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Stationarity in the relationship between causal variables and target variables is the
fundamental assumption of statistical downscaling models. However, we hypothe-
size that this assumption may not be valid in a changing climate. This study
develops a downscaling technique in which the relationship between causal and
target variables is considered to be time-varying rather than static. The proposed
time-varying downscaling model (TVDM) is utilized to downscale monthly pre-
cipitation over India to 0.25 × 0.25� gridded scale using the large-scale outputs
from multiple general circulation models (GCMs), namely the Hadley Centre
Coupled Model version 3 (HadCM3), coupled Hadley Centre Global Environmen-
tal Model version 2-Earth System model (HadGEM2-ES) and Canadian Earth Sys-
tem Model version 2 (CanESM2). Observed precipitation data are obtained from
the India Meteorological Department (IMD), Pune. For future projection, the tem-
poral evolution of each of the TVDM parameters is investigated using its deter-
ministic (trend and periodicity) and stochastic components. TVDM is found to
outperform the most commonly used statistical downscaling model (SDSM) and
regional climate model (RCM) output at all the locations. The Regional Climate
Model version 4 (RegCM4) precipitation data (RCM outputs) are obtained from
the Coordinated Regional Climate Downscaling Experiment (CORDEX) data por-
tal supplied by Indian Institute of Tropical Meteorology (IITM), Pune. The pro-
posed model (TVDM) differs from the existing stationarity assumption-based
approaches in updating the relationship between causal and target variables over
time. It is understood that parameter uncertainty is the major issue in consideration
of non-stationarity. Still, the TVDM is found to be very useful in the context of
climate change due to its time-varying component.
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1 | INTRODUCTION

General circulation models (GCMs) are utilized to simulate
past and future climate change (Kannan & Ghosh, 2013;
Zhang & Yan, 2015). Although GCMs perform satisfactory
at continental scale, their performance becomes poorer as
the spatial resolution is increased (Lu & Qin, 2014; Raje &
Mujumdar, 2009; Tisseuil, Vrac, Lek, & Wade, 2010).

Thus, GCMs are not suitable for local-scale impact assess-
ments and therefore it is essential to downscale the GCM
outputs to finer spatial resolution (Chen, Yu, & Tang, 2010;
He, Chaney, Schleiss, & Sheffield, 2016; Kannan & Ghosh,
2011; Ramdas, Rehana, & Mujumdar, 2012; Wilby
et al., 2000).

Downscaling is a method to convert the large-scale,
low-resolution GCM simulations (�250 to �350 km) to
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high spatial resolution (e.g., 10–50 km grid size). There are
different methods available for the downscaling of precipita-
tion and these have been used at various places across the
world (Bordoy & Burlando, 2014; Fowler, Blenkinsop, &
Tebaldi, 2007; Hellström, Chen, Achberger, & Räisänen,
2001; Hewitson & Crane, 1996). These methods can be
divided into dynamical downscaling (Hewitson & Crane,
1996; Manor & Berkovic, 2015; Schmidli et al., 2007; Xue,
Janjic, Dudhia, Vasic, & De Sales, 2014) and statistical
downscaling (Hessami, Gachon, Ouarda, & St-Hilaire,
2008; Langousis, Mamalakis, Deidda, & Marrocu, 2015;
Wilby, Dawson, & Barrow, 2002). Dynamical downscaling
utilizes a regional climate model (RCM) and is based on
mathematical conceptualization of physical processes
(Fowler et al., 2007; Laprise, 2008; Rotach et al., 1997).
Thus, the output of a RCM is physically based and this is
considered the main advantage of the dynamical downscal-
ing approach. However, the main disadvantage that hinders
the applicability of this approach is its mathematical com-
plexity. It may require super-computers but still the final
output may significantly differ from the actual observations
(Giorgi, Gutowski, & William, 2015; Hellström et al., 2001;
Rotach et al., 1997). The stationarity issue in RCMs has
been addressed in recent studies and proposed for bias cor-
rection (Bellprat, Kotlarski, Lüthi, & Schär, 2013; Maraun,
2012). On the other hand, statistical downscaling is compu-
tationally less intensive as compared to the dynamical
downscaling. Outputs from both these approaches are
widely implemented in local-scale hydrological studies with
more or less similar performance (Chu, Xia, Xu, & Singh,
2010; Pervez & Henebry, 2014; Teutschbein, Wetterhall, &
Seibert, 2011). Maraun et al. (2015) have compared both
dynamical and statistical downscaling methods through a
systematic validation framework (VALUE network). How-
ever, the statistical downscaling consists of three inherent
assumptions: (a) the target variable is a function of the
causal variable, (b) the climate is completely represented by
the causal variables and (c) the relationship between the
causal variables and the target variable obtained from the
historical period is stationary (Ghosh & Mujumdar, 2008;
Hewitson & Crane, 1996; Wilby et al., 2002). The third
assumption is practically questionable under a changing cli-
mate scenario (Ghosh & Mujumdar, 2008). It is also con-
firmed from the recent literature that the relationship
between the causal variables and the target variable vary
over time, that is, non-stationary (Duan et al., 2012; Her-
tig & Jacobeit, 2013; Merkenschlager, Hertig, & Jacobeit,
2017; Rashid, Beecham, & Chowdhury, 2016). Raje and
Mujumdar (2010) discussed the sources of such non-
stationarity in the downscaling. Hertig and Jacobeit (2013)
proposed a method for statistically downscaling precipita-
tion events considering the non-stationarity issue. Mullan,
Chen, and John (2016) compared point climate change
model and statistical downscaling model (SDSM) under

non-stationary conditions. Merkenschlager et al. (2017)
incorporates the non-stationary behaviour of the large-scale
circulation with in the statistical downscaling and found that
the results are improved when compared to the stationary-
based models. The non-stationarities are identified between
the predictor–predictand relationships (PPRs) using multiple
linear regression techniques (Duan et al., 2012; Sachindra &
Perera, 2016). However, these studies are not updated the
PPRs at every time step. The present study uses the Bayes-
ian paradigm in which the causal–target relationship
updated at each time step, and it is an advancement as com-
pared to the existing studies.

It is clear from the literature that the non-stationary
behaviour between the causal–target variables is unavoid-
able in the context of climate change (Duan et al., 2012;
Merkenschlager et al., 2017; Sachindra & Perera, 2016).
However, the mentioned studies identified the non-
stationarity considering the historical data only and the
effect of non-stationarity is not assessed during the future
period. The proposed approach in this study is able to over-
come the stationarity assumption of statistical downscaling
approaches using the skill of the Bayesian approach in
updating the parameters.

