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Abstract

Long-lead prediction of summer monsoon rainfall in India is a challenging

task, especially at finer spatial scale. The spatial variability in the long-lead

(one or two season in advance) prediction plays a vital role in planning of

hydrological and agricultural aspects of the society. One of the major issues in

this field is the climate-induced time-varying characteristics (non-stationarity)

that lead to a deteriorating model performance as the time passes by after the

model calibration. This study proposes the use of time-varying approaches in

order to check such deteriorating performance over time. Considering the

time-varying association between Indian summer monsoon rainfall and large-

scale climatic indices (e.g., El Niño-Southern Oscillation, Equatorial Indian

Ocean Oscillation, North Atlantic Oscillation, Pacific Decadal Oscillation, and

El Niño Modoki Index), a time-varying approach based on hybrid graphical

modelling (GM) and vine copula (GM-Copula) is demonstrated for rainfall pre-

diction over five homogeneous monsoon regions (HMRs) in India. The time-

varying characteristic is imparted in the GM-Copula approach by recursively

updating the model inputs and the corresponding model parameters at a regu-

lar time interval (τ) through recalibration. In the time-varying framework, the

parameter τ is referred to as optimum recurrence interval of model rec-

alibration and it is identified as 5 years for the regions with moderate rainfall

and 3 years for regions with above and below moderate rainfall. The developed

time-varying approach is able to yield reasonably good prediction performance

(mean absolute percentage error being within 4–10% across HMRs) with a pre-

diction lead time of 5 months. HMR-wise seasonal rainfall predictions with

such quality and lead time are expected to be highly useful.
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1 | INTRODUCTION

In India, annual rainfall is largely accounted from the
southwest monsoon season, occurring during the months
of June, July, August and September, also referred to as
summer monsoon rainfall (Wang et al., 2009; Singh et
al., 2012). The spatiotemporal variability in the Indian
Summer Monsoon Rainfall (ISMR) is linked with the
atmospheric circulation patterns through hydroclimatic
teleconnection (Kahya and Dracup, 1993; Ashok et
al., 2001, 2004; Maity and Nagesh, 2008). The important
teleconnection patterns known to influence the variabil-
ity of summer monsoon rainfall are El Niño-Southern
Oscillation (ENSO), Equatorial Indian Ocean Oscillation
(EQUINOO), North Atlantic Oscillation (NAO), Pacific
Decadal Oscillation (PDO), El Niño Modoki Index (EMI)
to name a few (Nair et al., 2018). These large-scale indices
are associated with ISMR at lead times of months to sea-
sons and hence, used for long-range prediction of ISMR.
However, the nature of association between different
large-scale climatic indices and monsoon rainfall varies
with both space and time. Therefore, information on the
temporal evolution of large-scale indices and their impact
may provide a better understanding of the spatiotemporal
variability in the summer monsoon rainfall. This is the
focus of this study.

Several observational and modelling studies
established the teleconnection pattern between the large-
scale indices and the summer monsoon rainfall (Pant
and Parthasarathy, 1981; Rasmusson and Carpenter, 1983;
Ju and Slingo, 1995; Meehl and Arblaster, 1998; Kumar et
al., 1999). ENSO mode, for instance, is identified as the
third largest component of Asian summer monsoon vari-
ations. Regarding the teleconnection mechanism
between ISMR and ENSO events, Rasmusson and Car-
penter (1983) concluded that ‘episodes of above normal
sea surface temperatures (SSTs) over the Eastern and
Central Equatorial Pacific are associated with a low
Southern Oscillation Index, that is, negative pressure
anomalies in the Southeast Pacific and positive anomalies
over the Indian Ocean region, weaker than normal
southwest monsoon over the Arabian Sea, and below
normal rainfall over India’. The inverse relationship
between ISMR and ENSO is well documented (Kumar et
al., 1999); however, the relationship is modulated on
decadal timescale due to the influence of other causative
climate forcing like Atlantic Multidecadal Oscillation (Lu
et al., 2006; Kucharski et al., 2009; Chen et al., 2010; Ault
et al., 2013; Lewis and Legrande, 2015; Brown et
al., 2016) and zonal shifts in ENSO's centre from Eastern
Pacific to Central Pacific (Kumar et al., 2006; Fan et
al., 2017). Temporal shifts in ENSO have also been stud-
ied across three periodicity bands, 2–3 years (near

biennial), 3–8 years (classical ENSO) and 8–25 years
(decadal), and the former shows increased variability in
Niño3.4 index for the recent years (Hope et al., 2017).
The change in ENSO teleconnections is largely attribut-
able to ENSO variance itself (Chowdary et al., 2012),
which shows a change in the 2–3 years' band.

Another driver of rainfall variability in this region is
EQUINOO, which is the atmospheric component of
Indian Ocean Dipole (IOD) mode (Kumar et al., 2007;
Rajeevan et al., 2007; Francis and Gadgil, 2010; Charlotte
and Mathew, 2012). During the summer monsoon sea-
son, the convection over the eastern part of the Equato-
rial Indian Ocean is negatively correlated to that over the
western part of the Equatorial Indian Ocean. When the
convection is enhanced (suppressed) over the western
part of the Equatorial Indian Ocean, the anomalous sur-
face pressure gradient, high to low, is towards the west
(east) so that the anomalous surface wind along the equa-
tor becomes easterly (westerly). The oscillation between
these two states is considered as the EQUINOO index.
Recent meteorological observations indicate a strong link
between ISMR and EQUINOO due to the association of
large-scale monsoon rainfall over the Indian region with
the northward propagation of convective system gener-
ated over the Indian Ocean region (Gadgil et al., 2004;
Gadgil and Gadgil, 2006). Furthermore, the two domi-
nant modes ENSO and IOD are correlated and the com-
plex evolution of the IOD–ENSO relationship is majorly
controlled by their variability at three dominant time-
scales of 1.5, 3 and 24 years (Sang et al., 2018). Moreover,
it is also observed that ENSO–ISMR relationship is modi-
fied by the influence of IOD which is in-turn associated
with ENSO.

