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Abstract

This study aims to investigate the change in spectral patterns of droughts in Iran

based on the concepts of reliability, resilience, and vulnerability (RRV) in the

context of time. To achieve this goal, RRV values were first estimated based on

monthly gridded soil moisture data for a period of 64 years (1955–2018) for the
framework of Iran's political borders. The pairwise comparison of the values of

the three variables RRV indicates a positive relationship between reliability–
resilience and a negative relationship between reliability–vulnerability and

resilience–vulnerability. In order to obtain the Joint Probability Distribution

between reliability–vulnerability, Drought Management Index (DMI) for all the

gridded points within Iran's political borders were calculated by fitting the

Gaussian copula. According to this index, drought is an unfavourable climatic

phenomenon that is associated with increased Vulnerability and decreased Reli-

ability. The temporal and spatial changes of this index indicate that DMI values

are always high for the south, east and centre of Iran and low for the western

and northern half. To study the change in spectral patterns of droughts in Iran,

the 64-year period studied (1955–2018) was divided into two equal periods of

32 years. Then, using spectral analysis through Fourier transform method, the

first three periodicities related to each period that had the highest powers were

extracted. Finally, their periodicity was compared. The results indicated that the

drought periodicities in the north-west, north-east, west, south-west, and south

of Iran have become longer, that is, their nature has been changed from shorter

periodicities to longer ones. This change of nature in their first three periodic-

ities has been sometimes from 2–10 years to 2–15 years, from 2–10 years to 3–
30 years, and from 3–8 years to 8–15 years. However, the periodicities of

droughts in the eastern, south-eastern, and central Iran has changed from longer

periodicities to shorter ones. It has been changed from 3–15 years to 2–6 years,

from 3–15 years to 2–3 years, and from 3–30 years to 3–15 years.
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1 | INTRODUCTION

The vast country of Iran with a rainfall of about one-third
of the world rainfall is located in one of the arid and
semiarid regions of the world and drought is one of the
main features and characteristics of its climate (Vaghefi
et al., 2019; Kaboli et al., 2021). In recent years, for the
reasons that are often related to global climate change,
precipitation anomalies have increased in various parts
of Iran, and severe spatial and temporal fluctuations of
drought have caused enormous damage to the Iranian
economy. (Mahmoudi and Daneshmand, 2018).
Decreased rangeland yield (Joneidi et al., 2020), reduced
crop production especially rainfed (Shean, 2008), reduced
agricultural and drinking water resources (Emadodin
et al., 2019), reduction of surface and groundwater
resources (Moridi, 2017), outbreak of pests and plant and
animal diseases (Pourbabae et al., 2014), increased migra-
tion (Khanian et al., 2019), and ultimately the adverse
environmental, economic, and social effects (Madani
et al., 2016) are among the negative effects that threaten
Iran's sustainable development.

Various statistical and nonstatistical methods have
been used by different researchers to understand the peri-
odic behaviour of climatic variables in the form of differ-
ent time scales. One such important method is the
spectral analysis or frequency domain analysis (Rodrigo
et al., 2000; Yadava and Ramesh, 2007; Solgimoghaddam
et al., 2019). The spectrum of a time series represents the
frequencies in that time series and spectral analysis is a
way to identify these frequencies (Daneshmand and
Mahmoudi, 2016). The history of using this method in
hydroclimatological studies, especially in the field of cli-
matology of precipitation dates back to the 1950s. One of
the first studies that attempted to model the spectral
behaviour of precipitations using this method were those
of Scott and Shulman (1979) and Kirkyla and Ham-
eed (1989). Some studies on the detection of precipitation
harmonics by Kadioglu et al. (1999), Tarawneh and
Kadioglu (2003), Livada et al. (2008), Nastos and
Zerefos (2009), and Asakereh (2020). Daneshmand and
Mahmoudi (2016) also showed by analysing the spectrum
of time series obtained from the Effective Drought Index
(EDI) for 41 stations studied in Iran which the dominant
periods in the time series of droughts in Iran are very
diverse and range from 2 to 22 years. In addition to these
studies Asakereh (2012), Movahedi et al. (2012), Moghbel
et al. (2012), Asakereh and Razmi (2012), Roradeh
et al. (2014) for the precipitation variable, Ramzanipour
et al. (2011) and Asakereh et al. (2012) for detection of
apparent and latent cycles in the time series of rivers dis-
charge and Jalili et al. (2011, 2013). For Lake Urmia water
level time series, this method has been used a lot in Iran.