The objective of this article is to develop a time-varying
downscaling model (TVDM), which will be able to consider
the time-varying relationship between the causal variables
and the target variable, if one exists. Mathematical details
are provided in the next section. To assess this method,
downscaling is carried out over India at 0.25� lat. × 0.25�

lon. resolution using outputs from multiple GCMs with dif-
ferent resolutions, namely (a) Hadley Centre Coupled
Model version 3 (HadCM3), (b) Hadley Centre Global
Environmental Model (version 2)-Earth System model
(HadGEM2-ES) and (c) Canadian Earth System Model ver-
sion 2 (CanESM2).

As an application, downscaling of monthly precipitation
is attempted through TVDM and different aspects are
explored. The performance of TVDM is also compared with
the existing Statistical Downscaling Model version 5.2
(SDSM5.2) and the Regional Climate Model version 4 -
(RegCM4) precipitation data (hereinafter referred to as
Coordinated Regional Climate Downscaling Experiment,
i.e., CORDEX) to explore the effectiveness of the
developed TVDM.

2 | STUDY AREA

The entire landmass of India is considered as the study area
(Figure 1). Being the seventh largest country in the world,
the study area consists of a wide variation of climatological
conditions; ranging from desert (Rajasthan) to the snow
covered Himalayan region, very low rainfall region
(Jaisalmer) to world’s maximum rainfall region
(Cherrapunji). Broadly, there are six wide varieties of
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climatic conditions in India. The major portion (around
80%) of rainfall is contributed from the southwest monsoon
(Maity & Nagesh Kumar, 2006; Singh, 2006). The annual
rainfall varies from �450 mm in Rajasthan (western state)
to around 2,800 mm in Assam (eastern state) and
�1,000 mm in Jammu and Kashmir (northern state) to
3,050 mm in Kerala (southern state). There are four major
seasons, that is, winter (December–February), summer
(March–May), monsoon (June–September) and post-
monsoon (October–November). Thus, the study area offers
a wide range of climatology to test the efficacy of the pro-
posed approaches with the existing models.

Apart from the spatial comparison over India, 10 specific
key locations are also considered for location-specific dis-
cussion (Figure 1). These 10 locations are picked out in
such a way that they are geographically well spread and
represent the variation of Indian climate. For instance, loca-
tion 1 is located in low rainfall, north Indian region and
locations 2 and 3 are in sub-Himalayan region with
moderate- and high-rainfall areas, respectively. Location
4 represents the dry part (west side) of the country and loca-
tions 5 and 6 represent the central Indian climate with
below-normal rainfall and above-normal rainfall, respec-
tively. Locations 7 and 9 are on the east coast, whereas
locations 8 and 10 are on the west coast. The southwest

monsoon strikes first on the southern part of the west coast
(location 10) and due to the presence of Western Ghats, the
region experiences high rainfall. Location 8 experiences
rainfall during almost 8 months (May–December) because
the region experiences southwest monsoon from June to
September and the northeast monsoon (also known as return
monsoon) from October to December.

3 | DATA USED

3.1 | Observed precipitation

Daily precipitation data were obtained at a spatial resolu-
tion of 0.25 × 0.25� for India from India Meteorological
Department (IMD), Pune. There are 1,803 rain gauge sta-
tions (with a minimum 90% data availability), which have
been utilized for development of the gridded data
(Rajeevan, Bhate, Kale, & Lal, 2006). The daily precipita-
tion values are accumulated over months to obtain the
monthly rainfall. Monthly data were obtained for the
period 1951–2005. The first 40 years (1951–1990) of data
have been used for model development and the remaining
15 years (1991–2005) data have been considered for model
testing.

FIGURE 1 Study area map showing
locations (circles) selected to compare the
outputs of TVDM with rawGCM, SDSM
and CORDEX along with the GCM grid
points (triangles)
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3.2 | GCM data

The outputs from three GCMs, viz. HadCM3, HadGEM2-
ES and CanESM2 are used in this study. The details of each
of these GCMs are as follows.

HadCM3 is a coupled atmosphere–ocean GCM and
developed at the Hadley Centre in the UK Meteorological
Office. The atmospheric component of HadCM3 has
19 pressure levels with a horizontal resolution of 2.5� lat.
× 3.75� lon. (Gordon et al., 2000; Pope, Gillani, Rown-
tree, & Strattom, 2000). The HadCM3 is one of the most
commonly used models in the Intergovernmental Panel on
Climate Change (IPCC) Third, Fourth and Fifth Assessment
Reports. HadCM3 performs adequately well and ranks
higher than the other models without using flux adjustments
(Reichler & Kim, 2008). The output of HadCM3 are partic-
ularly useful in studies concerning the detection and attribu-
tion of climate changes because it was able to capture the
changing climate in the past owing to the natural and
anthropogenic forcing (Stott, Tett, Jones, & Allen, 2000).
The outputs of HadCM3 are used in many studies (Chen
et al., 2010; Pichuka & Maity, 2016; Ramdas et al., 2012;
Sachindra, Huang, Barton, & Perera, 2014; Schnorbus,
Werner, & Bennett, 2014) for downscaling various hydro-
climatic variables in future.

HadGEM2-ES (henceforth HadGEM2) is also devel-
oped at the Hadley Centre in the UK Meteorological Office
and has 38 pressure levels in the atmosphere (vertical). The
horizontal resolution is 1.25� lat. × 1.875� lon. The outputs
of HadGEM2 are used in the IPCC Fifth Assessment
Report. The details of HadGEM2 can be found from Caesar
et al. (2013).

CanESM2 is developed at the Canadian Centre for Cli-
mate Modelling and Analysis (CCCMA), Canada (Arora
et al., 2011). The atmospheric component of CanESM2 has
22 pressure levels with a spatial (horizontal) resolution of
2.81� lat. × 2.81� lon. The details of CanESM2 can be
found from Arora et al. (2011) and Pichuka and
Maity (2016).

The historical and future projected monthly data of the
causal variables for all the three GCMs were downloaded
from the fifth phase of Coupled Model Intercomparison Pro-
ject (CMIP5). It may be noted that HadGEM2 and CanESM2
provide output for all three scenarios (RCP2.6, RCP4.5 and
RCP8.5), whereas HadCM3 provides outputs only for
RCP4.5 scenario. All the data are available on the IPCC Data
Distribution Center (DDC) web site (http://www.ipcc-data.
org/sim/gcm_monthly/AR5/Reference-Archive.html). The
data sets have undergone a quality control procedure and are
used in the IPCC Fifth Assessment Report (IPCC AR-5).
Final selection of causal variables is based on its correlation
with the target variable in the study area. The six causal vari-
ables, that is, surface specific humidity (HUS), pressure at
sea level (PSL), precipitation flux (PRE), zonal wind at
500 hPa (UWN), meridional wind at 500 hPa (VWN) and
geopotential height at 500 hPa (GPH) are selected. Apart

from these causal variables, precipitation outputs were (here-
inafter referred as rawGCM) also obtained from all the
three GCMs.

