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Abstract

Global warming and associated climate change impacts have posed major

threats to this 21st century's world, especially for developing countries like

India, given various socio-economic factors. Considering the extensive spatial

diversity of this warming-induced climate changes, suitable region-specific

strategies must be adopted to combat its potential implications. Therefore, it

becomes crucial to identify the places most exposed to this changing scenario.

This study attempts to shed some light towards this by identifying futuristic

“temperature-based hotspots” across India through a comprehensive multimo-

del multiscenario analysis at various spatiotemporal scales. A new and more

informative index named “Temperature-based Hotspot Index (THIn)” is pro-

posed for this purpose, which encapsulates various attributes of changing tem-

perature, including its mean, variability and extremes (magnitude, frequency

and severity) into a single metric. Bias-corrected future-projected temperature

data from 14 state-of-the-art general circulation models (GCMs) have been

considered for the analysis, which are participating in the coupled model inter-

comparison project version 6 (CMIP6). The overall analysis identifies

temperature-based hotspots to span predominantly in the west, north and

northeast parts of the country. On the other hand, the southern and eastern

part of India along the eastern coast are found to be comparatively less exposed

to temperature changes in future. Overall, we expect the findings of this study

to be beneficial to plan and adopt suitable region-specific management strate-

gies to combat the challenging future in sufficient advance.
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1 | INTRODUCTION

With an aim to combat multifaceted threats imposed by
climate change on various aspects of Earth's system, a
legally binding international treaty was signed by

196 parties at the 21st conference of the parties (COP 21)
in Paris under the united nations framework convention
on climate change (UNFCCC)—popularly known as the
Paris Agreement (UNFCCC, 2015). This agreement set an
internationally agreed-upon target to limit global
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warming up to 2�C (preferably 1.5�C) above the pre-
industrial baseline by 2100 (Knutti et al., 2016; Roe
et al., 2019; Rogelj et al., 2016). However, the long-term
record of global surface air temperature indicates that the
recent past decade (2011–2020) was already �1�C
warmer than the 1850–1900 baseline (IPCC, 2021). Fur-
ther studies reveal that the world is on track to breach
the temperature target of 1.5�C in the next two decades
(Diffenbaugh & Barnes, 2023; Smith et al., 2018). How-
ever, the temperature rise will not be uniform across the
globe; some parts might experience greater warming than
the global average, and some parts lesser. Overall such a
level of global warming will greatly accelerate the other
changes that are already underway in the climate system,
including glacier melting, sea-level rise, ocean heating,
and so forth. Most importantly, the global hydrological
cycle will be intensified ominously owing to such global
warming, resulting in an overall spatiotemporal redistri-
bution of precipitation, and subsequently causing heavy
downpours, floods, as well as prolonged droughts in dif-
ferent parts of the world.

However, how this global-scale warming manifests at
smaller spatial and temporal scales remains a pivotal con-
cern for the research community in comprehending the
changing pattern of climate, thus devising local- or
national-scale adaptation and mitigation efforts. There-
fore, among this potential spatial heterogeneity of chang-
ing patterns of temperature, it is indeed necessary to
identify the “climate change-induced temperature-based
hotspots,” that is, the places with the strongest and most
robust aggregated signature of changing temperature. In
particular, presenting such hotspots in a map format with
strong visual components, known as a “hotspot map,”
offers significant advantages for academics and policy-
makers alike. It can convey numerous key information in
an easier, captivating and user-friendly way than some
regular quantitative analysis. Therefore, identification of
these highly responsive regions in the face of climate
change serves as a fundamental yet crucial initial step in
future risk assessment and adaptation studies.

Towards this, we have considered the entire Indian
mainland as our study area. Owing to the confluence of
various climatic, geographic and socioeconomic factors
(such as strong signals of climate change, diversified
geography, high population density, low per capita
income, developing economy, etc.), the entire South Asia
and notably India have already been identified as one of
the critical regions under the climate change (De Souza
et al., 2015; Mani et al., 2018). In recent years, unprece-
dented warming has been reported over several portions
of India. In fact, a recent report from India meteorologi-
cal department (IMD) finds that the annual surface air
temperatures is increasing over India at a rate of 0.64�C

per 100 years during the period 1901–2022 (IMD, 2022).
Such unequivocal warming is resulting in an increase in
the frequency, intensity and duration of heat wave inci-
dents across the country (Rohini et al., 2019). For
instance, in the year 2022 only, 280 heatwave days have
been recorded between March and May, which is the
highest in the last 12 years (https://www.downtoearth.
org.in/news/climate-change/state-of-india-s-environme
nt-in-figures-india-recorded-280-heat-wave-days-across-
16-states-in-2022-most-in-decade-83131, accessed in
November 2022). Moreover, in 2022, summer arrived
early in India (Aggarwal, 2022; Dash et al., 2022). IMD
started to issue high-temperature warnings as early as in
March (Basu, 2022). The average maximum temperature
recorded in March 2022 was 33.10�C, the highest in the
last 122 years, or since the IMD started maintaining its
records. Any such temperature-related climate extremes
are extremely important due to their strong association
with human health and mortality. A recent study by Ray
et al. (2021) reports that 17,362 people lost their lives due
to high-temperature-related hazards between 1970 and
2019. However, the worrisome fact is that decadal fatality
has been steadily increasing lately—the recent past
decade (2010–2019) reports almost four times higher
deaths (6494 people) as compared to the 1980–1989
period, where 1505 people lost their lives due to heat
waves and high-temperature extremes. Another recent
study in Lancet evaluates a loss of 167.2 billion potential
labour hours due to heatwaves in 2021, resulting in a loss
of income equivalent to about 5.4% of India's GDP
(Romanello et al., 2022). Further such extreme
temperature events have the potential to trigger subse-
quent meteorological hazards including droughts, floods,
high-intensity rainfall, and cyclones (Seneviratne
et al., 2012; Trenberth, 2011; Wasko, 2021; Yu
et al., 2022)—which in turn may seriously affect the agri-
cultural yield of the country. For a country like India,
whose economy primarily depends on rain-fed agricul-
ture (Kishore et al., 2015), it is a massive threat. There-
fore, the adverse impacts of the temperature extremes are
not only limited to human health and fatalities
(Kotharkar & Ghosh, 2021; Pascal et al., 2021; Zhang
et al., 2017) but the overall food security, environmental
balance and the national economy too can be badly
impacted by it (Luan et al., 2019). Keeping all these fac-
tors in mind, developing a future temperature-based hot-
spot map for India is indispensable, which sets the
primary objective of this study. We expect it to be
immensely beneficial to combat future climate change-
induced temperature hazards in key locations well in
advance.