However, the use of spectral analysis in the studies
related to the detection of apparent and latent droughts is
very less and limited to recent decades. These studies can
be divided into two categories based on a general divi-
sion. The first category is the studies, which due to lack
of direct access to the precipitation data, have used the
drought indices, instead. Rather, they have tried to
extract and analyse different periods of droughts through
other variables. In this category of studies, drought and
drought propensity have always been defined as a year
that the precipitation was less than the long-term average
(Bhalme and Mooley, 1981; Cramer, 1987; Murata, 1990;
Me-Bar and Valdez, 2003; Currie, 2007; Wang
et al., 2007). Tree rings (Meko et al., 1985), water level of
rivers (Prokoph et al., 2012), surface sediments (Nelson
et al., 2011), and peat (Hong et al., 2001) and agricultural
productivity (Gudeta et al., 2003) are some of the indica-
tors that have been used to determine the amount of pre-
cipitation and thus understand the drought situation. In
addition to these methods, determining the amount of
damage caused by droughts (Jiang et al., 2006), their rela-
tionship with temperature (Zhaoxia et al., 2003), and
cycles of mountain fires (Garner, 2007) have been used to
determine drought and thus calculate their cycles. The
second category includes the studies that have directly or
indirectly used various drought indicators to determine
the periodicity of drought behaviour in different parts of
the world. EDI (Byun et al., 2008; Daneshmand and
Mahmoudi, 2017), Standardized Precipitation Index
(Bordi et al., 2004a, 2004b; Martins et al., 2012; Li et al.,
2013; Telesca et al., 2013; Moreira et al., 2015), and
Palmer Drought Severity Index (PDSI) (Liu et al., 2013)
are among the drought indices used in this category of
studies. All of these indicators, with the exception of the
severity of a failure event of the Palmer Drought (PDSI)
and the EDI, are defined on a monthly or seasonal time
scale and will not be suitable for analysing drought pro-
pensity at longer time scales. Therefore, there is a need
for an appropriate drought index that can monitor
drought propensity at longer time scales.

Hashimoto et al. (1982) showed the effectiveness of
reliability, resilience, and vulnerability (RRV)-based
approach to assess the performance of water resources
systems using an example of reservoir systems. Assuming
that the reduction of soil moisture in a vertical soil col-
umn is similar to the performance of a water supply res-
ervoir, the Drought Management Index (DMI) was
presented using RRV based concept by Maity
et al. (2013). Therefore, the DMI is a probabilistic drought
index to describe droughts which is very different from
other indicators of drought, because it considers the read-
iness of the system to return from drought to wet condi-
tions, and this is a factor that has not been considered to
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date in the development of management plans and reduc-
tion of damages caused by droughts. Chanda et al. (2014)
used this index to study spatiotemporal variation drought
propensity across entire Indian mainland. The results of
these researchers showed that the drought propensity is
low in the northern and northeastern regions of India
but in the western part, the proneness is relatively high.
In a global analysis, Chanda and Maity (2017) examined
drought trend propensity until the end of the 21st century
using DMI. They showed a significant upward trend in
drought propensity in large parts of Africa, South Amer-
ica and Asia, and a marked downward trend in northern
Europe and North America.

Since Iran is located in southwestern Asia on the
desert belt of the Northern Hemisphere, most of it is
dominated by subtropical high pressure cells most of the
year. Therefore, most of its area is covered by areas with
arid and semi-arid climates (Mahmoudi et al., 2011).
Therefore, considering the increasing trend of tempera-
ture (Mahmoudi et al., 2019) and decreasing trend of pre-
cipitation in Iran (Mahmoudi and Rigi Chahi, 2019), the
question arises whether the characteristics of droughts in
Iran are changing? Therefore, the main purpose of this
study is to answer this question and achieve a new meth-
odology for the changing pattern of droughts in Iran
through an analysis of their spectral patterns. Therefore,
in order to achieve this goal, the long-term time series of
DMI for two separate 32-year periods has been subjected
to spectral analysis. Comparing the spectral changes of
these two periods, the possibility of spectral changes in
Iranian droughts is considered.