3.3 | CORDEX data

The precipitation outputs from RegCM4, available in
CORDEX portal, are used in this study as RCM data. The
CORDEX targets to coordinate the worldwide regional
climate change projections (Giorgi et al., 2015; Giorgi,
Jones, & Asrar, 2009; Wilcke & Lars, 2016) and is sup-
ported by the World Climate Research Programme
(WCRP). It supplies the regional data by dividing the
globe into 12 predefined regions, including the Arctic and
Antarctic regions. The CORDEX provides the outputs of
various climatic variables at a regional scale for historical
and future periods in the similar manner of the CMIP5
(Nikulin et al., 2012). It may be noted that the RegCM4 is
constructed using the CanESM2 outputs as boundary con-
dition and CanESM2 is one of the GCMs used in this
study as mentioned before. Thus, RegCM4 is opted from
CORDEX. It is developed by the International Centre for
Theoretical Physics (ICTP) at a spatial resolution of 0.5�

lat. × 0.5� lon. (Giorgi et al., 2012; Li et al., 2015). Origi-
nally, the RegCM was developed to simulate the regional
climate and the outputs have been utilized in several inter-
comparison projects to obtain the future long-term regional
climate predictions (Giorgi et al., 2012). The latest version
(version 4) of this model was developed in 2010. The
Indian Institute of Tropical Meteorology (IITM), Pune pro-
vides the outputs from RegCM4, which is constructed for
the CORDEX framework. This data (henceforth RCM
data) are downloaded for the South Asia region from the
IITM website (http://cccr.tropmet.res.in/home/ftp_data.jsp).
The outputs were obtained for the study area during the
historical and future periods for RCP4.5 and RCP8.5
scenarios.

4 | METHODOLOGY

The proposed methodology of TVDM is developed by
using the skill of the Bayesian approach in updating the
parameters that were earlier adopted in Bayesian dynamic
linear model (West & Harrison, 1997). The Bayesian
approach is used in many hydrological studies like uncer-
tainty quantification, water quality modelling, hydroclimatic
analysis, etc. (Gabriele & Mannina, 2010; Laloy, Fasben-
der, & Bielders, 2010; Maity & Nagesh Kumar, 2006;
Nagesh Kumar & Maity, 2008; Sarhadi, Burn, Ausin, &
Wiper, 2016; Tyralis & Koutsoyiannis, 2014; Vrugt, Braak,
Gupta, & Robinson, 2009; Yang, Reichert, Abbaspour, &
Yang, 2007). The scope of TVDM is to capture the time-
varying relationship between relevant (atmospheric) causal
variables and the target variable to be downscaled. The
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causal variables are region-specific and are selected based
on their association with the target variable, that is, precipi-
tation in this case. The methodological flowchart is pre-
sented in Figure 2. The proposed TVDM is developed at
monthly scale and it is run continuously over successive
months. Stepwise methodology is presented in the following
section.

4.1 | Development of TVDM

Step 1. The procedure of TVDM starts with standardizing
all the causal variables to transform them to a similar range.
For standardizing a variable, the mean (μ) is subtracted from
it and the difference is divided by the standard deviation
(σ). The equations for μ and σ are as follows:

μ=

PN
i=1

xi

N
, ð1Þ

σ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i=1

xi−μð Þ2

N

vuuut
, ð2Þ

where x is the time series data; N is the total number of data
points; μ and σ are the mean and standard deviation of the

time series data, respectively. Henceforth, the causal vari-
ables will refer to transformed variables only.

Step 2. The downscaling expression for the target vari-
able (Yt) using the information of causal variables at time
step t is expressed as

Yt=FT
t Θt+vt, ð3Þ

where FT
t is the transpose (indicated by superscript T) of the

vector of the causal variables at the tth time step; Θt is the
parameter vector at the tth time step; vt is the error between
the observed and the downscaled value of target variable
(here precipitation) at the tth time step. The error series is
assumed to be normally distributed with the zero mean and
unknown variance V, that is,

vt �N 0,Vð Þ: ð4Þ
Vector of causal variables at tth time step is given as

Ft= 1 x1t x
2
t x

3
t …xzt

� �T
, ð5Þ

where x1t ,x
2
t ,x

3
t ,…,xzt are the z numbers. Causal variables at

the tth time step.
The parameter vector at the tth time step is given as

Θt= Yt θ
1
t θ

2
t θ

3
t … θzt

� �T
, ð6Þ

Start 

Standardization of data 
(Equations 1- 2) 

Model Setup 
• Setup of downscaling equation and 

parameter vector (Equations 3-7) 
• Setup of system equation for successive

update (Equations 8-10) 

Model initialization (Equations 
11-12) and assumption of 

initial information  

Computation of posterior 
distribution  

(Equations 22-31). 
Results in equations 14 

and15 in a recursive mannerComputation of 
downscaled value 

(Equation 21) 

Evaluate error 
(Equation 28)

Observed 
value

Modelling of mt series and  
(Equations 33-40) 

Regeneration of mt in future  
(Equation 32) 

Computation of downscaled 
value in future 
(Equation 21) 

Future GCM 
output

Model performance during testing 
time and comparison with SDSM 

and CORDEX downscaled product

t =
 1

 

t = 2, 3, …, N Computation of prior 
distribution  

(Equations 16-19) 

Effect of initial 
information is 
ignored and δ 
is optimized in 

this loop.

when calibration 
is completed

End 

FIGURE 2 Methodological flowchart with equations as numbered in the section 4
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where Yt is the climatological mean value of the observed
precipitation at tth time step. For the monthly time series,
for ith month, Yt is given as

Yt =
XN
j=1

Yi, j
N

� �
, ð7Þ

where Yi,j is the value of time series at ith month (i = 1,
2, …, 12) of jth year; N is the total number of years in the
development period. θt

1, θt
2, θt

3, � � �, θtz are the parameters
for x1t ,x

2
t ,x

3
t ,…,xzt at the tth time step, respectively.