Another climatic index associated with ISMR is NAO,
which is a temporal fluctuation of the zonal wind
strength across the Atlantic Ocean due to pressure varia-
tions in the subtropical anticyclone belt and in the subpo-
lar low near Iceland. Dugam et al. (1997) gave details on
studies on the association between Northern Hemi-
spheric pressure anomalies and Indian summer mon-
soon. Strong negative (positive) NAO events, through
hemispheric change in winds and storm tracks, lead to
tropospheric temperature anomalies over Eurasia. These
anomalies decrease (increase) meridional gradient of tro-
pospheric temperature, resulting in below (above) normal
summer monsoon rainfall in India (Goswami et
al., 2006). Temporal changes are found in the means and
variability of the NAO index. For instance, there has been
a sustained significant decrease in the summer NAO
since the 1990s and, a striking increase in variability of
the winter NAO (Hanna et al., 2015).

PDO is another large-scale, strongly associated cli-
matic index that modulates the ISMR–ENSO relation.
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The mechanism by which the PDO could affect the mon-
soon was hypothesized by Krishnamurthy and
Krishnamurthy (2014). According to them, the pressure
change associated with the SST footprint of warm phase
of PDO affects the equatorial trade winds, which is the
part of the equatorial Walker circulation. As a result, in
the Central Pacific, an enhanced ascending motion and
over the maritime continent a descending motion is
observed. This is sustained by the ascending motion over
the Equatorial Indian Ocean and leads to drought condi-
tion over the Indian region through the descending Had-
ley branch. Thereby, PDO index exhibits significant
negative correlation with ISMR, similar to the relation
between ISMR and ENSO. The warm (cold) phases of
PDO are related to droughts (floods) over India. Studies
have also identified a change in the zonal propagation of
ENSO-related SST anomaly from the end of 1970s which
coincides with the late 1970s switch from cold to warm
phase in the PDO states (Mantua et al., 1997; Mantua
and Hare, 2002). It is also observed that ENSO-related
SST anomaly preferably evolves to the east (west) during
the warm (cold) phase of the PDO (Antico and
Barros, 2017).

Lastly, EMI, warming in the Central Pacific (~Nino4
region) flanked by colder SST anomalies to the west and
east, is considered to modulate the variability of ISMR as
well. A double-cell pattern during El Niño Modoki shows
a marked difference from the single-cell pattern in the
typical El Niño case. The impacts of the El Niño Modoki
on the climate of the surrounding subtropical regions
may be attributed to the Rossby waves generated by the
diabatic heating in the central tropical Pacific. The
impact of ENSO events on India is seen to be limited and
confined to Eastern Central India. In comparison, the
impact from El Niño Modoki is seen over a larger area in
Southern India (Nair et al., 2018). Thereby, it is evident
that the large-scale climatic indices show temporal vari-
ability with a space and time-varying nature of interac-
tion among the large-scale indices, which vastly impacts
the rainfall pattern in the Indian region.

Another important aspect is that the summer mon-
soon rainfall at regional scale over the Indian domain
responds to the above-mentioned large-scale climatic
indices in complex ways. Dutta and Maity (2018) studied
the time-varying association among two large-scale cli-
matic indices and ISMR and concluded the need to carry
out a detailed analysis at finer spatial scale with a larger
pool of large-scale climatic indices. Several other studies
have been performed on Indian rainfall; however, it is
difficult to treat India as a single unit for interpreting the
association with the large-scale indices, as the association
have seasonal and regional differences (Maity and
Nagesh, 2006; Vathsala and Koolagudi, 2017). For

instance, highest correlation, with respect to ENSO and
EQUINOO (atmospheric component of IOD), was
observed for Central Northeast India and West Central
India followed by northeast and northwest regions of
India and least for Peninsular India (Kashid and
Maity, 2012). The influence of ENSO is distributed more
widely as compared to IOD, which mainly influences the
mean position of the monsoon trough over India. Most of
these regions are significantly associated with IOD; how-
ever, the effects are opposite in nature from region to
region (Ashok and Saji, 2007). It is further observed that
interannual variability in the summer monsoon rainfall
in peninsular and northwest regions of India is better
explained by NAO index (Dugam et al., 1997). Nair et
al. (2018) showed that the summer monsoon rainfall in
Northeast Indian region is controlled by climatic indices
like NAO, and the nature of contribution of the different
climatic indices is in general opposite as compared to the
other regions. Moreover, the northeast (heavy rainfall
region) and west central part of India show a strong asso-
ciation with PDO index; however, summer monsoon
rainfall over Central Northeast India shows weak associ-
ated (Sen, 2011). Different statistical, machine learning
and dynamic models have been used to make such infer-
ences. Methods like step-wise regression, canonical corre-
lation, artificial neural network and genetic
programming have also been utilized to develop predic-
tion models at finer spatial scale (Parthasarathy et
al., 1993; Kane, 2006; Ashok and Saji, 2007; Phatak et
al., 2011; Gadgil and Srinivasan, 2012; Kashid and
Maity, 2012; Singh et al., 2012; Guhathakurta et al., 2015;
Pattanaik et al., 2019). However, recent findings clearly
state that ISMR at regional scale is influenced by the
combined effect of large number of climatic indices (Nair
et al., 2018). Thereby, it is vital to identify the complex
association of the large-scale climatic indices and sum-
mer monsoon rainfall. However, limitations of the exis-
ting prediction models mostly lies in their inability to
consider the conditional independence structure among
the predictors and predictand that helps to identify and
ignore the redundant variables. Furthermore, these
models consider time-invariant inputs and model param-
eters, not taking into consideration the time variability in
the association of the large-scale climatic indices and
summer monsoon rainfall at regional scale. Addressing
these issues related to (a) complex temporal association
of the large-scale indices and summer monsoon rainfall
and (b) spatial variation in association and predictability
of summer monsoon rainfall forms the motivation of this
study.