2 | THE STUDY AREA

Iran is part of a mountainous and highland territory
called the Plateau of Iran. The area of Plateau of Iran is
about 2,500,000 km2, of which 1,648,195 km2 belongs to
Iran. This geographical area is located in Southwest Asia,
between 25� and 40� north latitude and 44–64� east longi-
tude (Ghorbani, 2013) (Figure 1).

Due to this specific geographical location and topo-
graphic features of each region of Iran, it is ruled by dif-
ferent climates. The average annual precipitation of Iran
is about 250 mm, the spatial distribution of which is very
diverse in different parts of the country. The average
annual precipitation in desert areas is as low as 50 mm or
less, whereas in some other places, such as the western
shores of the Caspian Sea, it is around 1,800 mm
(Masoodian, 2009) (Figure 2a). The spatial distribution of
the average annual temperature of Iran is also a function
of roughness and changes in the angle of inclination
of the sun. The lowest annual temperatures in Iran

correspond to the peaks of the high mountain range and
the highest is observed on the southern coast of Iran. In
general, the temperature of Iran decreases from south to
north and from east to west. The cooling of the air in
the south–north direction is mainly due to the increase
in latitude and the decrease of solar radiation, as well as
the density of high mountain ranges in the north of the
country. However, the decrease in temperature from
east to west is due to the accumulation of the Zagros
mountain range in the west of the country and the inva-
sion of Siberian air masses into the central holes of Iran
(Alijani, 1997) (Figure 2b).

In recent decades, due to the causes that are often
related to global climate change, precipitation anomalies
have increased in different parts of Iran and severe spa-
tial and temporal fluctuations of drought have caused
enormous damage to Iran's economy. Study conducted
regarding the severity and extent of droughts in Iran dur-
ing a 30 years period which ended in 2015 showed that in
the years 1988, 1999, and 2007 more than 90% of Iran
was dominated by drought. Besides, more than two other
widespread droughts had happened in 2014 and 1998
which covered 83% and 79% of the country, respectively
(Balouch, 2020).

3 | DATA AND METHODOLOGY

To study the spectral patterns of Iranian droughts based
on the DMI, monthly gridded soil moisture, values (0.5
by 0.5� and in millimetres) for a period of 64 years from

FIGURE 1 Location of Iran's political geography in

Southwest Asia [Colour figure can be viewed at

wileyonlinelibrary.com]
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1955 to 2018 are obtained from the Climate Prediction
Center (CPC), NOAA (http://www.esrl.noaa.gov/psd/
data/gridded/data.cpcsoil.html, accessed in December
2020) (Fan and van den Dool, 2004). These values are
estimated based on the statements of van den Dool
et al. (2003) using a one-layer leaky bucket model with
fixed parameters in terms of space. The reason for the sta-
bility of the model parameters was their adjustment
based on Oklahoma observed runoff data in the
United States. In fact, this hydrological model assumes
that the value of the parameters is constant for the whole
world that is the water content in a single soil column to
a depth of 1.6 m with a maximum water holding capacity
of 760 mm and a common porosity of 0.47 (van den Dool
et al., 2003). It should be noted that this data is not
Reanalysis data at all and it has been argued that
reanalysis data are not at all reliable for this type of study
due to the bias in them (van den Dool et al., 2003; Fan
and van den Dool, 2004). Time series of soil moisture at
622 grid points that falls within the political boarder of
Iran are extracted from CPC, NOAA. The time series of
this dataset are complete with no missing data. Besides,
validation of the gridded data of CPC soil moisture was
done by using soil moisture data obtained from 32 agricul-
tural meteorological stations in Iran based on different
statistical periods. Figure 3 shows the distribution and
geographical location of the selected stations.

