the forecasted values is possible, which
helps in making a decision with required statistical confi-
dence level. Such predictions are much more advantageous
than a point prediction. In Figures 6a–6d, 90% confidence
intervals are also shown. It is noticed that the observed
monthly rainfall is well captured by this confidence
interval for almost all the years (except July 2002). This
indicates the capability of the model to capture dynamic
relationship and successfully predict the monthly rainfall,
using both the large-scale circulation information of ENSO
and EQUINOO.
[35] From Figures 6a–6d, concurrent effect of ENSO and

EQUINOO can be observed. For instance, in 1987, India
was expected to receive a lower-than-normal rainfall due to
the El-Niño event (Figure 1). It was further intensified
owing to the presence of negative EQUINOO index in the
same year (Figure 2) and the model has correctly predicted
low values of monthly rainfall for that year (Figure 6a). In
the very next year, higher-than-normal rainfall has been
successfully predicted (Figure 6a) owing to the joint effect
of La Niña (Figure 1) and occurrence of positive EQUINOO
index (Figure 2). In 1997, normal rainfall values are
predicted (Figure 6c), although a drought was expected
owing to the occurrence of El-Niño (Figure 1) and this
correct prediction is made owing to the presence of positive
EQUINOO index (Figure 2). In 2002, joint occurrence of El
Niño (Figure 1) and very high negative EQUINOO index
(Figure 2) produced a severe drought over India. In that

Figure 6d. Comparison between observed and predicted
monthly rainfall (January 2001 to December 2003).
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year, the EQUINOO was lowest in the available record
(1958–2003) for monsoon months. As a consequence,
lower-than-normal values for all the monsoon months of
2002 were predicted. For the month of July 2002, rainfall
was the lowest recorded. This model also predicted very
low value for this month but could not predict as low as it
was observed (Figure 6d). This may be owing to some other

local physical phenomena which occur at smaller scale,
compared to the large-scale atmospheric circulation like
ENSO and EQUINOO, for example, sudden change in total
water vapor in air column [Gadgil et al., 2002] or sudden
change in cloud system over Bay of Bengal [Srinivasan and
Nanjundiah, 2002]. The reasons behind unanticipated def-
icit in 2002 are still being investigated, which is not within

Figure 7b. Comparison between observed and predicted monthly rainfall anomaly for monsoon
months during 1996–2000 using only ENSO index, only EQUINOO index, and both ENSO and
EQUINOO indices.

Figure 7a. Comparison between observed and predicted monthly rainfall anomaly for monsoon months
during 1986–1990 using only ENSO index, only EQUINOO index, and both ENSO and EQUINOO
indices.
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the scope of this study. However, model has successfully
predicted lower-than-normal rainfall for remaining three
monsoon months in 2002. In general, a concurrent effect
of ENSO and EQUINOO on the Indian monthly rainfall can
be observed from this study.
[36] To further investigate concurrent effect of ENSO and

EQUINOO, predictions were made using these indices one
at a time. A comparison between observed and predicted
rainfall anomaly using the ENSO index, the EQUINOO
index and both ENSO and EQUINOO indices is studied for
the monsoon months of all the years (1986–2003). How-
ever, for the purpose of discussion, such plots are presented
in Figures 7a and 7b for the periods 1986–1990 and 1996–
2000, respectively. It is observed that prediction perform-
ances using only ENSO index and only EQUINOO index
are poorer than those obtained by considering both of them
concurrently. It is visually noticed that observed and pre-

dicted rainfall anomalies for a few months are out of phase.
These out-of-phase behaviors are seen generally in the
month of June, which is the starting month of monsoon
period. Month of June receives considerably high rainfall as
compared to the previous months (i.e., March, April and
May). The out-of-phase behavior may be attributed to the
sudden jump of the rainfall series in the month of June.
However, in general, predictions are observed to be better
when a combination of ENSO and EQUINOO indices is
used. As it is difficult to appreciate the results by visual
inspection, scatterplots for monsoon months for (1) the
ENSO index, (2) the EQUINOO index and (3) both the
ENSO and EQUINOO indices between observed and pre-
dicted monthly rainfall anomaly for the period 1986–2003
are shown in Figure 8. It is observed that correlation
coefficient between observed and predicted rainfall anomaly
is 0.44 in case of using both ENSO and EQUINOO indices
as against 0.31 and 0.34 in case of using only ENSO index
and only EQUINOO index, respectively. Thus it can be
concluded that the monthly variability of all India rainfall
can be explained in a better way by using both the large-
scale circulation information from Indian Ocean (EQUI-
NOO index) and that from Pacific Ocean (ENSO index).
Another point is that, on the basis of the correlation
coefficient, it can be said that addition of EQUINOO is
increasing the lead time for ENSO as compared to ENSO
only case (1 month for ENSO only case and 2 months for
both ENSO along with EQUINOO) but MSE and Log
likelihood indicate a lead time of 2 months for ENSO while
considering ENSO alone. However, when ENSO is consid-
ered along with EQUINOO, better model performance is
achieved.
[37] It may be noted here that ENSO and EQUINOO