The objective of this study is to analyse the spatial
variation in long-lead predictability of summer monsoon
rainfall by identifying the time-varying association
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between the large-scale climatic indices and rainfall over
homogeneous monsoon regions (HMRs) of India. A time-
varying approach based on hybrid graphical modelling
(GM) and vine copula (GM-Copula) (Dutta and
Maity, 2018), hereafter referred to as time-varying GM-
Copula model, has been utilized in this study. GM
approach is used to identify the complex association
among the variables as it provides the complete condi-
tional independence structure among the variables and
the parameters of the prediction model are obtained using
vine copula, which effectively considers the nonlinear
association among the variables. The model development
period is considered as a moving window, with step size of
τ and the model is recalibrated (in terms of model input
and parameters) in regular intervals to capture the time-
varying association among the large-scale indices and
ISMR. Furthermore, the results of the proposed time-vary-
ing model are compared to its time-invariant counterpart.

The prediction models are developed for each HMR
of India in order to assess the region-wise variation in
association with the large-scale climatic indices and to
improve the prediction performance at regional scale.
These regions are divided based on the similarity in rain-
fall characteristics and association of subdivisional mon-
soon rainfall with regional/global circulation parameters
(Parthasarathy et al., 1993), as per the specifications of
Indian Institute of Tropical Meteorology (IITM). Further
details are provided in Section 3.

2 | METHODOLOGY

The large-scale climatic indices used as the input vari-
ables for the long-lead prediction of summer monsoon
rainfall are ENSO, EQUINOO, NAO, PDO and EMI. Ini-
tially, all lags up to 15 months for each of the climatic
index have been considered and the best lag combination
is ascertained. Lag indicates the gap (number of months)
between input climatic indices and the starting month of
summer monsoon rainfall, that is, June. For example, for
summer monsoon rainfall (June to September) in 1998,
inputs with Lag 1 are from the month of May 1998 and
inputs with Lag 2 are from the month of April 1998 and
so on. Since a lag up to 15 months is sufficient to pick out
the best lags for the input variables, no further lags have
been considered. The lags beyond 15 months show insig-
nificant association with the summer monsoon rainfall.

2.1 | Model development

The methodological framework for development of a
time-varying GM-copula model includes two major

aspects: (a) development of the parsimonious (with opti-
mum number of inputs and parameters without
compromising the prediction performance) prediction
model using GM-Copula approach and (b) imparting the
time-varying characteristic by updating the inputs and
parameters of the model.

Addressing the first aspect, the prediction model is
developed by investigating the association among the pre-
dictors (large-scale climatic indices with several lags) and
predictand (summer monsoon rainfall) using the GM
approach. This approach provides a well-defined condi-
tional independence structure among the variables that
helps to assess the dependent (directly influencing), inde-
pendent (not influencing) and conditionally independent
(indirectly influencing) variables (Jordan, 2004; Ihler et
al., 2007; Whittaker, 2009; Dutta and Maity, 2018).
Thereby, the GM approach provides the dependencies
between the different lags of the large-scale climatic indi-
ces (input variables) and summer monsoon rainfall (tar-
get variable) as well as the dependencies among the
input variables. Next, discarding all the independent and
conditionally independent input variables with respect to
the target variable, the prediction model is developed
using C-Vine copula approach (Aas et al., 2009; Bauer et
al., 2012; Brechmann and Schepsmeier, 2013; Gómez et
al., 2017). Mathematical formulations used for develop-
ment of the model are provided in Appendix.

2.2 | Spatiotemporal variability

Addressing the second aspect, that is, in order to develop
the time-varying prediction model, the model needs to be
updated after regular time intervals. To ensure best possi-
ble prediction results, this time interval needs to be opti-
mized such that it should not be too long that misses the
temporal variation in association and too short that leads
to frequent updating (Dutta and Maity, 2018). For the
development of the proposed time-varying model, the
model development period is considered as a moving
window of 30 years and the immediately following n
years is considered as the testing period. For instance, the
first model development period is considered from 1901
to 1930 and the model testing period is from 1931 to
1931 + (n − 1). Thereby, the model developed consider-
ing the data for the first 30 years is validated considering
the data for the following n years. As the model is
updated after n years the next model development period
is shifted by n years. Thereby, the second model develop-
ment period is considered from 1901 + n to 1930 + n and
the model testing period is from (1930 + n) + 1 to
(1930 + n) + n. To identify the optimum recurrence
interval (ORI) of model recalibration (τ), that is, the
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optimum value of n or the step size of the moving devel-
opment period, the procedure is repeated for n = 1,
2…,10 years. The model performance during the entire
contiguous model testing periods, which is essentially the
entire period of 1931 to 2010, is evaluated for different
values of n to identify the value of τ. The value of n, for
which best performance is achieved, is selected as τ.

In order to study the spatial variation in predictability
using the time-varying GM-Copula model, the analysis is
carried out for five HMRs in India. These are northwest
(NW), central northeast (CNE), northeast (NE), west cen-
tral (WC), and peninsular (PE) (Figure 1). The time-vary-
ing GM-Copula model is developed for each of these
HMRs. The values of τ for each HMR are ascertained
separately.