Step 3. The successive updates of θt
1, θt

2, θt
3, � � �, θtz are

carried out through the set of equations at every time step.
Omitting the superscript, the general form of the system
equation at the tth time step is

θt=θt−1+ωt, ð8Þ

where ωt is the Student’s t-distributed system evolution
error with n degrees of freedom for tth time step with
parameters 0 and Wt, that is,

ωt � Tn 0,Wtð Þ: ð9Þ
Degree of freedom n, for tth time step is

n= t−1: ð10Þ
Model parameters are updated at each time step, to

downscale the target time series at that particular time step.
Step 4. The modeller has to initialize the parameters at t

= 1. In Bayesian paradigm, this is known as initial informa-
tion, denoted as D1. In general, that is, omitting the super-
script, initial information at time t = 1 is

θ0=D0 �T0 m0,C0ð Þ: ð11Þ
Again

ϕ=D0 �G n0=2,d0=2ð Þ, ð12Þ
where ϕ is the precision parameter and defined as

ϕ=V −1: ð13Þ

T0 and G stand for Student’s t distribution (degree of
freedom shown as subscript) and Gamma distribution,
respectively. It may be noted that the precision parameter
indicates how accurate the model performance is at each
time step. The inverse of this parameter is used for associ-
ated uncertainty with the downscaled value. The parameters
m0, C0, n0 and d0 are supplied to the TVDM as the initial
information for all the causal variables. Although the selec-
tion of these initial values is subjective, their effect dissi-
pates after some time steps. Hence, it is recommended to
ignore some initial time steps from performance assessment
to avoid the effect of subjective choice of initial parameters.
This period can also be used as spin-up period to stabilize
the initial information.

Step 5. In order to update the parameters from the time
step (t − 1) to t, where t = 2, 3, 4, …, N, let us assume that
posterior distribution for θt − 1 is

θt−1=Dt−1 �Tt−1 mt−1,Ct−1ð Þ, ð14Þ
ϕ=Dt−1 �G nt−1=2,dt−1=2ð Þ: ð15Þ

The posterior distribution can be viewed as the informa-
tion (probabilistic) available at the end of each time step
(say t), when the error made in that time step is known. This
posterior distribution is used to compute the prior distribu-
tion for the next time step (i.e., t + 1), which is used by the
model for downscaling at the time step t + 1. At the end of
the time step t + 1, with the available information of error
made, the posterior distribution for the time step t + 1 is
computed and the procedure is repeated recursively. These
steps are explained as follows. The prior distribution for θt
is expressed as

θt=Dt−1 � Tt mt−1,Rtð Þ: ð16Þ
Rt is expressed as

Rt=Ct−1+Wt, ð17Þ
where Wt is known as system evolution variance at time
step t. The system evolution variance is a measure of decay
in information from one time step to another (i.e., t to t + 1)
in the process of downscaling. This is analogous to the
uncertainty for any future information and it is required to
know the sequence of evolution variance Wt a priori, which
may not be possible. To overcome this, Rt is expressed as

Rt=Ct−1=δ, ð18Þ
where δ is known as the discount factor and vary between
0 and 1. Thus, the discount factor ensures that the system
evolution variance increases from one time step to the next
time step (i.e., t to t + 1), that is, uncertainty is higher in
future information. Equations (17) and (18) imply that

Wt=Ct−1
1
δ
−1

� �
: ð19Þ

The optimum value of δ is estimated on the basis of
model performance. It is also noteworthy that the higher
values of δ indicate slower rate of decay of previous infor-
mation and vice versa (West & Harrison, 1997).

Step 6. Finally, the downscaled target variable at time
step t is expressed in the form of

Yt=Dt−1ð Þ�Tn Ft,Qtð Þ, ð20Þ
where n is as defined before for the time step t and

Ft=Yt +x1t ×m
1
t−1 +x2t ×m

2
t−1+x3t ×m

3
t−1+…+xzt ×m

z
t−1,

ð21Þ

Qt= x1t
� �2

×R1
t + x2t

� �2
×R2

t + x3t
� �2

×R3
t +…+ xzt

� �2 ×Rz
t +St−1,

ð22Þ
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where Rt is defined as before, and

St−1=
dt−1

nt−1
: ð23Þ

Step 7. Posterior distribution for θt is

θt=Dtð Þ�Tn mt,Ctð Þ, ð24Þ
where

mt=mt−1+Atet, ð25Þ
Ct=RtSt=Qt, ð26Þ

where At is given as

At=xtRt=Qt, ð27Þ
et=Yt−Ft: ð28Þ

For the next step, that is, t + 1, nt and dt are required to
calculate Qt using St. These are expressed as

nt=nt−1+1, ð29Þ
dt=dt−1+St−1e2t =Qt: ð30Þ

Thus, the distributional form of the precision parameter
ϕ at time step t is obtained as

ϕ=Dtð Þ�G nt=2,dt=2ð Þ: ð31Þ
The model parameters, mp

t t=1,2,� � �,n andp=1,� � �,zð Þ
(hereinafter referred as m-values) evolve over time for all
the input variables.

4.2 | Application of TVDM for downscaling the future
precipitation

So far, TVDM is developed based on the historical period
where observed precipitation at each time step is available
and calculation of error is possible at each time step that
helps to estimate the prior distribution (Equation (16)) for
the next time step. For future projection, it should be noted
that the weather sequence resulting from free running cli-
mate models does not match with the actual observed
sequence of weather. Hence, the errors will not be available
for the future period. One possible solution could be the
investigation of temporal evolution of the model parameters
and its regeneration. Statistically, the stochastic evolution of
model parameters (m-values) may be investigated during
the historical period and the model parameters can be regen-
erated by considering its characteristics of the temporal evo-
lution. To model the characteristics of the temporal
evolution of the model parameters, both the deterministic
and the stochastic components are modelled to regenerate
the m-values to be used for downscaling in the future.

The linear trend and the periodicity components are the
deterministic part of historical m-values time series. The
stochastic part is modelled through auto-regressive
(AR) model. First, the linear trend, if any, is taken out from

the time series of historical m-values. Then the periodic
component, wherever it is found to be significant, is
extracted from the detrended time series. Therefore, an AR
model is developed to model the residual series. Thus, the
time series of historical m-values is modelled as

mt=mtr
t +mpr

t +mst
t , ð32Þ

where mtr
t , m

pr
t and mst

t represent the linear trend, periodic
and the stochastic components, respectively, of the m-values
at time t. The mtr

t is given by

mtr
t =p1t+p2, ð33Þ

where p1 and p2 are the regression coefficients that are obtained
by least square method taking time as the independent variable.
After removing the trend component from the time series, the
periodic component, that is,mpr

t is modelled by

mpr
t Tð Þ=A0+

Xh
k=1

Ak sin
2πkT
P

� �
+Bk cos

2πkT
P

� �� �
, ð34Þ

where mpr
t Tð Þ are harmonically fitted means at period T (T

= 1, 2,…, P) and P is the base period, which is calculated
from the periodogram of the detrended time series of m-
values which is given as

P=
2×π
w

, ð35Þ

where w is the index value corresponding to the peak of the
periodogram; A0 is the mean of historical m-values and is
given as