Apart from just the identification of hotspots, under-
standing their underlying mechanism is also very
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important. Towards this, we present a detailed and com-
prehensive spatiotemporal analysis of likely changes in
various attributes of temperature over the future. Simula-
tions from multiple general circulation models (GCMs),
taking part in the sixth phase of the coupled model inter-
comparison project (CMIP6) under various emission sce-
narios are utilized for this purpose after suitably
correcting the inherent model bias. Further to under-
stand the potential spatial heterogeneity of the tempera-
ture changes, the results are interpreted with respect to
seven different regions of India (see section 3 for further
details). Overall, we expect the findings of this study,
including the future temperature-based hotspot map, will
be highly beneficial not only for academic or research
purposes, but for decision-making, risk analysis, impact
assessments and planning suitable adaptation and mitiga-
tion strategies.

2 | DATA USED

The present study employs daily maximum and mini-
mum temperature data from 14 state-of-the-art
CMIP6-GCMs under r1i1p1f11 initial condition. Selection
of those 14 GCMs from CMIP6 was based on their avail-
ability under the aforesaid r1i1p1f1 initial condition and
three scenarios—historical, SSP245 and SSP585, during
the commencement of this study. This most recent ver-
sion of CMIP, that is, CMIP6 offers significant

advancements over previous versions from various per-
spectives, such as finer horizontal resolution, improved
depiction of the synoptic processes, and better agreement
with the global energy balance (Supharatid et al., 2021).
Eventually, the projections from CMIP6 becomes
more reasonable and trustworthy than those of its earlier
iterations (Chen et al., 2021; Di Luca et al., 2020;
Li et al., 2021; Wang et al., 2021). Therefore, from multi-
ple CMIP6-GCMs, we obtained the temperature data
under r1i1p1f1 initial condition, details of which are
shown in Table 1 (https://esgf-node.llnl.gov/search/
cmip6/ accessed in November 2022). The future data is
obtained over 80 years (2021–2100) period, which is fur-
ther split into two equal parts, viz. near-future period
(2021–2060) and far-future period (2061–2100), to capture
the temporal changes in the temperature characteristics
w.r.t. the base period (1981–2010). Further, for each
GCM, two different shared socioeconomic pathways
(SSPs), viz., SSP245 and SSP585, are considered to
understand two possible pathways of changes in the
future. For instance, SSP585 is the most pessimistic sce-
nario associated with strong economic growth, abun-
dant use of fossil fuel resources, rapid technological
advances, but no suitable climate policy (Gidden
et al., 2019). On the other hand, SSP245 depicts a “mid-
dle of the road” scenario with moderate population
growth, uneven development and income growth across
countries. Thus, a comparison of results obtained
between SSP585 and SSP245 will help us to understand

TABLE 1 Details of GCMs used in this study, participating CMIP6.

S. No. Model name
Horizontal resolution
(latitude × longitude) Source institute

1 ACCESS-CM2 1.25� × 1.875� Commonwealth Scientific and Industrial Research
Organization, Australia2 ACCESS-ESM1-5 1.25� × 1.875�

3 BCC-CSM2-MR 1.1121� × 1.125� Beijing Climate Center, China

4 CanESM5 2.7673� × 2.8125� Canadian Centre for Climate Modelling and Analysis,
Canada

5 EC-Earth3 0.70� × 0.70� EC-Earth-Consortium

6 EC-Earth3-Veg 0.70� × 0.70�

7 CESM2_WACCM 0.9424� × 1.25� National Center for Atmospheric Research, USA

8 CMCC-ESM2 0.9424� × 1.25� Fondazione Centro Euro-Mediterraneo sui Cambiamenti
Climatici, Italy

9 MPI-ESM1-2-HR 0.935� × 0.9375� Max Planck Institute for Meteorology, Hamburg, Germany

10 MPI-ESM1-2-LR 1.8652� × 1.8750�

11 IPSL-CM6A-LR 1.2676� × 2.5� Institut Pierre Simon Laplace, France

12 IITM 1.9048� × 1.8750� Indian Institute of Tropical Meteorology Pune, India

13 NorESM2-LM 1.8947� × 2.5� Norwegian Climate Center (NCC), Oslo, Norway

14 NorESM2-MM 0.9424� × 1.25�
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the possible impacts of higher anthropogenic activity
and greenhouse gas emissions in the future.

The bias present in this GCM-simulated dataset is
corrected w.r.t. a gridded observational dataset from
India meteorological department (IMD). This 1.0� × 1.0�

dataset was developed by Srivastava et al. (2009) using
observed records of daily maximum and minimum tem-
perature data from more than 350 stations across India.
This gridded dataset from IMD perfectly captures the spa-
tial diversity of temperature over India and has been suc-
cessfully used for various hydroclimatic studies in recent
times (Mishra et al., 2017; Sharma & Mujumdar, 2017;
Singh et al., 2021).