2.3 | Benefit of considering multiple
large-scale climatic indices and time-
varying characteristics

Another time-varying GM-Copula model is developed
using a subset of the large-scale climatic indices, namely
ENSO and EQUINOO, two most widely associated cli-
matic indices to Indian summer monsoon rainfall. Com-
paring the prediction performance of the two models

(developed using two different sets of input variables)
helps to establish the contribution of other climatic indi-
ces, that is, EMI, NAO and PDO, which may vary from
region to region. The model output of both the models is
compared with its time-invariant counterpart (henceforth
referred to as the time-invariant model) for each region.
The procedure explained above remains same but only
one model is developed using 30-year data, and the devel-
oped prediction model is used for entire testing period
without imparting the time-varying characteristics,
explained before.

3 | DATA USED

Summer monsoon rainfall (June–September) data for
the aforementioned HMRs (Figure 1) are obtained from
IITM (https://www.tropmet.res.in/, accessed in July
2019). The summer monsoon rainfall is known to have
considerable spatial variability across India and there
are multiple meteorological subdivisions (total 36).
These subdivisions are proposed based on the local dis-
tribution characteristics of seasonal rainfall. Some of
the contiguous subdivisions are grouped based on the
rainfall characteristics and association with global/
regional circulation parameters to form the HMRs
(Parthasarathy et al., 1993). The monthly area weighted
rainfall series for each meteorological subdivision have
been prepared by assigning the district area as the
weight for each rain-gauge station in that subdivision.
Similarly assigning the subdivision area as the weight
to each of the subdivisions in the region, area weighted
monthly rainfall series are prepared for the HMRs of
India. The details on the evaluation of the monthly
time-series for the HMRs are available at https://
tropmet.res.in/Data%20Archival-51-Page (accessed in
July 2019). The cumulative seasonal rainfall (June–
September) is obtained by summing up the monthly
values for each of the HMRs.

The time period of the study is from 1901 to 2010 and
the data for the aforementioned large-scale climate indi-
ces are obtained for the given time period. SST, Sea Level
Pressure (SLP) and Zonal Wind data are obtained from
ERA-20C, a reanalysis product. ERA-20C is the first
atmospheric reanalysis of the 20th century (1900–2010)
of the European Centre for Medium-Range Weather
Forecast (www.ecmwf.int/en/forecasts/datasets/reanalysis-
datasets/era-20c). It is a coupled atmosphere/land surface/
ocean waves model used to reanalyze the weather, by
assimilating observations of surface pressure and surface
marine winds. ERA20C is the latest reanalysis product
spanning over a long time period, in comparison to the
other reanalysis products. Such a long time frame is

FIGURE 1 Map showing HMRs in India. These regions are

the grouped contiguous sub-divisions based on the rainfall

characteristics and association with global/regional circulation

parameters to form the HMRs [Colour figure can be viewed at

wileyonlinelibrary.com]
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beneficial in the proposed time-varying framework to
investigate time-varying characteristics of the relationship
as mentioned before.

The SLP and Zonal Wind data are utilized to derive
the large-scale climatic indices (hereafter, referred to as
D1). ENSO index is evaluated as the SST anomaly over
Niño3.4 region (120�–170�W, 5�S–5�N). EMI is derived
from the difference in area average SST anomalies in
the regions of 10�S–10�N and 165�E–140�W; 15�S–5�N
and 110�–70�W; and 10�S–20�N and 125�–145�E (Ashok
et al., 2007). PDO (Deser et al., 2016) is derived by evalu-
ating the leading Empirical Orthogonal Function (EOF)
of SST anomalies in the North Pacific basin (polewards
of 20�N). NAO (Hurrel et al., 2018) is derived by evalu-
ating the leading EOF of SLP anomalies over the Atlan-
tic sector, 20�–80�N, 90�W–40�E. Lastly, EQUINOO
(Gadgil et al., 2004) index is computed as the negative of
the zonal wind anomaly at surface in the Equatorial
Indian Ocean region (60�–90�E, 2.5�S–2.5�N). All the
series are checked for trend and, if present, it is
detrended. For instance, the rainfall series for the
regions of northeast, west central and peninsular
regions exhibit significant trend at 5% significance level,
which are detrended before analysis.

4 | RESULTS AND DISCUSSION

4.1 | Identification of the ORI of model
recalibration

In order to identify the ORI of model recalibration (τ),
the analysis is carried out for the values of n starting from
1 to 10 years and the predicted rainfall obtained using
the different values of n are compared. The range of 1 to
10 years is an initial guess assuming the value of τ will be
well within this range. Performance statistics used for
comparison of model performance are correlation coeffi-
cient (R), root mean square error (RMSE), Nash–Sutcliffe
model efficiency (NSE) coefficient, degree of agreement
(Dr) and coefficient of determination (R2). The above-
mentioned steps are repeated for each HMR as the values
of τ may vary from region to region based on the tempo-
ral association of rainfall with large-scale climatic indi-
ces. Results are shown in Figure 2. It is noticed that at
least four out of five performance statistics, if not all of
them, converge to the best performance for a particular
value of n in all the regions. The values of τ, identified for
each region, are also shown in Figure 2 by a rectangle.
These are identified as 5 years for CNE, PE and WC

FIGURE 2 Comparison of the

results obtained using different

values of n to select its optimum

value for all the HMRs. The value of

n that yields best performance,

reflected through most of the

performance statistics, is identified as

ORI of model recalibration (τ) and

highlighted by a rectangle. The value

of τ is 3 years for NE and NW and

5 years for CNE, PE and WC [Colour

figure can be viewed at

wileyonlinelibrary.com]

5930 DUTTA AND MAITY

http://wileyonlinelibrary.com


regions, and 3 years for NW and NE regions. Thus, initial
guess of 1–10 years was sufficient to capture the value of
τ. It is noted that the regions receiving either higher or

lower than average rainfall with high rainfall variability
have smaller values of τ. As the rainfall variability is
high, smaller values of τ are more effective to capture the
temporal variation in the association among the large-
scale indices and rainfall. Thereby, the prediction model
needs to be updated after every 3 or 5 years, depending
on the region, to appropriately capture the time variabil-
ity of association between the summer monsoon rainfall
and individual lags of the climatic indices.