A0=
1
P

XP
T=1

X Tð Þ½ �, ð36Þ

where X(T) is the time series of detrended m-values; h is the
total number of harmonics, which is expressed as

h=
P=2 for even values of P

P−1ð Þ=2 for odd values of P

8<
: : ð37Þ

Ak and Bk are sine and cosine Fourier coefficients,
respectively, and given as

Ak=
2
P

XP
T=1

X Tð Þ× sin
2πkT
P

� �� �
, ð38Þ

Bk=
2
P

XP
T=1

X Tð Þ× cos
2πkT
P

� �� �
, ð39Þ

where k = 1, 2, …, h.
After removing the trend and periodicity from the time

series, the residual is modelled by an AR model. The order
of the AR model is decided by the auto-correlogram and
partial auto-correlogram. In general, AR(1) model may
found to be sufficient after removing the trend and the peri-
odicity. Thus, the stochastic component is modelled as
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mst
t =b×mst

t−1 +me
t , ð40Þ

where mst
t is the modelled stochastic component, b is the

coefficient of the AR(1) model fitted to the residuals and me
t

is the error at the tth time step. The error me
t is assumed to

be normally distributed with a zero mean and a standard
deviation of σet . Using the values from Equations (33), (34)
and (40) in Equation (32), ensembles of many realizations
can be generated. One realization can be used at a time to
get a realization of the downscaled precipitation. Thus, an
ensemble of realizations of downscaled precipitation can be
obtained. The process may generate a few negative values
as well that can be truncated to zeros.

4.3 | Comparison between the performance of TVDM,
SDSM and RCM

The performance of the TVDM is compared with the perfor-
mance of existing SDSM5.2 and the CORDEX data. For
fair comparison of results, all the model outputs (RCM,
TVDM and SDSM) are bias-corrected before comparison.
The bias correction factors are calculated using the ratio of
long-term monthly mean of observed data and downscaled
(RCM, TVDM and SDSM) data from the development
period as per Maraun (2012). These bias correction factors
are further utilized in the testing and future periods to obtain
the bias-corrected downscaled (RCM, TVDM and SDSM)
values during respective periods. The SDSM calculates sta-
tistical relationships, based on the multiple linear regression
techniques, between the large-scale (causal variables) and
the local-scale (target) climate data (Wilby et al., 2002).
These relationships between the causal variables and the tar-
get variable are developed based on historical data and
assumed to remain the same in the future also. These rela-
tionships can be used to obtain downscaled local informa-
tion for future time periods by driving the relationships with
GCM-derived causal variables. Further details on SDSM
can be found in the literature (Wilby et al., 2002; Wilby &
Dawson, 2013).

The causal variables and the rawGCM precipitation data
are obtained at each target location (finer grid intersection at
0.25 ×0.25�) through inverse distance weighting method
(IDWM) from four surrounding GCM grids of that target
location. IDWM is a deterministic approach to compute the
value of a variable at a point where it is not known using
the information from nearby points where its values are
known (Shepard, 1968). Inverse of the square of the dis-
tance is used as the weightage factor in IDWM. Then the
association between the observed, GCM (hereinafter
referred as rawGCM to emphasize “no downscaling”),
CORDEX data and downscaled precipitation using SDSM
and TVDM (all bias-corrected as mentioned before) is
assessed through different statistical measures like mean
(μ), root-mean-square error (RMSE), un-biased RMSE
(ubRMSE), Nash-Sutcliffe efficiency (NSE), degree of

agreement (Dr), standard deviation (σ) and 95th percentile
value. The lesser the difference (error) between the observed
and downscaled μ, σ and 95th percentile values, the better
is the performance of the model. Similarly, the lower values
of RMSE and ubRMSE indicate better performance of the
model. Higher values of NSE and Dr (closer to +1) signifies
superior performance of the model when compared to the
observed data.

5 | RESULTS AND DISCUSSION

5.1 | Performance of the models during development
period

In this section, first, the association among observed and
rawGCM precipitation is checked. Then the calibration of
proposed TVDM is explained and subsequently its perfor-
mance is assessed. Next, the performance of existing
models such as SDSM and CORDEX are examined.
Finally, the performance of TVDM is compared with the
rawGCM, SDSM and CORDEX outputs.

5.1.1 | RawGCM precipitation versus observed precipitation
(calibration period)

First, the association between the rawGCM precipitation
and the observed precipitation is checked at each location.
As expected, the correspondence between rawGCM precipi-
tation and the observed precipitation is very poor
(Figures 3–5). The values of NSE and Dr are varying from
−0.15 (location 9) to 0.62 (location 6) and 0.58 (location 9)
to 0.77 (location 6), respectively, in case of HadCM3
(Figure 3). The wide variation of RMSE (ubRMSE) is also
noticed and found to vary between 90.05 mm (84.44 mm)
to 277.30 mm (218.96 mm). The mean values are varying
between 28.37 mm to 140.70 mm (Figure 3). The associa-
tion between rawGCM and observed precipitation is also
found poor using HadGEM2 (Figure 4) and CanESM2
(Figure 5) outputs. For instance, the minimum NSE value is
noted as −0.27 at location 9 for HadGEM2 (Figure 4) and
−0.26 at location 10 for CanESM2 (Figure 5). As an exam-
ple, the scatterplot between the observed and the rawGCM
(HadCM3) at location 6 is presented in Figure S1a, Sup-
porting information in case of HadCM3. It seems that the
GCM underestimates the higher precipitation values occur-
ring in the monsoon months (June–September). This is true
for all the locations. Thus, the correspondence between
rawGCM values and the actual observed precipitation is
poor (Figures 3 and S1).

5.1.2 | Calibration of TVDM

The proposed TVDM has been calibrated by considering
40 years of monthly precipitation data from 1951 to 1990
(development period). All the six causal variables along
with the observed precipitation are utilized to calibrate the
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TVDM. Subjective assumptions of initial parameters are
required for initializing the TVDM. In this study, five dif-
ferent sets of initial parameters are considered. The output
series are compared against each other for the first 7 years,
that is, initial 84 months (for visual convenience only). As a
sample plot, the comparative plots along with different sets
of initial values are shown in Figure S2. Although the initial
assumption of model parameters affects the output, it is
noticed that output series of different sets are converging
with each other approximately after 18 time steps, that is,
one and a half years (Figure S2). Thus, in general, initial
2-year period is excluded while evaluating the model perfor-
mance to avoid the effect of the initial assumption of param-
eters. Therefore, the development period is considered as
1953–1990. The discount factor (δ) plays a vital role while
developing the TVDM. The optimum value of the discount
factor δis obtained as 0.92. The discount factor (δ) is kept
the same in all the five sets of initial parameters mentioned
before.