3 | METHODOLOGY

The entire analysis is carried out in three steps in accor-
dance with the study's objectives. First, the raw GCM
temperature data from all 14 models are suitably
regridded and bias-corrected. In the second stage, this
bias-corrected multimodel multiscenario dataset is
undergone a thorough spatiotemporal analysis to under-
stand the impact of changing climate on future tempera-
ture. Finally, the future-projected temperature-based
hotspot map is developed for the country. The following
sections explain the aforesaid steps in the methodology
in detail.

3.1 | Regridding and bias correction of
future-simulated temperature data
from GCMs

Bilinear interpolation, a common regridding technique,
is used to overcome the disparity between the spatial res-
olutions of the 14 CMIP6-GCMs (Table 1). The simulated
data from all 14 GCMs are regridded to the common res-
olution of 1.0� latitude × 1.0� longitude, same as that of
IMD data.

Although the GCM outputs are frequently used for
various impact assessment studies, they most commonly
suffer from the presence of a significant amount of sys-
tematic bias due to their coarse resolution or model
parameterizations (Ashfaq et al., 2017; Mishra
et al., 2014), which in turn limits their applicability for
local or regional scale research. Towards this, a widely
used bias-correction method, named empirical quantile
mapping (EQM), is adopted in this study to correct the
bias in GCM-simulated temperature values—both maxi-
mum and minimum. Generally in quantile mapping
(QM) methods, the aim is to find a suitable statistical
transformation function (f ) that maps the raw model out-
put to a new distribution such that the resulting

distribution matches that of observations xobsð Þ. It can be
mathematically expressed as (Piani et al., 2010)

xbcm = f xrawm

� �
, ð1Þ

where xrawm is the raw model output and xbcm is the bias-
corrected model output. If the statistical distribution of
xrawm and xobs are known, the Equation (1) can be rewrit-
ten as

xbcm=F−1
obs Fraw

m xrawm

� �� �
, ð2Þ

where Fraw
m and Fobs are the cumulative distribution func-

tions (CDFs) of the raw model output (xrawm ) and observa-
tions (xobs), respectively. In the case of EQM, instead of
assuming any parametric distributions, empirical CDFs
are estimated directly from the data and used in
Equation (2). Thus, the method becomes free from any
parametric assumption, and hence is expected to yield
better results (Gudmundsson et al., 2012).

3.2 | Spatiotemporal analysis of future
changes in temperature

Owing to the diverse landscape of India, a two-way
decomposition—spatially and temporally, is done in this
study to capture and interpret the true changing scenario
of temperature in the future across India. Temporally,
the entire year is divided into four different seasons:
(i) summer (March–April–May), (ii) monsoon (June–
July–August–September), (iii) postmonsoon (October–
November–December) and (iv) winter (January–
February). In India, mostly hot and dry weather prevails
during the summer season, with few occurrences of local-
ized heatwave incidents, as well as thunderstorms. It is
followed by a 4-month-long monsoon season, which
is initiated by the entry of humid southwesterly monsoon
wind causing a huge amount of rainfall (almost 70% of
the annual rainfall) for most parts of the country. During
the postmonsoon season, a different monsoon cycle,
known as the northeast or “retreating” monsoon, brings
cool, dry and dense air masses to large parts of India.
Finally, the cold and dry winter season comes with very
less amount of precipitation across the country.

Spatially, we consider seven different regions in
India, by grouping its states and union territories (UTs)
based on their geographical location, as shown in
Figure 1. Table 2 summarizes this regionalisation, for
example, the “west” region is predominantly formed by
Rajasthan and Gujrat—generally characterized by very
hot summer. Likewise, five states—Karnataka, Kerala,
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Andhra Pradesh, Telangana and Tamil Nadu—forms the
“south” region, which experiences low variability of tem-
perature throughout the year, with very warm winter. It

also has the “J&K” region with the newly formed UTs
Jammu-Kashmir and Ladakh in the northernmost part of
the country, where the climatology is predominantly
cold. Similarly, other regions such as “north,” “central,”
“east” and “northeast” can be identified from Figure 1 or
Table 2 with varying pattern of temperature.

Now, using this spatial and temporal decomposition,
we perform three different sets of analysis. In the first set
of analyses, the expected changes in temperature at
annual scale are explored. The likely changes in seasonal
variation of temperature over future are investigated in
the second set of analyses. And, the third set of analyses is
designed to capture the projected changes in extreme tem-
perature over the future. Here, 95th percentile is consid-
ered as a measure of extremes. It must be noted here that
all the changes are estimated for maximum, minimum
and average temperature and expressed in terms of abso-
lute changes (i.e., the changes in magnitude) w.r.t. the
base period 1981–2010. Additionally, trend analyses are
also performed to identify the places with the
statistically significant trend and its magnitude. The
Mann–Kendall test at 5% significance level is performed
to detect the significant trend, and Sen's slope method
(Sen, 1968) is used to evaluate the magnitude of the trend.

FIGURE 1 Study area map: Entire Indian Mainland and her present states and union territories, grouped into seven different zones

based on their geographical locations—West, North, Central, South, East, Northeast and Jammu & Kashmir (J&K). All the regions have

different pattern of temperature variation over the months. [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Details of seven regions of India, considered in this

study.