Determining a numerical threshold to separate dry
and wet spells can be one of the major challenges in
using the DMI for monitoring droughts in an area. To
determine this threshold, Maity et al. (2013) and Chanda
et al. (2014) proposed the use of permanent wilting point
(PWP). The PWP is the minimum amount of soil mois-
ture required for plants to prevent their wilt (Taiz and
Zeiger, 1991). If soil moisture falls below this threshold,
the plants can no longer leave their wilting stage and
eventually die. The value of this threshold in field condi-
tions is not a fixed value for each soil type and is deter-
mined by a combination of plant, soil and atmosphere

conditions (Rao, 1997). Specific to Iran, PWP data are not
available for the whole of Iran. However, gridded data
(PWP) for the entire world is developed by the Global
high-resolution soil profile database for crop modelling
applications, which is available at https://dataverse.
harvard.edu. In this database, PWP along with 24 other
soil parameters, with a spatial resolution of 10 by 10 km
for each country are stored separately in *.SOL format. In
this database, for each gridded point, the PWP is esti-
mated for six layers of 5, 15, 30, 60, 100, and 200 cm
above the soil surface (Han et al., 2019). In this study, the
weighted average of these six layers was used as the PWP
threshold. The total number of gridded points extracted
from this database for Iran is 15,648 gridded points. It
should be noted that this database does not estimate the
PWP for the desert areas of Iran, where most of the soils
fall into two categories: Aridisols and Entisols with Aridic
dry moisture regime (Roozitalab et al., 2018). Finally, the
two databases used that have different spatial distribu-
tions were also scaled. Co-scaling of the two databases is
attempted such that each grid point of the soil moisture
is located exactly between the four gridded points of the
PWP. The average of these four points is considered as
the PWP value for that gridded point of soil moisture. But
for points for which the PWP was not calculated, it was
decided to use a threshold value of 35% of the long-term
average moisture content of that point to maintain spatial
continuity. Figure 4 shows the spatial distribution of
PWP values based on the Global high-resolution soil pro-
file database for crop modelling applications within the
Iranian political boundary.

3.1 | Calculation of DMI

The methodology presented in this research is broadly
divided into two parts. In the first part, the steps of calcu-
lating the drought index based on soil moisture include
three steps as follow:

FIGURE 2 (a) Spatial

distribution map of average annual

precipitation of Iran, and (b) spatial

distribution of the average annual

temperature of Iran. Source of data

for these maps is meteorological

Organization of Iran [Colour figure

can be viewed at

wileyonlinelibrary.com]
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1. Assessment of RRV for soil moisture time series
2. Joint probability distribution between three measures

through best-fitting copula
3. Determination of DMI as a measure of the long-term

characteristics of droughts

In the second part, spectral behaviour of DMI will be
modelled for Iran using spectral analysis. In the follow-
ing, each of these parts will be explained separately.

3.1.1 | RRV evaluation of soil moisture time
series

Suppose X1,X2,…,Xn are time series of soil moisture with
data length n to evaluate RRV. If X t≥PWP, it is consid-
ered a satisfactory stage and is indicated by the symbol
S. And if X t<PWP, it is recognized as an unsatisfactory
stage and is marked with an F symbol.

Reliability
Reliability is defined as the probability that a system is in
a satisfactory state (Hashimoto et al., 1982). For soil mois-
ture, reliability is defined as the probability that soil
moisture is above the specified threshold (here PWP).
Therefore, reliability α is defined as Equation (1):

α=P Xt∈Sð Þ ð1Þ

Where S is a satisfactory stage as mentioned earlier.
From time series, α is calculated as follows:

a=
lim

n!/
1
n

Xn
t=1

Zt ð2Þ

Where Zt=1, if Xt∈S and Zt=0 if Xt∈F:

Resilience
Resilience is a measure that shows how a system can
quickly return to the satisfactory stage after it has fallen

FIGURE 3 Geographical

location of agricultural

meteorological stations in Iran

FIGURE 4 Spatial distribution of PWP values based on global

high-resolution soil profile database for crop modelling applications

for Iran's political framework (https://dataverse.harvard.edu/

dataset.xhtml?persistentId=doi:10.7910/DVN/1PEEY0) [Colour
figure can be viewed at wileyonlinelibrary.com]
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below the satisfactory threshold. This can be defined as
the ratio of the probability of transition from the unsatis-
factory to the satisfactory stage and also the probability of
failure, that is,