indices are poorly correlated to each other (correlation
coefficient = 0.0013) for monsoon months with 2 months
lag for ENSO index and 1 month lag for EQUINOO index.
These lags are found to be the best leading times, compared
to rainfall anomalies, for ENSO and EQUINOO indices as
discussed earlier (Tables 3 and 4).
[38] It is necessary to mention here that although the

model performance is analyzed on the basis of monthly
prediction during four monsoon months only, predictions
evolved continuously for all 12 months to maintain the time
continuity for updating the parameters at each month. Visual
inspection and the statistics obtained above indicate a close
association between the predicted and observed monthly
rainfall, proving the capability of the model to capture the
dynamic relationship between monthly variability of all
India rainfall and both the large-scale circulation informa-
tion of ENSO and EQUINOO.

6. Conclusions

[39] In this study, Indian summer monsoon rainfall
(ISMR), which corresponds to June, July, August, Septem-
ber, is predicted by incorporating two different large-scale
climate circulation indices, ENSO and EQUINOO. Both the
circulation indices are used as exogenous input to Bayesian
dynamic linear model (BDLM). This model is shown to
capture the dynamic relationship between these circulation
indices and rainfall phenomenon, which is important to
climate change studies. Moreover, predictions of uncertain

Figure 8. Scatterplot between observed and predicted
monthly rainfall anomaly for monsoon months during
1986–2003 using (a) only ENSO index, (b) only EQUINOO
index, and (c) both ENSO and EQUINOO indices.
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future values are made in a distributional form by Bayesian
dynamic linear models. Hence forecast intervals can be
obtained at any desired confidence level as shown in this
study (90% confidence intervals). This is an advantage for
many application fields like hydrometeorology, water
resources management etc, where decisions need to be
taken with some statistical confidence level.
[40] It is observed that the monthly rainfall can be well

predicted by using ENSO and EQUINOO indices concur-
rently. Unusual recent experiences, against the long-recog-
nized negative correlation between ENSO and Indian
summer monsoon rainfall, are satisfactorily explained by
this approach. This study indicates that both ENSO and
EQUINOO have significant influence on monthly Indian
summer monsoon rainfall, the relative weightages being
0.61 and 0.39, respectively. However, it is not claimed that
these two are the only large-scale circulation indices effect-
ing Indian rainfall, but it can be concluded that instead of
using only ENSO information, if ENSO and EQUINOO
information are concurrently used, a better prediction can be
made.
[41] Apart from the concurrent influence of ENSO and

EQUINOO index on monthly rainfall variation, efficacy of
the BDLM to capture the time varying dynamic relationship
between monthly rainfall anomaly and circulation indices is
shown in this study. Such models can be used in any similar
application field where it is necessary to deal with time
varying dynamic relationship between regressor and target
time series.

[42] Acknowledgments . Authors are gra teful to P. N.
Vinayachandran and P. A. Francis of Centre for Atmospheric and Oceanic
Science, Indian Institute of Science, Bangalore, India, for providing
relevant inputs regarding EQUINOO index. This work is partially sup-
ported by Department of Science and Technology, Government of India,
through a project with reference ES/48/010/2003.

References
Ashok, K., Z. Guan, and T. Yamagata (2001), Impact of Indian Ocean
dipole on the relationship between the Indian monsoon rainfall and
ENSO, Geophys. Res. Lett., 28, 4499–4502.

Berger, J., and D. R. Insua (1998), Recent developments in Bayesian in-
ference with applications in hydrology, in Statistical and Bayesian Meth-
ods in Hydrological Sciences, edited by E. Parent et al., pp. 43–62,
UNESCO Press, Paris.

Berliner, L. M., C. K. Wikle, and N. Cressie (2000), Long-lead prediction
of Pacific SSTs via Bayesian dynamic modeling, J. Clim., 13, 3953–
3968.

Bernier, J. (1994), Statistical detection of changes in geophysical series, in
Engineering Risk in Natural Resources Management With Special Refer-
ences to Hydrosystems Under Changes of Physical or Climatic Environ-
ment, NATO ASI Ser. E, Applied Sciences, vol. 275, edited by
L. Duckstein and E Parent, pp. 343–357, Elsevier, New York.

Besag, J., P. Green, D. Higdon, and K. Mengersen (1995), Bayesian com-
putation and stochastic systems, Stat. Sci., 10, 1–58.

Dracup, J. A., and E. Kahya (1994), The relationship between U.S. stream-
flow and La Niña events, Water Resour. Res., 30(7), 2133–2141.

Eltahir, E. A. B. (1996), El Niño and the natural variability in the flow of
the Nile River, Water Resour. Res., 32(1), 131–137.

Gadgil, S. (2003), The Indian Monsoon and its variability, Annu, Rev. Earth
Planet. Sci., 31, 429–467, doi:10.1146/annurev.earth.31.100901.141251.