S. No.
Name of
the region

States/Union Territories (UTs) in
Indian mainland

1 West Rajasthan, Gujrat, Dadra and Nagar
Haveli, and Daman and Diu

2 North Uttar Pradesh, Delhi, Punjab, Haryana,
Chandigarh, Himachal Pradesh

3 Central Maharashtra, Madhya Pradesh, Goa,
Chhattisgarh

4 South Karnataka, Kerala, Andhra Pradesh,
Telangana, Tamil Nadu and
Puducherry

5 East West Bengal, Odisha, Jharkhand, Bihar,
Sikkim

6 Northeast Assam, Meghalaya, Arunachal Pradesh,
Nagaland, Manipur, Mizoram, Tripura

7 J&K Jammu-Kashmir and Ladakh
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3.3 | Identification of temperature-based
climate changes hotspots

In this paper, we employ a climate response-based tech-
nique to identify the potential “climate change-induced
temperature-based hotspots” in the future across India.
According to this approach, a hotspot is an area where
specific climate variables—in this case, temperature—
show particularly pronounced “response” to a particular
scenario of global climate change (Sarkar et al., 2023).
“Response” in this context refers to the changes in vari-
ous attributes of temperature between the baseline
(1981–2010) and future periods. To this end, we utilize
the concept of standard Euclidean distance (SED) to
define a new and more informative index, henceforth
named as “Temperature-based Hotspot Index (THIn)”
which encapsulates the total change in multidimensional
temperature characteristics including its mean, variabil-
ity and extremes. Mathematically, it can be expressed as

THIn=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNΔ

i=1

XNS

j=1

δij
max δij

�� ��� �
 !2

,

vuut ð3Þ

where δij is the ith temperature change indicator for the
jth season at each grid point. Here, we consider totally
seven temperature change indicators (thus, NΔ=7) for
four seasons separately: summer, monsoon, postmonsoon
and winter (so, NS=4). These seven indicators include
(i) change in mean temperature (ΔT), (ii) change in the
interannual coefficient of variation of the detrended tem-
perature (ΔTvar), (iii) change in the extreme (95th percen-
tile) temperature (ΔTex), (iv) frequency of hotter seasons,
that is, seasons with higher than the maximum tempera-
ture in the base period (fhot), (v) increase in average tem-
perature in the hotter seasons w.r.t. the maximum in the
base period (ΔTfhot), (vi) frequency of cooler seasons, that
is, seasons with lower than the minimum temperature in
the base period (fcool), (vii) decrease in average tempera-
ture in the cooler seasons w.r.t. the minimum
temperature in the base period (ΔTfcool).

Compared to some other comparable indices used in
earlier studies, such as Diffenbaugh and Giorgi (2012)
and Turco et al. (2015), this new index THIn takes into
account some additional temperature change indicators
(δ) such as ΔTex, ΔTfhot and ΔTfcool, and hence, presents
a more inclusive and informative metric of changing
characteristics of temperature. For instance, ΔTex con-
siders the changes in the level of extreme temperature.
On the other hand, although fhot and fcool assess the fre-
quency of hotter or cooler seasons in the future, the
severity perspective still remains absent, that is, by what
extent the seasons will be hotter or cooler w.r.t. the base

period. The present study, therefore, includes ΔTfhot

(ΔTfcool), which denotes a change in average temperature
above (below) the maximum (minimum) temperature in
the base period. Thus, the magnitude, frequency and
severity of extreme temperature all are taken care of by
the additional inclusion of these three extra indicators.

Therefore, consideration of all these seven tempera-
ture change indicators over four seasons in a year enables
to encapsulate all important statistical measures of
changing pattern of temperature—mean, variability and
extremes. Moreover, in case of extremes, both hot
and cold extremes are considered along with its magni-
tude, frequency and severity of occurrences. Consider-
ation of all these attributes helps us to formulate a
comprehensive, inclusive and holistic index THIn to
quantify the changing pattern of temperature. However,
as expected, different change indicators will have distinct
value ranges, which need to be rescaled to a uniform
range before summing up to determine THIn, as depicted
in Equation (3). This is accomplished by dividing each
change indicator by its highest absolute value (maxjδijj)
across the study area. In order to make THIn a relative
metric of aggregated temperature changes that can be
directly compared between any regions within the study
area, forcing pathways and future periods, we rescaled
each indicator of both the scenarios and periods using
the maximum value in the far-future period under the
highest forcing (i.e., SSP585) across the study area. Over-
all considering seven temperature change indicators for
four different seasons, we get a total of 28 dimensions at
each grid point, which limits the values of THIn between
zero and

ffiffiffiffiffi
28

p
=5:29. However, it must be noted that simi-

lar to other earlier indices, the THIn is also a comparative
index, which means a small THIn value does not neces-
sarily imply a small absolute change, but only a small cli-
mate response compared to other places within the study
area. Moreover, from Equation (3) it is evident that this
THIn index is bi-directional, that is, the index cannot dif-
ferentiate between a place with a strong increase in tem-
perature and a place with a strong decrease in
temperature, and, designate them as equally problematic
under climate change.

4 | RESULTS AND DISCUSSION

4.1 | Efficacy of EQM method for bias
correction

As stated earlier, the present study employs the EQM
method to correct the daily-scale GCM-simulated maxi-
mum and minimum temperature w.r.t. IMD observed
maximum and minimum temperature data over a
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common historical period 1961–2014. The efficacy of the
EQM technique is examined by considering three
temperature-derived statistics for both Tmax and Tmin,
viz., (i) mean annual Tmax and Tmin, (ii) mean annual
95th percentile of Tmax and Tmin and (iii) monthly vari-
ation of both Tmax and Tmin. Needless to say, consider-
ation of all these variables will be sufficient enough to
assess the effectiveness of EQM in correcting bias in the
level of mean and extreme temperature, as well as
the monthly variation will help to confirm the correct-
ness of the seasonal pattern for both Tmax and Tmin.