5.1.3 | Performance of the proposed TVDM (calibration
period)

The precipitation is downscaled and bias-corrected for India
using TVDM at a spatial resolution of 0.25 × 0.25�. First,
the performance of the TVDM is evaluated in terms of the
statistical measures mentioned before at all the 10 selected
locations across India using outputs from HadCM3 as input
(Figure 3). The RMSE (ubRMSE) values range between
64.15 mm (64.02 mm) to 147.11 mm (146.79 mm). The
values of Dr varies from 0.70 (location 9) to 0.84 (location
6). The other statistical measures like NSE, μ, σand 95th
percentile values are found to be improved as compared to
the rawGCM precipitation (see Figure 3). As a sample plot,
the scatterplot during the development period has been pre-
sented in Figure S1d between observed and TVDM down-
scaled precipitation for location 6.

The consistency of the TVDM in downscaling precipi-
tation is checked by using other GCM outputs as well.
The results obtained from HadGEM2 and CanESM2 are

FIGURE 3 Statistical measures obtained
from various models during development
period (1953–1990) using HadCM3
outputs [Colour figure can be viewed at
wileyonlinelibrary.com]
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shown in Figures 4 and 5. The results reveal that the per-
formance of TVDM is consistent across different locations
with widely varying climatology for all the GCMs used.
For instance, mean values (in “mm”) at low-rainfall
(location 4), normal-rainfall (location 2) and high-rainfall
(location 10) regions during calibration period using Had-
GEM2 (CanESM2) outputs are noted as 53.36 (56.76),
97.13 (95.13) and 253.86 (255.43), respectively (refer to
Figures 4 and 5). The NSE in the mentioned locations are
noted as 0.43 (0.44), 0.66 (0.67) and 0.70 (0.71), respec-
tively. The values of Dr at respective locations are noted
as 0.75 (0.75), 0.79 (0.80) and 0.77 (0.78) using Had-
GEM2 (CanESM2), respectively (refer to Figures 4
and 5).

5.1.4 | Performance of the existing SDSM and CORDEX
(calibration period)

While using SDSM for downscaling, it is worth mentioning
that the input data for SDSM at every individual location
has to be provided separately (manually). Thus, it is very

difficult to downscale the precipitation at all the grid inter-
sections in India (contains thousands of grid intersections)
using SDSM. Therefore, downscaling is carried out using
SDSM only at those 10 key locations (shown in Figure 1).
Next, as mentioned in section 3, the precipitation outputs
from CORDEX are procured from IITM for the study
region. Downscaled precipitations are bias-corrected before
assessing the performance.

The statistical measures of association between the
observed and the downscaled precipitation using SDSM and
CORDEX during development period are represented in
Figure 3 (HadCM3). The best values of RMSE and
ubRMSE are observed in the low-rainfall regions (locations
1, 4 and 9). The SDSM outputs found to perform better in
comparison to the rawGCM at almost all the locations. Per-
formance of SDSM and CORDEX are more or less same
considering all the locations across India. The mean value
of SDSM is found to match better with the normal- and
high-rainfall locations. The CORDEX seems to be overesti-
mating in high-rainfall locations (except location 6) and it is

FIGURE 4 Statistical measures obtained
from various models during development
period (1953–1990) using HadGEM2
outputs [Colour figure can be viewed at
wileyonlinelibrary.com]
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underestimating in normal- and low-rainfall regions
(Figure 3). Furthermore, the performance of the CORDEX
is noted as very poor in the southern part of India (locations
8, 9 and 10) and its performance at moderate-rainfall
regions (locations 1, 2 and 5) is better when compared to
rawGCM and SDSM (as per NSE, Dr and 95th percentile
values). The mean values are also matching better with the
observed precipitation mean. For instance, the mean values
at normal-rainfall (location 2) and high-rainfall (location 8)
regions are noted as 97.99 and 165.85 mm in case of
observed data, whereas these are noted as 82.35 and
161.74 mm from SDSM output and 91.16 and 172.58 mm
from CORDEX output, respectively, at corresponding loca-
tions. The high values of the standard deviations are noticed
using the SDSM outputs over high-rainfall regions (particu-
larly south Indian locations). It implies high uncertainty in
the SDSM and CORDEX at these locations. Overall, a com-
parison between the rawGCM data and the downscaled pre-
cipitation using SDSM and CORDEX indicates that the
SDSM and CORDEX outputs correspond better to the

observed precipitation. The consistency is noticed from the
outputs of other GCMs, that is, HadGEM2 and CanESM2
whose association with the observed precipitation and COR-
DEX precipitation are presented in Figures 4 and 5,
respectively.

5.1.5 | Comparison of TVDM outputs with rawGCM, SDSM
and CORDEX (calibration period)

The TVDM downscaled precipitation corresponds better to
the observed data and found to be much improved while
comparing with both SDSM and CORDEX. For instance,
the values of μ, σ and 95th percentile using TVDM are
found to be very close to the observed data (refer to
Figures 3–5). The best values of NSE and Dr are noted as
0.81/0.79/0.80 and 0.84/0.84/0.84 using HadCM3/Had-
GEM2/CanESM2 GCMs, respectively, at location 6. The
same values corresponding to location 6 are noted as
0.62/0.49/0.32 and 0.77/0.75/0.71 using rawGCM and
0.69/0.55/0.63 and 0.80/0.77/0.76 using SDSM downscaled
precipitation, respectively, for respective GCMs. These

FIGURE 5 Statistical measures obtained
from various models during development
period (1953–1990) using CanESM2
outputs [Colour figure can be viewed at
wileyonlinelibrary.com]
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values are found to be 0.64 (NSE) and 0.78 (Dr) using
CORDEX output, respectively. As an example, the associa-
tion of these outputs with observed precipitation at location
6 are shown as scatterplots in Figure S1. It is noticed from
Figure S1 that the CORDEX (panel b) and SDSM (panel c)
outputs slightly overestimate during the dry months
(November–May) and considerably underestimate during
the monsoon months (June–October). On the other hand,
the TVDM downscaled precipitation matches to the
observed data with much better accuracy as compared to the
output from other models (panels a–c). The performance of
the TVDM is consistently good at all the locations
(Figures 3–5) and its performance is outstanding at medium
and high-rainfall regions (locations 2, 3, 5, 6, 8 and 10).
Overall, it can be inferred that the downscaled precipitation
using TVDM corresponds well to the observed precipitation
and it is superior to the rawGCM as well as outputs from
SDSM and CORDEX.

5.2 | Performance during testing period

5.2.1 | Downscaling in future using TVDM: Modelling of
parameter series

While modelling the parameter series during the calibra-
tion period to extract the stochastic properties, the latest
35 years (1956–1990) period is used. Latest 35 years are
used to ensure to extract the recent climatological trend.
More than 30 years will reveal more confident estimate in
case of a stationary series. However, it is noticed that
some climate variables are found to change more rapidly
over last couple of decades. Again, according to the
World Meteorological Organization (WMO), it is also not
recommended to consider shorter than 30-year period to
assess the climatological properties. Thus, latest 35 year
period is used for extracting the stochastic properties.
Consideration of the stochastic properties from the latest
period will ensure the maximum time horizon in future
for projection.