4.2 | Temporal evolution of association
among climatic indices and rainfall

In case of 5 years ORI of model recalibration (regions
mentioned in Section 4.1), successive model development
(testing) periods are 1901–1930 (1931–1935), 1906–1935
(1936–1960), …, 1976–2005 (2006–2010), and in case of
3 years ORI of model recalibration (regions mentioned in
Section 4.1), the model development (testing) periods are
1901–1930 (1931–1933), 1904–1933 (1934–1936), …, 1979–
2008 (2009–2010). The conditional independence struc-
ture obtained for each development period (moving win-
dow) provides the time-varying association between the
different lags of the climatic indices and summer mon-
soon rainfall. The degree of association evaluated using
the edge strength can be used to examine the degree of
association between the variables. The temporal variation
in association of the large-scale climatic indices namely
ENSO, EQUINOO, EMI, NAO and PDO considering the
6th (December of previous year) to 15th (March of previ-
ous year) lags for the CNE region is shown as a typical
plot (Figure 3) along with the significance threshold. The
association at other lags (1–5 months) is found insignifi-
cant for all the regions, thereby excluded from the
illustration.

4.2.1 | CNE region

For the CNE region (Figures 3), the 11th, 12th and 13th
lags show increasing association starting from the first
model development period and shows the highest associ-
ation around the 1920s. November ENSO (from previous

FIGURE 3 Time-varying association between summer

monsoon rainfall (target variable) and different large-scale climatic

indices with different lags (input variables) for CNE region. The

value of τ identified for the region is 5 years based on which the

development periods are shown in the x-axis. The threshold value

of the edge strength is demarcated using a translucent horizontal

surface [Colour figure can be viewed at wileyonlinelibrary.com]
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year, that is, 7th lag) shows an increasing strength of
association starting from 1950s, till before 1970s. Gradu-
ally, the association becomes weaker around the 1970s
and 11th and 14th lags appear (edge strength above the
threshold value) with very strong association and the
edge strength keeps increasing till the last development
period. All the other lags of ENSO either show very low
or insignificant association for the entire study period.
Very similar to ENSO, in case of EQUINOO also the
October ENSO (single lag) of the previous year shows sig-
nificant association during the 1950s. The 10th, 11th,
13th and 14th lags appear and disappear during 1930s to
1970s. Moreover, during the 1970s, the June and April (2
lags) EQUINOO of the previous year appear and the asso-
ciation becomes stronger and stronger. In case of NAO,
the 13th lag shows very strong association during the
1950s and gradually disappears (edge strength below the
threshold value). The 11th lag shows significant associa-
tion during the 1930s. Later, during the 1980s, the
October NAO of the previous year appears with compara-
tively weaker association. Considering PDO, the 7th, 8th,
9th and 10th lags show significant association for initial
few development periods. The 10th lag again appears
during the 1950s and shows a significant association with
gradual increase and decrease in the strength. All the
other lags of PDO do not show any significant association
with the summer monsoon rainfall in the CNE region.
Lastly, in case of EMI, the 6th lag shows significant asso-
ciation from 1900s to 1940s and gradually weakens in
strength. Again, after 1970s, the 7th, 8th and 10th lags
appear and gradually the association becomes strong spe-
cifically for the 8th lag. In general, it can be observed that
considering this region, almost all the climatic indices
show sharp change in the association mostly in terms of
the lag associated with summer monsoon rainfall in and
around the 1920s, 1950s and 1970s.

4.2.2 | PE region

For the PE region (Figure S1), the June and May ENSO
show significant association during the 1910s and gradu-
ally disappears. Later, during the 1950s to 1970s, the 14th
and 15th lags of ENSO show significant association
whereas, during the 1980s the 10th lag appears and the
edge strength gradually increases. Considering
EQUINOO, the November EQUINOO shows significant
association during the 1900s and gradually weakens in
strength and reappears during the early 1960s and gradu-
ally the strength of association increases. Near the end,
the December EQUINOO of the previous year also
appears. All the rest of the lags are insignificant. Consid-
ering NAO, the 9th, 12th and 15th lags show significant

association from the beginning. However, the 9th and
12th lags gradually disappear and the 15th lag shows
slight dip in strength during the 1970s and again increas-
ing towards the last development period. In case of PDO,
April and May show strong association during the initial
time period. Furthermore, the 10th to 13th lags show
very strong association during the initial periods and
then completely disappear. In case of EMI, the March,
April and May show very strong association between
1900s and 1940s. Moreover, similar to EQUINOO, the
6th and 7th lags show very strong association since the
1970s. It is interesting to note that ENSO, EQUINOO and
EMI show significant changes around the 1970s. It can
also be observed that, ENSO, NAO and PDO show signif-
icant changes around the 1950s.

4.2.3 | NW region

For the NW region (Figure S2), most of the lags of ENSO
show significant association during the 1960s. All these
lags, except the April ENSO of the previous year gradu-
ally disappear by the early 1970s. Also, the 9th lag gradu-
ally appears with a consistent strength of association. In
case of EQUINOO, the April, June and September show
appearing and disappearing association during the 1920s
to 1960s. The 14th lag appears in the middle of the time
period and gradually disappears. By the end, the 11th
and 15th lags show strong association. Considering NAO,
the 6th lag shows significant association during the 1920s
and the 12th lag shows significant association during the
1930s and 1940s. Furthermore, NAO does not show very
strong association during the 1950s; however, the edge
strength for the 13th lag gradually increases towards the
last development period. Lastly considering PDO, the 6th
and 13th lags show consistent association before and dur-
ing the 1960s, gradually disappears and again reappears
in the late 1970s along with the 11th lag. Similar to
ENSO, few lags of EMI show significant association dur-
ing the 1960s; however, completely disappear for the rest
of the years. It may be observed that for the NW region,
major changes can be observed around the 1950s and
1970s.