The results for mean and extreme in terms of multi-
model ensemble (MME) mean are shown in Figure S1,
Supporting Information for both mean and extreme (95th
percentile) levels of Tmax and Tmin. It can be noticed
from the figure that, the GCMs mostly underestimate
(cold bias—shades of blue) Tmax in the coastal regions
and Himalayan belt, and overestimate (hot bias—shades
of red) in the central region. However, in the case of
Tmin, GCMs mostly overestimate the coastal and eastern
India and underestimate the Himalayan belt, along with
the western arid region (panel d). In the case of extremes,
the biases—both hot and cold, get even more pronounced
w.r.t. the observations, as evident from the figure (2nd
and 4th row). The bias-corrected data (panel c) on the
other hand, shows a noticeably improved agreement with
the observed data, resulting in nearly zero residual bias
(panel e) throughout India for both mean and extremes.
Thus the efficacy of the EQM method in debiasing the
raw Tmax and Tmin data from the GCM simulation is
established. Correspondingly, Figure S2 in Supporting
Information depicts remarkably good conformity
between the observed (black) and bias-corrected (blue)
monthly variation of Tmax and Tmin, averaged over the
entire Indian mainland. On the contrary, the perfor-
mance of multimodel raw GCM output (red) is quite poor
in capturing the month-wise variation of temperature
over India, even with a higher uncertainty range.

Additionally, we assessed the performance of each
individual model after bias correction, using root mean
square error (RMSE) and percentage absolute bias
(PBIAS) relative to the IMD observed Tmax data for the
common historical period (1961–2014). The results are
summarized in Figure S3, presenting both region-wise
averages and an all-India average across all 14 models.
Overall, after bias correction, all models exhibited reason-
ably good performance, with RMSE values below 0.9�C
and PBIAS values mostly less than 3% across all regions.
At all-India level, GCMs like BCC-CSM2-MR and EC-
Earth3-Veg demonstrated the best performance. In addi-
tion, models such as ACCESS-CM2, ACCESS-ESM1-5,
EC-Earth3, MPI-ESM1-2-HR and IITM also showed good
agreement with the observational data. On the other

hand, models like INM-CM4-8 and INM-CM5-0 had rela-
tively poorer performance. Region-wise analysis revealed
consistently good model performance over the central,
south, east and northeast regions of India, while the per-
formance in the J&K region was comparatively poorer
across most of the models. Nevertheless, the multimodel
average performance was notably strong, further affirm-
ing the effectiveness of the EQM bias-correction method
and hence it has been used to effectively debias the raw
GCM-simulated future temperature data from
14 CMIP6-GCMs, and used for subsequent analysis.

4.2 | Future-projected changes in
temperature across India

In this section, we present and discuss the expected
future changes in mean and extreme (95th percentile)
levels of maximum, minimum and average temperature
across India and its various regions. The results are suit-
ably interpreted at annual scale, as well as across four dif-
ferent seasons (viz., summer, monsoon, postmonsoon,
winter) through an aggregated multimodel analysis using
bias-corrected CMIP6-GCMs. The summary of this
assessment for all seasons, two emission scenarios (SSP
245 and 585) and two future periods (near- and far-future
periods) are provided both visually and quantitatively in
this section. Spatial variation of the expected changes and
underlying trends are presented in map format, along
with region-wise bar plots and time-series plots of the
multimodel ensemble (MME) means. The quantitative
outcome of this analysis in terms of MME mean changes
and its 95% confidence interval, averaged over the entire
India and its seven regions are also provided in tabular
format.

4.2.1 | Changes in temperature at the
annual scale

Overall, an increasing annual average temperature is pro-
jected across the country under both the future scenarios,
as can be seen from Figure 2 (first row)—which gets fur-
ther stronger in the far-future period under the highest
forcing scenario. Although this increasing pattern is true
for the entire Indian mainland, it is particularly promi-
nent in the northern and northwestern parts of the coun-
try. This continuously rising average temperature can
also be visualized and confirmed in Figure 3, which
depicts the all-India averaged contiguous time series and
associated model uncertainty (95% confidence interval).
Quantitatively the results are summarized in Table 3,
which depicts that on average the Indian mainland is
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FIGURE 2 MME mean projected changes in daily Tmax, Tavg and Tmin across different seasons over near- and far-future following

two scenarios—SSP245 and SSP585. [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 (a) MME mean annual time series plots of seasonal average temperature and its 95% confidence interval, averaged across

India over 1981–2100, and (b) underlying pdfs over near- and far-future period, following two scenarios considering all grid points across

India. [Colour figure can be viewed at wileyonlinelibrary.com]
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expected to be warmer by 3.34 ± 0.56�C in the far-future
period (2061–2100) following SSP585, relative to the
1981–2010 baseline. To be specific, the last decade (2091–
2100) will be hotter by more than 4�C under the highest
forcing scenario—which is a really alarming figure. Simi-
lar results have been reported in a recent study by Mishra
et al. (2020), where a different set of GCMs were used—
thereby ensuring robustness of the warming projections.
Although the degree of such widespread warming is com-
paratively lesser under the middle-of-the-road scenario
SSP245, still it projects a 1.92 ± 0.36�C warmer future
over the country w.r.t. to 1981–2010—which is definitely
higher than the target set by Paris Agreement. Unlike
SSP585, the annual average temperature does not show a
continuously steep increase throughout the century
under SSP245, rather it apparently stabilizes around the
2060s (see Figure 3). Moreover, the intermodel uncer-
tainty is comparatively narrower in the case of SSP245.
However, irrespective of the forcing scenario, the
increase in Tavg is mostly contributed by the Tmin, as
can be seen from Figure 5. Although the Tmax is also
increasing, but its degree of increase is comparatively
lesser than that of Tmin. For instance, when the
All-India average increase in Tmin is 3.78�C in the far-
future period (SSP585), the same for Tmax is 2.91�C—
approximately 1� lesser. This observation holds true for
all seven regions, except the J&K region in the north (not
shown visually), where the climatology is predominantly
cold with hilly terrain.