γ =
P Xt∈F,Xt+1∈Sð Þ

P Xt∈Fð Þ ð3Þ

where S and F are already defined. The numerator shows
the ratio of the probability of transition from the unsatis-
factory to the satisfactory stage, which is denoted by ρ.
The number of times the system is transferred from a sat-
isfactory stage to an unsatisfactory stage and vice versa
from an unsatisfactory stage to a satisfactory stage will be
equal in the long run. Finally it can be expressed as
ρ=P Xt∈F,Xt+1∈Sð Þ=P Xt∈S,Xt+1∈Fð Þ. ρ can be calcu-
lated as follows

ρ=
Lt

n!/
1
n

Xn
t=1

Wt ð4Þ

where Wt represents the event of transformation from
the satisfactory to the unsatisfactory stage (or vice versa).
Wt=1 if Xt∈S, otherwise it will be Xt+1∈F and Wt=0.
The denominator (3) can be expressed as
P Xt∈Fð Þ=1−P Xt∈Sð Þ. So as explained earlier, P Xt∈Sð Þ
is defined as Resilience α. Therefore, Equation (3) can
also be expressed as follows:

γ=
ρ

1−α
ð5Þ

Vulnerability
Vulnerability measure the severity of a failure event that
has already occurred. Vulnerability is defined as follows

v=
X
j∈F

sjej ð6Þ

which sj the numerical indicator of severity for an obser-
vation xj which belongs to the unsatisfactory state; ej is
the probability that xj, that is related to sj. The most
unsatisfactory and severe outcome is the result that
occurred in a set of dissatisfaction situations. Regarding
soil moisture, vulnerability is a probability weighted aver-
age of the soil moisture deficits (according to the PWP of
the study site) of failure events. Assuming that deficits
are equiprobable in terms of different magnitudes, soil
moisture deficit below the PWP threshold is referred to
as an indicator of severity of a failure event and

vulnerability are measured in terms of the average soil
moisture deficits during failure events.

3.1.2 | Fitting a suitable copula in order to
obtain joint probability distribution between
three measures RRV

Interrelationships between RRV should be considered
when assessing drought characteristics. To do this, the
theory of copulas is used. Researchers have successfully
used many copulas to perform multivariate hydrologic
analysis (Maity and Kumar, 2008; Zakaria et al., 2010;
Maity et al., 2013; Chanda et al., 2014; Chanda and
Maity, 2017; Das et al., 2019; Poonia et al., 2021; Qi
et al., 2021; Sahana et al., 2021). Previous literature shows
that negative correlations between random variables can
be effectively obtained by various copulas, which will be
explained in this section.

Joint probability distribution using copulas
A Copula is a function that connects univariate marginal
distributions in the form of a multivariate joint distribu-
tion (Nelsen, 2006). Assume that X and Y are two contin-
uous random variables with marginal cumulative
distribution functions F xð Þ and G yð Þ and joint distribu-
tion function H x,yð Þ, respectively. Sklar's theorem (1959)
states that for a joint distribution function H with mar-
gins F and G there is a copula C for all x,yð Þ in the
extended real line R, so that

H x,yð Þ=C F xð Þ,G yð Þ½ � ð7Þ

If F and G are continuous, then C is unique; C is also
unique in the simultaneous range of F and G. In terms of
RRV, X indicates reliability or resilience and Y indicates
vulnerability, and H is the joint distribution. Realizing
that these pairs are negatively related, seven Gumbel,
Clayton, Plackett, Frank, AMH, JOE, and Gaussian cop-
ulas were selected for the most appropriate comparison
to obtain the joint behaviour between reliability–
vulnerability and resilience–vulnerability. Then, two
goodness of fit metrics, Tn and Sn, were used to select
the most suitable Coppola.