4.2.4 | WC region

For the WC region (Figure S3), the April ENSO of the
previous year appears in 1960s and the edge strength
gradually increases till the last development period. The
11th and 12th lags also show significant association in
the 1950s and early 1960s. In case of EQUINOO, the
10th, 12th and 15th lags appear and disappear during the
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period of 1900s to 1950s. The September EQUINOO
appears in the late 1960s and gradually increases in
strength. Considering NAO, the 9th lag shows significant
association 1900s to 1940s and gradually disappears. The
November NAO shows a consistent association till the
1980s. After this period the 6th, 8th and 11th lags appear
with the highest edge strength of the 11th lag during the
last development period. PDO shows stronger association
during the initial development periods. Gradually the
strength of association decreases and all the lags disap-
pear; however, the 6th and 8th lags appear during the
late 1970s. It can be observed that most of the changes
occur during the late 1960s. EMI can be considered to
have very weak association with the summer monsoon
rainfall considering all the lags. The September and April
EMI of the previous year show significant but weak asso-
ciation around the late 1970s. Later, in and around the
last development period, certain lags of ENSO,
EQUINOO and NAO show very strong association with
the summer monsoon rainfall unlike the PE region.

4.2.5 | NE region

For the NE region (Figure S4), the 10th lag shows
increasing and decreasing association for the time period
of 1900s to 1950s. The December and November ENSO
consistently shows strong association starting from 1960s
with the 6th lag gradually reducing in strength and the
7th lag gradually increasing in strength towards the last
development period. EQUINOO, on the other hand
shows a strong demarcation, in terms of significant lags,
before and after the late 1960s. Before this time period,
the 7th, 12th, 13th and 14th lags show significant associa-
tion, however, after this time period the 10th and 11th
lags show strong association. Similar to EQUINOO, the
12th and 14th lags show strong association in the initial
time periods and gradually disappear. The 6th lag of
NAO shows significant association during the 1900s to
1940s. The March and May NAO (two lags) shows signifi-
cant change in association around the 1950s. Gradually
at the end, the December and August NAO of the previ-
ous year show significant association. Considering PDO,
the 7th, 8th and 10th lags show very strong association
till early 1960s and gradually disappear. In the recent
years none of the lags of PDO show any association the
summer monsoon rainfall. Considering EMI, none of the
lags except the 14th and 15th lags show insignificant with
the summer monsoon rainfall, through out the time
period of the study. It is interesting to note that for NE
region also (similar to WC region), certain lags of ENSO,
EQUINOO and NAO show very strong association during
the recent years.

In summary, the influence of ENSO, EQUINOO,
EMI, NAO and PDO with a particular lag on summer
monsoon rainfall varies from one HMR to another. More-
over, time period for which a certain lag shows strong
association continuous evolves, emphasizing on the need
to study the temporal association among the climatic
indices and rainfall.

4.3 | Performance of the time varying
GM-Copula model

Based on the identified value of τ, the region-wise
predicted rainfall obtained using the time-varying GM-
Copula approach is compared with the observed rainfall
at the actual scale, for the entire testing period (Figure 4).
It is clearly observed that the time-varying model is able
to capture the nature of variation and actual magnitude
of observed rainfall for all the regions. Specifically, for
the regions that receive moderate rainfall during the
summer monsoon season namely, CNE, PE and WC, the
time-varying model appropriately captures the peaks in
the rainfall, for example, above normal rainfall in the
year 2008 for the CNE region, above normal rainfall in
the year 2007 for the PE region and below normal rainfall
in the year 2009 for the WC region, etc. Even for the NE
and NW regions the modulation in the rainfall series is
well represented by the predicted rainfall. Figure 4 also
shows the comparison between mean, range and outliers
of the observed (red) and predicted using time-varying
model (blue) rainfall for each region. It is observed that
the proposed model precisely reproduces the range and
mean of actual rainfall for all the regions. HMR wise the
mean absolute percentage error between the predicted
and observed rainfall are as follows: NW – 10%, WC –
5.5%, NE – 6.2%, CNE – 4.9% and PE – 4%. Thus, the
error margins lie within 10% across HMRs within India.

In general, the variation in association suggests that
the time-invariant set of predictors may suffer from con-
sistency in performance. To investigate this fact, the per-
formance of the time-varying models and time-invariant
model are compared. In case of the time-invariant GM-
Copula based model, one model is developed using the
first 30-years data (1901–1930) and the developed predic-
tion model is used for the entire testing period (1931–
2010). Figure 5 compares the predicted rainfall at stan-
dardized anomaly scale obtained using the time-varying
model and its time-invariant counterpart with the
observed rainfall. Comparative statistics (in actual scale)
are shown in Table 1 (Input set #1). The time-varying
models are found to yield more accurate results, as com-
pared to the time-invariant model, rightly capturing the
nature/behaviour of the recorded anomalous rainfall
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values. For WC, PE, NE, CNE and NW regions, in the
years 1981 to 2015 that is, the entire model testing period,
the time varying model performs better than the time
invariant model. It can be observed that the years of posi-
tive as well as negative rainfall anomalies reasonably
match in model testing period. It can be reiterated that
the ability of the time varying model rely on the consider-
ation of evolving association between the climatic indices
and summer monsoon rainfall, which is identified as one
of the major issues of long-lead prediction models at
regional scale.