Even though entire India is showing a warmer
future, the degree of warming is not uniform across the
regions, as can be seen from Figure 4. The maximum
increase in average temperature (>4�C in far-future
period under SSP585) is projected in J&K region—the
northernmost part of India. Apart from that, the clima-
tologically hotter regions like the west and north region
also show a considerable amount of increase in annual
Tavg. On the contrary, the southern and eastern sides
of India exhibit a comparatively lesser extent of
increase. Notably, Srivastava et al. (2017), although
based on observational data, has previously identified
these same regions in India to have experienced the
most substantial temperature increases, thereby sug-
gesting a continuity of the warming trend from the past
into the future with a similar or potentially even higher
rate of increase. Likewise, Basha et al. (2017) also
reports a widespread warming across the country based
on multimodel CMIP5 projections through future.
Moreover, the increase in temperature gets more promi-
nent with the passage of time and particularly under
the higher forcing scenario. Detailed estimates regard-
ing future changes for all regions can be found in
Table S1 and Figures S4 and S5.

The results of trend analysis (Figure S6) also reveals a
few important insights about changing temperature pat-
tern across the country. The all-India average trend in
annual Tavg in the near-future period is expected to be
0.3 ± 0.07�C�decade−1 following the SSP245 scenario
from this multimodel analysis. The same following
SSP585 is expectedly higher, that is, 0.46 ± 0.08�C�
decade−1 over the country. However, in the far future,
the trend nearly halves (0.15 ± 0.05�C�decade−1) under
the SSP245 scenario, owing to the underlying assump-
tions of timely climatic protection measures under this
scenario. In contrast, the trend gets even stronger in the
far-future period, that is, 0.58 ± 0.11�C�decade−1 under
the most pessimistic scenario SSP585, indicating a poten-
tial linkage to increased anthropogenic activities. As
expected, the trend is not uniform across the country, as
can be seen from Figure S7 in Supplementary Informa-
tion. Along with the J&K portion, it is most pronounced
in the west, north and central parts of the country. Com-
paratively the trend is lesser in the southern peninsula,
the eastern and northeastern parts of India. Similar to
our earlier observation, here also the trend in annual
Tmin is always higher than that in annual Tmax for the
entire Indian mainland, except the J&K region.

4.2.2 | Changes in temperature at
seasonal scale

The next question arises, how the change in annual tem-
perature is distributed across four seasons—summer,
monsoon, postmonsoon and winter, in a year. Towards
this, a detailed season-specific projection of temperature
is also done and the results are presented in Figures 2
and 4, in terms of spatial distribution plots and bar plots
showing region-wise MME means. Overall we find that
this warming pattern persists more-or-less evenly over
the seasons. However, the contribution from winter
remains maximum for most parts of the country, fol-
lowed by the postmonsoon season. Whereas, the contri-
bution from the monsoon season remains the least
(Figure 5). For instance, the average winter temperature
all over India is projected to increase by 3.87 ± 0.54�C in
the far-future period under SSP585. The same for post-
monsoon is 3.54 ± 0.5�C, followed by summer where a
warming of 3.40 ± 0.61�C is expected, and lastly the least
increase, although substantial enough, is found for mon-
soon, that is, 2.89 ± 0.74�C. Interestingly, the
intermodel uncertainty range is highest in case of the
monsoon session, which is also evident from the time
series plots (Figure 3). An analogous finding of least
changes in monsoon temperature is also reported by
Salunke et al. (2023) in a recent study, which utilizes data
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from a different source, namely, the national aeronautics
and space administration (NASA) earth exchange global
daily downscaled projections (NEX-GDDP). Moreover

from Figure 3, we can observe a clear future shift in the
underlying probability density functions (pdfs) of Tavg
over different seasons. These pdfs are developed

FIGURE 4 HPZ-wise MME mean changes in (a) maximum, (b) average and (c) minimum temperature across different seasons over

future following two scenarios. [Colour figure can be viewed at wileyonlinelibrary.com]
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considering all the grid points across India, and hence
depicts the spatial distribution of temperature over the
country. As expected from our earlier outcome, the shift
becomes more prominent under the SSP585 scenario and
far-future period. Another interesting observation from
these plots are, unlike the summer and monsoon season,
the pdf for postmonsoon, particularly for winter season is
bimodal in nature. This arises due to relatively diverse
spatial distribution of winter temperature across India—
where the most part in northern half experiences a win-
ter temperature around 18�C, an almost equally signifi-
cant part in southern half experiences a comparatively
higher temperature around 22�C in winter. On the other
hand, except the J&K region, the summer and monsoon
temperature varies over a smaller range, resulting in a
single-mode distribution. This can be further confirmed
form Figures S4 and S5, where fairly higher variability
(spatial) can be seen for winter and postmonsoon temper-
ature, as compared to summer or monsoon temperature
among the regions.

In general, the observations of warmer winter prevail
for all regions of India, except the J&K portion, where
postmonsoon session shows the highest warming, fol-
lowed by winter. The general spatial pattern of the warm-
ing is also fairly similar across the seasons. The
maximum amount of increase is projected mostly in
the northern part of the country, spanning from north-
western states like Gujrat and Rajasthan to north-central
India and the sub-Himalayan belt, in other words the
west and north regions of India. On the other hand,
the southern and eastern part of India along the eastern
coast consistently shows comparatively lesser warming
than the rest of the country. As expected, a similar spatio-
temporal pattern is also revealed by the trend analysis
over the seasons—depicting a higher trend in winter and
across the west, north and J&K regions of India. For
instance, when the winter Tavg is showing a trend of
0.36 (0.54) �C�decade−1 following SSP245 (585), the same
for monsoon is only 0.25 (0.39) �C�decade−1 in the near-
future period.