Gadgil, S., J. Srinivasan, R. S. Nanjundiah, K. Krishna Kumar, A. A.
Munot, and K. Rupa Kumar (2002), On forecasting the Indian summer
monsoon: The intriguing season of 2002, Curr. Sci., 83(4), 394–403.

Gadgil, S., P. N. Vinayachandran, and P. A. Francis (2003), Droughts of the
Indian summer monsoon: Role of clouds over the Indian ocean, Curr.
Sci., 85(12), 1713–1719.

Gadgil, S., P. N. Vinayachandran, P. A. Francis, and S. Gadgil (2004),
Extremes of the Indian summer monsoon rainfall, ENSO, and equatorial
Indian Ocean oscillation, Geophys. Res. Lett., 31, L12213, doi:10.1029/
2004GL019733.

Jain, S., and U. Lall (2001), Floods in a changing climate: Does the past
represent the future?, Water Resour. Res., 37(12), 3193–3205.

Kahya, E., and J. A. Dracup (1993), U.S. streamflow patterns in relation to
the El Niño/Southern Oscillation, Water Resour. Res., 29(8), 2491–2503.

Kalnay, E., et al. (1996), The NCEP/NCAR 40-year reanalysis project, Bull.
Am. Meteorol. Soc., 2, 437–471.

Kane, R. P. (1998), Extremes of the ENSO phenomenon and Indian summer
monsoon rainfall, Int. J. Climatol., 18, 775–791.

Khandekar, M. L., and V. R. Neralla (1984), On the relationship between
the sea surface temperatures in the equatorial Pacific and the Indian
monsoon rainfall, Geophys. Res. Lett., 11, 1137–1140.

Kiladis, G. N., and H. F. Diaz (1989), Global climatic anomalies associated
with extremes in the Southern Oscillation, J. Clim., 2, 1069–1090.

Krishna Kumar, K., B. Rajagopalan, and M. A. Cane (1999), On the weak-
ening relationship between the Indian Monsoon and ENSO, Science, 284,
5423, doi:10.1126/science.284.5423.2156.

Krishnaswamy, J., M. Lavine, D. D. Richter, and K. Korfmacher (2000),
Dynamic modeling of long-term sedimentation in the Yadkin River basin,
Adv. Water Resour., 23, 881–892.

Krishnaswamy, J., P. N. Halpin, D. D. Richter, and K. Korfmacher (2001),
Dynamics of sediment discharge in relation to land-use and hydro-clima-
tology in a humid tropical watershed in Costa Rica, J. Hydrol., 353, 91–
109.

Li, T., Y. S. Zhang, C. P. Chang, and B. Wang (2001), On the relationship
between Indian Ocean sea surface temperature and Asian summer mon-
soon, Geophys. Res. Lett., 28, 2843–2846.

Mooley, D. A., and D. A. Paolino (1989), The response of the Indian
monsoon associated with the change in sea surface temperature over
the eastern south equatorial Pacific, Mausam, 40, 369–380.

Normand, C. (1953), Monsoon seasonal forecasting, Q. J. R. Meteorol.
Soc., 79, 463–473.

Pant, G. B., and B. Parthasarathy (1981), Some aspect of an association
between the Southern Oscillation and Indian summer monsoon, Arch.
Meteorol. Geophys. Bioklimatol., Ser. B, 89, 179–195.

Pole, A., M. West, and J. Harrison (1994), Applied Bayesian Forecasting
and Time Series Analysis, CRC Press, Boca Raton, Fla.

Rasmusson, E. M., and T. H. Carpenter (1983), The relationship between
eastern equatorial Pacific sea surface temperature and rainfall over India
and Sri Lanka, Mon. Weather Rev., 111, 517–528.

Ropelewski, C. F., and M. S. Halpert (1987), Global and regional scale
precipitation patterns associated with the El Niño/Southern Oscillation,
Mon. Weather Rev., 115, 1606–1626.

Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata
(1999), A dipole mode in the tropical Indian Ocean, Nature, 401,
360–363.

Srinivasan, J., and R. S. Nanjundiah (2002), The evolution of Indian sum-
mer monsoon in 1997 and 1983, Meteorol. Atmos. Phys., 79, 243–257.

Walker, G. T. (1923), Correlation in seasonal variations of weather: III. A
preliminary study of world weather, Mem. India Meteorol. Dep., 24, 75–
131.

Walker, G. T. (1924), Correlation in seasonal variations of weather: IV. A
further study of world weather, Mem. India Meteorol. Dep., 24, 275–
332.

Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben (1999),
Coupled oceanic-atmospheric dynamics in the Indian Ocean during
1997–98, Nature, 401, 356–360.

West, M., and P. J. Harrison (1997), Bayesian Forecasting and Dynamic
Models, 2nd ed., Springer, New York.

�����������������������
D. Nagesh Kumar and R. Maity, Department of Civil Engineering, Indian

Institute of Science, Bangalore 560 012, India. (nagesh@civil.iisc.ernet.in)

D07104 MAITY AND NAGESH KUMAR: INDIAN SUMMER MONSOON RAINFALL MODELING

12 of 12

D07104