Next, it is also worthwhile to quantify the additional
contribution of multiple indices, apart from ENSO and
EQUINOO only, in the time-varying and time-invariant

framework. To investigate this, the performance statistics
obtained using the both the approaches with two differ-
ent sets of input variables: (a) all inputs (Input set #1)
and (b) only ENSO and EQUINOO (Input set #2) are
given in Table 1. For both the inputs sets, performance of
time-varying approach is better than its time-invariant
counterparts. In case of time-varying approach, consider-
ing Input set #1, the values of correlation coefficient lies
between 0.827 and 0.890 and that for Input set #2, the
values of correlation coefficient lie between 0.790 and
0.859. Considering other performance statistics also, it
can be clearly observed that the Input set #1 provides
superior performance as compared to Input set #2, based
on the values of the performance statistics. The explained

FIGURE 4 Performance of the

time-varying GM-Copula model by

comparing the observed and

predicted region-wise summer

monsoon rainfall for the entire

testing period (1931–2015). The
lowermost panel shows the mean

and range of the observed and

predicted rainfall through the

boxplots for each HMR [Colour

figure can be viewed at

wileyonlinelibrary.com]
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variability (R2 expressed in percentage) ranges between
62.5% (NW) and 80.6% (CNE) while considering Input set
#1, whereas it is between 59.4% (NW) and 74.3% (WC)
while considering Input set #2. Specifically, for the CNE,
PE and WC regions the performance with Input set #2
deteriorates as the other indices have strong influence on
the variability of rainfall in these regions and removing
them from the input set is depriving the model of impor-
tant information. For the WC and NE regions also, though
the impact of EMI, NAO and PDO is low, still for certain
time periods they provide valuable information, thereby
improving the overall performance of the model during
the entire testing period. Thereby, spatial variation of pre-
dictability is high and inclusion or exclusion of a particu-
lar/set of large-scale climatic indices affects the
performance of the prediction model to varying degrees
based on their association with summer monsoon rainfall.

5 | CONCLUSIONS

The problem of spatial variation in predictability of the
summer monsoon rainfall for different HMRs in India
has been addressed, through a time-varying GM-Copula
model, which uses lagged large-scale climatic indices as
the input variables. The conditional independence

structure (as obtained using the GM approach) is
employed to identify the complex association among the
different lags of climatic indices and summer monsoon
rainfall. In order to capture the time-variability in the
association, the model is recalibrated at regular time
intervals. The optimum value of this time interval (ORI
of model recalibration) is identified as 3 years for the NW
and NE regions and 5 years for the remaining 3 regions.
The index of ENSO used for this study (Nino3.4 index)
shows temporal shifts in 2–3 and 3–8 years. Moreover,
the ENSO–ISMR relationship is also varied in 1.5–
3 years. The timescale of the temporal variability in the
dependence of the large-scale climatic indices explains
the need to update the prediction model after every 3–
5 years. It is interesting to note that the input variables
and corresponding model structure varies over both space
and time on updating the prediction model after 3–
5 years' time period. Studying the time-varying associa-
tion of the 15 lags of the five large-scale climatic indices
provides some interesting insight regarding the time
periods with sharp changes in the dependencies. For
instance, considering the CNE region all the indices show
a change in the lag of the climatic index having direct
influence with the summer monsoon rainfall around the
1950s and 1970s. Certain indices like EMI, emerge as a
very strong contender for the recent years considering

FIGURE 5 Comparison of the observed and predicted rainfall anomaly obtained using the time-varying GM-Copula model and its

time-invariant counterpart for different HMRs [Colour figure can be viewed at wileyonlinelibrary.com]
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the PE region. Similarly, for the NW region NAO shows
very strong association in the recent years. For both WC
and NE regions, NAO, ENSO and EQUINOO show very
strong association in the 2000s.

The results indicate that the time varying GM-Cop-
ula model very well captures the positive and negative
anomalies in the observed rainfall for all the regions.
The mean and range in the region-wise rainfall is also
well captured. The mean absolute percentage errors of
prediction using the time-varying GM-Copula model
are within 4–10% across HMRs. Moreover, when com-
pared with its time-invariant counterpart, it shows
superior performance due to the inability of the time-
invariant model to capture the dynamic association.
Based on the lags of the climatic indices identified as
the potential predictors for each model development
period, the long-lead prediction can be made 5 months
in advance for all the regions. ENSO and EQUINOO
are the dominant indices considering all the regions, as
considering only these two indices also provides satis-
factory prediction performance. However, considering
EMI, NAO and PDO strongly improves the perfor-
mance of the prediction model for the CNE, PE and
NW regions. The time-varying model developed at finer
spatial scale successfully captures the temporal variabil-
ity in association and the spatial variation in

predictability of the summer monsoon rainfall. The
long-lead prediction using the time-varying model at
finer spatial scale enables the hydrologists and policy
makers to establish effective management measures.
Such prediction for the HMRs is especially effective for
the agricultural community.
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APPENDIX: | MATHEMATICAL DETAILS
FOR DEVELOPMENT OF GM-COPULA MODEL

Development of the GM-Copula model involves two
important aspects. The first one is the selection of the
potential predictors from the large pool of influencing
variables (15 lags of the five large-scale indices) using
GM approach. GM helps to identify a complete condi-
tional independence structure among all the variables
(predictors and predictand). The second one is develop-
ment of the prediction model using copula based
approach. The variables that are directly influencing the
target variables (parent variables), as identified by the
conditional independence structure, are considered for
development of the prediction model using vine copula.
Copulas help to obtain the joint distribution and then
conditional distribution of the target variables (summer
monsoon rainfall), conditioned on the parent variables.
These models are updated after regular intervals to cap-
ture the time-varying association among the large-scale
indices and summer monsoon rainfall. Mathematical
details are explained in the following subsections.