FIGURE 5 Seasonal comparison of future MME mean changes in maximum, minimum and average temperature following (a) SSP245

and (b) SSP585 scenario. For both the cases, highest contribution can be seen from winter, and lowest from monsoon season. [Colour figure

can be viewed at wileyonlinelibrary.com]
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The seasonal variation of increased temperature is also
reflected in Figure 6, which shows the MME mean
monthly cycle of average temperature over future periods
across India and its regions following two scenarios. This
figures nicely depicts the diverse pattern of temperature
variation over different regions of India. For some regions,
single-peak variation of monthly temperature can be visi-
ble with peak around the summer/monsoon season, for
example, north, northeast and J&K regions. Additionally,
another minor peak around postmonsoon can also be visi-
ble for some regions such as south and central India. Pre-
serving this general pattern of temperature variation, a
common observation from all the plots, is the unequivocal
warming over all months, which gets more intense with
time, and under the higher forcing scenario.

4.2.3 | Changes in the 95th percentile
(extreme) of average temperature

Similar to the changes in mean levels of Tmax, Tavg and
Tmin, detailed analysis is carried out for extreme levels
as well. Here, only the 95th percentile of Tmax, Tavg and
Tmin is considered as the measure of extreme tempera-
ture. Quantitative outcome of the analysis at annual scale

is presented in Table S2. Overall it is observed that the
increase in extreme temperature will be almost similar to
or even stronger than that of mean temperature. For
instance, the 95th percentile of annual Tavg is expected
to increase by 3.56 ± 0.83�C in the far-future period
(SSP585), whereas the same for mean annual Tavg is
3.34 ± 0.56�C. However, the spatial distribution of
changes broadly remains similar to that of the mean, that
is, a comparatively higher level of increase over northern
and western regions, and a lower level of increase in east-
ern, northeastern and southern India. In the case of
extremes also, the contribution from Tmin is higher than
Tmax towards overall changes in Tavg, except the J&K
region, the northernmost part of the country. However,
the seasonal contribution of changes in extreme tempera-
ture is a bit different from the mean temperature. At the
all-India level, although the contribution from winter
remains highest, the contribution from monsoon is
almost at par with winter, which was least in the case of
mean temperature. This can be explained by the high
uncertainty band of the future projection of monsoon
Tavg (Figure 3). Similar observations hold for other
regions as well.

Overall in a nutshell, the extreme temperature over
all the seasons is projected to increase across India at an

FIGURE 6 MME mean changes in monthly variation of average temperature, averaged across entire India and its seven HPZs over

future following two scenarios. [Colour figure can be viewed at wileyonlinelibrary.com]
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almost similar rate as of mean or sometimes even more
pronounced rate, which is definitely a bigger point of
concern due to its direct association with heatwaves and
other related hazards. For instance, a recent study by
Nandi and Swain (2022) has indicated an escalation in
the frequency and duration of heatwaves in three densely
populated cities in southern India, which can be ascribed
to the projected rise in extreme temperatures. Similarly,
findings by Rao et al. (2023) have revealed an upward
trend in various heatwave attributes, predominantly in
India's northwest, central and south peninsular regions—
precisely where our present study also anticipates
increased extreme temperature conditions. Therefore
along with the changes in mean temperature, the
changes in extreme temperature holds paramount signifi-
cance due to their manifold direct and indirect
consequences.

4.3 | Temperature-based climate
changes hotspots across India over future

As stated in section 3.3, seven temperature change indi-
cators are assessed across the country and rescaled for
each of the 14 CMIP6-GCMs for all four seasons. The
MME mean is then calculated, followed by the determi-
nation of THIn throughout the future periods following
two forcing scenarios. The final result is shown in
Figure 7 in the form of the spatial distribution of THIn or
in other words, future temperature change exposure
or susceptibility maps over near- and far-future periods,
under SSP245 and SSP585. The places with high values of
THIn indicate high exposure to temperature changes and

vice versa. Thus the dominant changing pattern in tem-
perature with high values of THIn appears in the north-
west, north-central and northeast parts of the country
towards EOC under both scenarios. The western coast of
India, located on the windward side of the Western
Ghats, is also showing substantially high values of THIn.
On the other hand, eastern and southern part of the
country, particularly along the eastern/Coromandel
coast, show comparatively lesser exposure to temperature
changes. However, all these less exposed places also tends
to exhibit an increase in THIn over time, indicating
increasing exposure through the future.

In general, an increase in THIn values is projected
across the country with the passage of time and under
the worst emission scenario SSP585—very similar to our
earlier observations on changes in annual or seasonal
temperature. Therefore, considering the THIn map over
the far-future period and SSP585, the temperature-based
climate change hotspots are identified over India. To this
end, firstly a nonparametric Kernel pdf of THIn is devel-
oped for all grid points across India for the far-future
period (2061–2100) and SSP585 scenario. Then the area
under the pdf is split into four different parts based on
25th, 50th and 75th percentile of THIn values (as shown
in Figure 8c), and accordingly the entire India mainland
is categorized into four susceptibility zones of varying
susceptibility—(i) severely susceptible zone (red zone):
THIn ≥ THIn75, (ii) highly susceptible zone (orange
zone): THIn50 ≤ THIn < THIn75, (iii) moderately suscep-
tible zone (yellow zone): THIn25 ≤ THIn < THIn50, and
(iv) less susceptible zone (green zone): THIn < THIn25.
Out of these four zones, the first two zones (red and
orange zones) are collectively identified as “temperature-
based climate change hotspots” in this study. The finally
obtained zoned hotspot map is shown in Figure 8b. Fur-
ther analysis on the spatial distribution of these hotspots
across seven regions of India, as shown in Figure 8e,
reveals that the J&K region have the maximum (100%)
spatial extent of hotspots, followed by west and north
regions. However, it is worthwhile to mention here that,
the J&K portion is predominantly a cold region. Thus,
even if it is highly exposed to changing climate, the pro-
jected temperature in absolute terms will be substantially
lesser than the climatologically warmer regions like west
and north India, where more than three-fourth part area
is exposed to high to severe changes in temperature over
the future—a really alarming figure. Likewise more than
50% area of northeast India is also identified as tempera-
ture change hotspots in the future. On the other hand,
expectedly, the south, east and central regions has the
least share of hotspots.