FIGURE 6 Visual variation of statistical
measures obtained from various models
during testing period (1991–2005) using
HadCM3 outputs [Colour figure can be
viewed at wileyonlinelibrary.com]
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For brevity, one parameter (U-wind, that is, m_UWN)
at location 6 is used for demonstration and corresponding
plots are presented in Figure S3. First, the trend (panel a)
and periodicity (panel b), if any, is removed. Next, the
residual (panel c) is modelled with an AR(1) model. Adding
these three components (Equation (32)), 20 realizations are
regenerated. One such typical realization of m-values for
each of the six causal variables is shown in Figure S4 for
location 6. In Figure S4, the blue line indicates the series of
m-values during the model development period
(1956–1990) and testing period (1991–2005) knowing the
observed precipitation. Red line indicates the expected value
(out of 20 ensembles) of regenerated m-values (without
knowing the observed precipitation) during testing period
(1991–2005) by considering the trend, periodicity and the
stochastic component of the m-value series during the
development period. It is noticed that the regenerated m-
values (1991–2005) preserves the stochastic properties and
corresponds well with the expected m-values during the

testing period. The procedure is repeated at each grid inter-
section to regenerate the m-values and used for downscaling
in future at that corresponding grid intersections.

5.2.2 | Performance of the TVDM with rawGCM, SDSM
and CORDEX (testing period)

The skill of proposed TVDM is tested before applying it to
obtain the future downscaled precipitation. Therefore, the
downscaled precipitation using the regenerated m-values
and causal variables is compared during the testing period
(1991–2005) when the observed precipitation data are avail-
able which helps to test the model efficacy. The location-
wise statistical measures between observed precipitation and
the downscaled precipitation (using HadCM3) obtained
from rawGCM, SDSM, CORDEX and TVDM are calcu-
lated during the testing period (Figure 6). The best values of
Dr and NSE are noticed in case of TVDM model at all the
selected key locations (refer Figure 1). For instance, the
maximum and minimum Dr values using TVDM are found

FIGURE 7 Statistical measures obtained
from various models during testing period
(1991–2005) using HadGEM2 outputs
[Colour figure can be viewed at
wileyonlinelibrary.com]
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as 0.83 (location 6) and 0.69 (location 9) and at these loca-
tions the corresponding values of Dr are noted as 0.80 and
0.66 (using SDSM), 0.79 and 0.63 (using CORDEX) and
0.76 and 0.60 (using rawGCM). The mean and standard
deviation values calculated during the testing period are
compared with the observed mean and standard deviation
values at the key locations and TVDM found to be best per-
forming. For instance, the mean values (in mm) at location
10 (high-rainfall region) are noted as 256.10 (observed
data), 82.59 (rawGCM), 280.10 (SDSM), 250.95
(CORDEX) and 255.94 (TVDM), respectively. Similarly,
the mean values at low-rainfall region (location 4) are
obtained (in mm) as 48.64 (observed data), 29.45
(rawGCM), 53.34 (SDSM), 48.28 (CORDEX) and 51.35
(TVDM), respectively. The SDSM outputs revealed that it
is overestimating in the low-rainfall locations (see locations
1, 4 and 9 in Figure 6) and satisfactory performance is per-
ceived in normal- and high-rainfall locations. In brief, the

performance of proposed TVDM is found to be superior to
the rawGCM, SDSM and CORDEX outputs at all the loca-
tions (Figure 6). The other statistical measures (RMSE,
ubRMSE, NSE and 95th percentile) are also presented in
Figure 6 reveals the same fact. As a sample plot, the associ-
ation between observed precipitation and modelled precipi-
tation using rawGCM, SDSM, CORDEX and TVDM
outputs is presented as scatterplot in Figure S5. The better
correspondence between observed and downscaled precipi-
tation in case of TVDM is noticed from these scatterplot
(panel d).

Similarly, the performance using HadGEM2 and
CanESM2 during testing period is presented in Figures 7
and 8, respectively. From these plots, the superior perfor-
mance of TVDM as compared to SDSM and CORDEX is
found at all the key locations. For instance, the NSE value
at location 6 is noted as 0.35 (SDSM), 0.67 (CORDEX)
and 0.72 (TVDM) using HadGEM2 (Figure 7) outputs and

FIGURE 8 Statistical measures obtained
from various models during testing period
(1991–2005) using CanESM2 outputs
[Colour figure can be viewed at
wileyonlinelibrary.com]
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the same is noted as 0.56 (SDSM), 0.67 (CORDEX) and
0.75 (TVDM), respectively, using CanESM2 (Figure 8)
outputs. The other performance measures like mean,
RMSE, ubRMSE, Dr, standard deviation and 95th percen-
tile values are also revealed the superiority of TVDM
across all over selected key locations of India (Figures 7
and 8).

5.3 | Application of TVDM in downscaling the
precipitation for entire India and comparison with
CORDEX data

The analysis is extended to the entire Indian landmass for down-
scaling the precipitation. The TVDM downscaled precipitation
is contrasted with the CORDEX data during the model

FIGURE 9 Comparison between observed precipitation and bias-
corrected TVDM (using HadCM3, HadGEM2 and CanESM2) and
CORDEX precipitation during development period through monthly
average precipitation in the January (left panel) and July (right panel)
months [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 10 Comparison between observed precipitation and bias-
corrected TVDM (using HadCM3, HadGEM2 and CanESM2) and
CORDEX precipitation during testing period through monthly average
precipitation in the January (left panel) and July (right panel) months
[Colour figure can be viewed at wileyonlinelibrary.com]
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development (1953–1990), model testing (1991–2005) and
future period (2006–2035). For demonstration, the results are
presented for one non-monsoon month (January) and one mon-
soon month (July). It is found that the performance of the
TVDM downscaled precipitation is matched well with the
observed precipitation during the development (Figure 9) and
testing periods (Figure 10) whereas the CORDEX precipitation
data show a poor match with the observed data during the
respective time periods (refer Figures 9 and 10). The outstanding
performance of the TVDM in the northern, central, northeast
and Western Ghats region is noticed from Figures 9 and 10. The
CORDEX data correspond poorly with the observed data in the
Western Ghats region. It is worth mentioning that the CORDEX
data underestimates the precipitation in the northeast and West-
ern Ghats regions during the July (monsoon) month. It is found

to be consistent using the multiple GCMs, viz. HadCM3, Had-
GEM2 and CanESM2 except in the northern part, where Had-
GEM2 and CanESM2 slightly overestimate as compared to the
HadCM3.