Selection of predictor using GM

The conditional independence among the input and tar-
get variables is revealed through a graph – a

mathematical object, denoted by G = (V, E), where V is a
set of vertices or nodes (representing the variables) and E
is a set of edges (representing the association among the
variables). The identification of the conditional indepen-
dence structure among the input variables and target var-
iable is determined using the maximum likelihood
approach (Whittaker, 2009). For application of this
approach the data should follow normal distribution, else
it can be transformed using some transformation meth-
odology (e.g., Box and Cox transformation; Box and
Cox, 1964). In the maximum likelihood approach, ini-
tially a fully interconnected graph structure, also referred
to as a saturated model, is considered where all pairs
nodes are connected. Next, the edge exclusion deviance
(EED) is used to test if an edge can be eliminated from
the saturated model (Whittaker, 2009) depending on its
statistical significance. EED is computed as follows:

EED=−N log 1−corr2N Xi,X j restj� �� �
, ð1Þ

where N is the size of the sample and corr2N Xi,X j restj� �
is the partial correlation coefficient between any two ran-
dom variables Xi and Xj given the rest. The statistic EED
follows a chi-squared distribution with one degree of
freedom as one edge is removed at a time. Thus, the
threshold value of EED is 3.84 at 5% significance level
and the edge with the lowest EED is removed if it is less
than this threshold value. This is an iterative process
which continues till all possible edges (EED less than the
threshold value) are removed to obtain the final graph
structure. To check the acceptability of the obtained
graph structure at a particular confidence level, deviance
of the obtained graph structure is evaluated. The general-
ized likelihood ratio test statistics, evaluated based on the
observed sample variance and the estimated variance
obtained from the independence structure is known as
the deviance of the model. The deviance (Dv) is evaluated
as follows (Whittaker, 2009):

Dv=N tr SV̂
−1

� �
− logdet SV̂

−1
� �

−K
n o

, ð2Þ

where S is the variance matrix, V̂ is the estimated vari-
ance matrix evaluated based on the number of edges
removed from the model, K is the total number of vari-
ables and N is as stated before. The deviance (Dv) follows
an approximate chi-squared distribution with d degrees
of freedom (where, d is the number of edges excluded
from the saturated graph). Thus, p value of the test statis-
tics can be computed asP χ2p>Dv

� �
. For this study the

acceptable significance level is fixed at .05, that is, the
obtained conditional independence structure is
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acceptable if the p value is higher than .05. In case the
structure fails to meet the acceptability criteria, structure
is to be modified with re-adding edges one by one that
were previously removed. The final graph structure is syn-
onymously referred to as conditional independence
structure also.

Although the conditional independence structure
helps to identify the potential predictors, time variability
of their potential is another important aspect. This is
quantified through a statistical measure known as edge
strength. Thus, the surviving edges of the conditional
independence structure are investigated for their strength
of association, also known as edge strength. The edge
strength between two nodes (for a surviving edge) in the
conditional independence structure can be calculated as
follows (Whittaker, 2009):

Inf Xi

a
X j restj

� �
=−

1
2
log 1−corrN 2 Xi,X j restj� �� �

, ð3Þ

where Inf(Xi
‘

Xj|rest) is the edge strength between Xi

and Xj given rest. This is also known as divergence
against conditional independence (Whittaker, 2009). This
information on edge strength is used to investigate the
temporal evolution of association of a particular input
with the summer monsoon rainfall.

Development of the prediction model using copula

The probabilistic model is developed using the selected
predictors identified through the conditional indepen-
dence structure. Even after obtaining the structure, there
could be multiple predictors directly associated with the
target variable (summer monsoon rainfall). Multivariate
copulas, like nested copula or vine copula are the best
choice to develop a multivariate probabilistic model.
Among different alternatives in vine copulas, canonical
vine (C-Vine) is used in this study to develop the probabi-
listic model. C-Vine copulas are used for prediction in
many studies of a variable by a sequence of trees
(Xiao, 2011; Bauer et al., 2012; Liu et al., 2015; Righi et
al., 2015; Dalla Valle et al., 2016). These trees are referred
as C-Vines and the corresponding multivariate

distribution is called C-Vine distribution. For a D-dimen-
sional C-Vine (considering D − 1 number of predictors
are selected based on the conditional independence struc-
ture), the first tree identifies (D − 1) pairs of variables
whose distribution is modelled directly, utilizing the ran-
dom variables. The second tree identifies (D − 2) pairs of
variables whose distribution is conditional on a single
variable evaluated by pair copula. This tree uses trans-
formed variables based on the structure of the preceding
tree. Proceeding, in this manner the final tree, deter-
mines a single pair of variables conditional on the
remaining variables. The analysis using C-Vine includes
identifying the trees, its pair copula families and estimat-
ing their parameters.

Selection of each tree is based on a maximum span-
ning tree algorithm, where edge weights are chosen to
reflect the dependencies. In this case, the absolute value
of the empirical Kendall's tau (τ̂i,j ) (evaluated for two
adjoining variables of the tree Xi and Xj) is utilized as the
edge weight and optimization problem is solved
(max

P
edgeseij∈in spanning tree

τ̂ij
�� �� , where a spanning tree is a

tree on all nodes) for each tree (Schepsmeier et al., 2017).
Evaluation of the transformed variables (for selection of
the subsequent trees after the first tree) requires estima-
tion of the pair copula families and parameter estimation
based on the conditioning variables. Considering XD as
the target variable and X1, X2, …, XD− 1 as the condition-
ing variables (predictors), the conditional distribution
can be developed for a D− 1 dimensional vector V = (X1,
X2,…,XD− 1) by applying the following recursive
relationship:

F XD=Vð Þ= ∂CX ,V j=V − j
F XD=V − j
� �

, F V j=V − j
� �� �

∂F V j=V − j
� � , ð4Þ

where Vj(j = 1, 2, …, D − 1) is an arbitrary component of
V, and V−j = (X1, X2, …, Xj − 1, Xj + 1, …, XD − 1) denotes
the vector V excluding element Vj. The bivariate copula
function is specified by CX ,Vj=V − j

. The final tree can be
utilized to evaluate the conditional dependence for the
prediction of the target variable given the input variables
using the above equation.
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