Further state-wise analysis (Figure 9) reveals that,
along with the UTs—Jammu-Kashmir and Ladakh, the

FIGURE 7 Temporal evolution of temperature-based climate

changes hotspots across India over future following two scenarios.

[Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 8 Development of temperature changes hotspot map for India in far-future under SSP585. (a) Actual spatial distribution of

THIn in far-future under SSP585, (b) transformed hotspot map having four zones, using (c) the pdf of THIn across India. (c) Average values

of THIn across HPZs and (d) % of spatial extent under all four colour zones across HPZs. [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 9 State-wise average THIn values across India, arranged in decreasing order of magnitudes. [Colour figure can be viewed at

wileyonlinelibrary.com]
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northern and western states like Gujrat, Rajasthan,
Delhi, Punjab, Haryana, Uttar Pradesh, and northeastern
states like Arunachal Pradesh show high values of spa-
tially averaged THIn indicating a substantial degree of
temperature changes in the future. On the other hand,
eastern and southern states such as West Bengal, Odisha,
Andhra Pradesh and Tamil Nadu show comparatively
lower values of THIn, depicting a comparatively lesser
exposure to temperature changes.

Although the hotspot patterns appear to be robust
under various emission scenarios, the results are particu-
larly prone to some sources of uncertainty. For example,
the number of GCMs and their realizations considered in
the analysis may not be sufficient to capture the full
range of uncertainty from the perspective of global cli-
mate sensitivity and regional response to global warming,
despite using state-of-the-art CMIP6-GCM (Taylor
et al., 2012). Thus even when the MME mean is taken
into account, the final outcomes may be sensitive to the
number of models and their realizations considered.
Regardless, the broad implications of this study's findings
cannot be ignored in terms of future preparedness and
policy formulation.

5 | SUMMERY AND CONCLUSIONS

A new and more inclusive index named Temperature
based Hotspot Index (THIn) is proposed and utilized in
this study to identify the temperature change hotspots,
that is, the places with the most pronounced and robust
exposure to temperature changes in the future across the
Indian mainland. This multimodel multiscenario analysis
is carried out using bias-corrected future-simulated tem-
perature data from 14 state-of-the-art GCMs, participat-
ing in CMIP6, under two possible climate change
scenarios—SSP245 and SSP585. Moreover, an in-depth
spatiotemporal analysis of the future-projected tempera-
ture (maximum, minimum and average) is also carried
out to understand the underlying mechanisms of these
hotspot regions. Overall, the key findings of this study
are listed below.

1. In general, a warmer future is expected over the
Indian mainland with approximately 1.92 ± 0.36�C
(SSP245) to 3.34 ± 0.56�C (SSP585) increase in aver-
age annual temperature w.r.t. the base period 1981–
2010 across various models—which is much higher
than the international target of 1.5 or 2�C above the
pre-industrial level towards the end of this century.

2. However, this unequivocal pattern of rising tempera-
ture is not spread uniformly across India. Places like

north, central, western and J&K portion of India pro-
ject as high as �4�C increase in annual average tem-
perature, whereas the eastern and southern parts of
the country exhibits comparatively smaller increase
(<3�C). Similar increasing spatiotemporal pattern is
reported for the extreme (95th percentile) temperature
as well, which can be even more crucial considering
its potentially detrimental effects on society.

3. Increase in average temperature is mostly dominated
by the increase in minimum temperature, as com-
pared to the increase in maximum temperature—
holds true for all seasons. Such warming pattern
remains persistent throughout the future and gets
more intense with time, particularly under the higher
emission scenario—indicating a potential impact of
increased anthropogenic activities.

4. Overall, based on these future projected changes in
various attributes of average temperature, such as
mean, variability and extremes (magnitude, frequency
and severity), the THIn is evaluated and accordingly
entire Indian mainland is categorized into four zones
of varying susceptibility—red, orange, yellow and
green. Out of these four colour-coded regions, the red-
and orange-coloured zones together are identified as
temperature-based hotspots.

5. Region-wise analysis reveals that west, north, and
J&K regions of India are most extensively occupied by
the temperature changes hotspots, followed by north-
east India. More than half of their areal extent is
exposed to high to severe changes in temperature over
future. On the other hand, southern and eastern part
of India are projected to have the lowest share (even
less than 10% of their area) of temperature-based
hotspots.

Overall, the future-projected warming scenario over
India is indeed alarming, which again underlines the
necessity of suitable adaptation and mitigation strategies
in sufficient advance, particularly for a developing coun-
try like India. We expect the findings of this study includ-
ing the temperature-based colour-coded hotspot map for
India will serve as a useful piece of information for the
end users, as well as policymakers, to plan suitable
region-specific management and adaptation strategies to
combat the worst-case climate change scenario.
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ENDNOTE
1 In order to maintain consistency in the analysis, data from all
14 GCMs are obtained for the “r1i1p1f1” variant level, which
stands for the ensemble combination of 1st realization (r), 1st ini-
tialization (i), 1st physics (p) and 1st forcing (f ).
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