Furthermore, the TVDM is utilized to downscale the
precipitation during future period (2006–2035) using the
RCP4.5 and RCP8.5 (except HadCM3) scenario outputs
obtained from all the three GCMs. The TVDM-downscaled
future precipitation for India, along with CORDEX data, are
presented in Figure 11 for a typical dry month (January)
and a high-rainfall monsoon month (July). The TVDM out-
put shows that there will be a slight increase in precipitation
during the future period as compared to the historical data
in the western and northeast regions of India and it may
slightly decrease in the northern India. Apart from this, the
high spatial variation at finer resolution in case of TVDM is
very clear from the comparison plots (Figure 11). This is
found to have better agreement with the observations in the
past as compared to the CORDEX output, which is found to
be much smoother than that is noticed in the observed
record in the past. The RCP8.5 scenario outputs are also
used to downscale the future precipitation using TVDM
(using HadGEM2 and CanESM2) and comparison was
made with CORDEX data (Figure 12). It can be noted that

FIGURE 12 Comparison between bias-corrected TVDM (using
HadGEM2 and CanESM2) and CORDEX precipitation during future
period using RCP8.5 scenario outputs through monthly average
precipitation in the January (left panel) and July (right panel) months
[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 Comparison between bias-corrected TVDM (using HadCM3,
HadGEM2 and CanESM2) and CORDEX precipitation during future
period using RCP4.5 scenario outputs through monthly average
precipitation in the January (left panel) and July (right panel) months
[Colour figure can be viewed at wileyonlinelibrary.com]
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the CORDEX is showing maximum increase in the Himala-
yan, northeast and Western Ghats regions in the monsoon
month (July) and over estimating in the southern part of
peninsular India during non-monsoon month (January). The
TVDM downscaled precipitation is also implies increase in
precipitation in the northeast and Western Ghats regions as
compared to historical period (Figure 12). The monthly var-
iation of precipitation based on RCP2.6 scenario is pre-
sented in Figure S6. Increase in precipitation is much lower
as compared to RCP8.5.

Although RCM output is used in this study as an target
to compare the performance of proposed TVDM, it is worth-
while to mentioned that a pseudo-reality approach used
RCM outputs as pseudo-observations (Vrac, Stein, Hayhoe, &
Liang, 2007). Thus, as an additional study, a pseudo-reality
approach is also adopted to check the ability of TVDM in

downscaling the future precipitation using RCM outputs as
pseudo-observations during the future period. The mean and
95th percentile values during the future period are calculated
and compared with the CORDEX RCP4.5 and RCP8.5 out-
puts. The consistency of results obtained from TVDM out-
puts is checked by analysing outputs from multiple GCMs
(HadCM3, HadGEM2 and CanESM2). The match between
TVDM downscaled, and CORDEX RCP4.5 and RCP8.5 sce-
nario outputs are shown in Figures 13 and 14. It is worth
mentioning that the TVDM outputs are matching better with
bias-corrected CORDEX data all over the study area. How-
ever, it seems to be the TVDM outputs in the Western Ghats
and northeast regions do not match with the CORDEX data
for both the RCPs, that is, RCP4.5 and RCP8.5 scenario
(Figures 13 and 14). However, the CORDEX data were also
found not to match with the observed data in these regions
during the historical period.

While the existence of non-stationarity in the relation-
ship between causal and target variables is supported by the
previous studies (Duan et al., 2012; Merkenschlager et al.,
2017; Sachindra & Perera, 2016), applicability of the pro-
posed methodology is tested over a vast area (India) with
wide variation of climatological conditions and the results
are promising for different type of climatology. In brief, it

FIGURE 13 Match of mean and 95th percentile values between bias-
corrected TVDM downscaled (using HadCM3, HadGEM2 and CanESM2)
precipitation and CORDEX (RCP4.5) precipitation during future period
(2006–2035) considering CORDEX output as pseudo-observations [Colour
figure can be viewed at wileyonlinelibrary.com]

FIGURE 14 Match of mean and 95th percentile values between bias-
corrected TVDM downscaled (using HadGEM2 and CanESM2)
precipitation and CORDEX (RCP8.5) precipitation during future period
(2006–2035) considering CORDEX output as pseudo-observations [Colour
figure can be viewed at wileyonlinelibrary.com]
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can be concluded that the TVDM downscaled precipitation
is closer to the observed precipitation values. Requirement
of sufficient historical data and location-specific calibration
might be the limitations of the application of TVDM. How-
ever, it is true for almost all the data-driven approach,
including SDSM and CORDEX. The important issue is that
the consideration of time-varying properties of the causal–
target variables is found to be important, which is the moti-
vation of TVDM. This characteristic helps to consider the
possible fact that the statistical relationship between the
causal variables and the target variable may not remain con-
stant over time, which is very likely in a changing climate.
Thus, developed TVDM is found to have a promise for its
application in many hydrological studies dealing with cli-
mate change impact assessment.

6 | CONCLUSIONS

This study develops a downscaling method, named as the
TVDM considering the non-stationarity issue in the context
of climate change. The proposed TVDM differs from the
existing SDSM as it incorporates the time-varying relation-
ship between the causal variables and the target variable.
The approach is based on the Bayesian updating philosophy
that updates its parameter at each time step in order to cap-
ture the time-varying dynamics in the causal–target vari-
ables relationships.

The performance of the developed TVDM is demon-
strated considering the India as study area at a spatial reso-
lution of 0.25� (lat.) × 0.25� (lon.). Its performance is
contrasted with the existing SDSM (assumes stationarity
inherently) and the dynamically downscaled products from
CORDEX.

The performance of TVDM is found to be much better
than the SDSM and CORDEX high-resolution downscaled
data. The time-varying relationship in TVDM is found to
offer a better performance with respect to the other two
downscaling approaches. While comparing with CORDEX
data, the TVDM is found to outperform the CORDEX out-
puts in terms of capturing spatial variability over India.

It is possible to model the stochastic nature of parameter
evolution over time. Based on this, the future projection of
downscaling is possible through TVDM. Trend, periodicity
and autoregressive components are found to capture the
temporal evolution of the parameters. Reasonable accuracy
is ensured for a 45-year time horizon in future.

TVDM requires parameter initialization. However, the
effect of this initial assumption dies down approximately
within 18 time steps (one and a half years). In other words,
model outputs are free from initial assumptions of parameter
set beyond 2 years from the starting of development period.
Thus, use of 2-year data as a spin-up period is recom-
mended in while developing TVDM.

Overall, the developed TVDM has shown some poten-
tial in its application in a changing climate due to its time-
varying characteristics considering the non-stationarity issue
that exists in the relationship between the causal–target vari-
ables. In the context of projections driven by greenhouse
gas emission/concentration scenarios, multi-model ensem-
bles are recommended to use as large-scale input to TVDM.
The ability of TVDM in downscaling the other hydro-
climatic variables, such as temperature and evapotranspira-
tion, is kept as future scope of this study.
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