To obtain the values of the two statistics Tn and Sn,
the empirical cumulative frequency function (CDF)
values must first be calculated for all data points,
denoting it Cn. Cn is obtained for the bivariate case as
follows:

Cn uð Þ= 1
n

Xn
i=1

I U i1≤u1,U i2≤u2ð Þ ð8Þ
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where u= u1,u2½ � is the reduced variables of reliability
(resilience) u1ð Þ and vulnerability u2ð Þ and I Að Þ=1, if A
is true and I Að Þ=0 if A is false. Reduced variables after
conversion are obtained through their marginal distri-
bution, that is, u2=;−1 Vð Þ and u1=;−1 Rð Þ, where R
is resilience, V , vulnerability and ;−1, the inverse of
cumulative normal distribution. Uij i=1,…,n and j=1,2ð Þ
is known as pseudo-observations. These are obtained as
Uij=Rij= n+1ð Þ where Rij are the ranks of the data.

For each empirical CDF value, the CDF values are
estimated using the normal CGð Þ, Clayton CCð Þ, and
Gumbel CGð Þ copulas for the data.

Sn=
Z

0,1½ �2
Dn uð Þ2dCn uð Þ ð9Þ

Tn=supu∈ 0,1½ �2 Dn uð Þj j ð10Þ

where Dn uð Þ= ffiffiffi
n

p
Cn−Cð Þ and n are the number of point

data (Genest et al., 1995; Maity et al., 2013).
The results showed that the Gaussian Copula model,

due to its ability to capture the Negative association
between variables, is the most suitable Copula for
obtaining the behaviour between reliability–vulnerability
and resilience–vulnerability (more details are given in
the results and discussion section). Gaussian Copula
belongs to the category of elliptical copula that are able
to take care of the entire range of positive and negative
association between random variables. The bivariate
Gaussian copula is defined as follows:

CG u,vð Þ=
Zφ−1 uð Þ

−∞

Zφ−1 vð Þ

−∞

1

2π 1−ρ2ð Þ1=2
exp −

x2−2ρxy+y2

2 1−ρ2ð Þ
� �

dydx

ð11Þ

The dependence parameter of this copula ρ depends
on Kendall's tau, τ, which is estimated by the following
equation:

τ=
2
π
sin−1 ρð Þ ð12Þ

3.1.3 | Development of copula-based DMI as
a measure of long-term characteristics of
droughts

Based on the joint distribution between reliability and
vulnerability, an index is developed that will convey
reliability and vulnerability information simultaneously.

From the previous discussions, it became clear that more
favourable conditions are shown by the increase in reli-
ability. Here drought is recognized as an undesirable phe-
nomenon. On the other hand, the situation becomes more
unfavourable with the increase in vulnerability. Therefore,
the proposed DMI should increase with increasing vulner-
ability and with decreasing reliability and vice versa. This
can be done with a joint measure of probability that shows
an exceedance of reliability and a nonexceedance of
vulnerability. Therefore, DMI is defined as follows:

DMI=P R>r,V≤vð Þ ð13Þ

Where P …ð Þ = probability of the event …ð Þ, R = reli-
ability, V = vulnerability and r and v = reliability and
vulnerability are reduced respectively which are calcu-
lated from the time series of soil moisture using the
appropriate threshold. As mentioned earlier, this thresh-
old cannot be selected randomly. PWP is a suitable
threshold based on the soil–crop composition in a partic-
ular location. To obtain the actual DMI values for a loca-
tion, the PWP for that location must be used.

3.2 | Spectral analysis

After calculating the DMI for all the available gridded
points inside the Iranian political borders, the stationary
or nonstationary being of them was investigated by the
use of the seasonal and nonseasonal differencing method,
and the time series which were nonstationary became
stationary by this method. In the following, the spectral
analysis was used to identify the periodicity of the
droughts and wet years in Iran. Various transform time
series can be used for spectral analysis. Classical Fourier
transform is one of the most basic and fundamental of
these transformations. The classic Fourier transform is a
transform from time domain to frequency domain. Using
this conversion, one can accurately identify frequencies
and periods. The Fourier transform states that any peri-
odic motion can be thought of as a sum of several simple
periodic motions. Fourier transform shows that a peri-
odic function such as f tð Þ with period p can be written as
the sum of sine and cosine functions:

f tð Þ=a0+
X∞
n=1

ancos nωtð Þ+
X∞
n=1

bnsin nωtð Þ ð14Þ

The relationship between period and frequency is as
follows:

p=
2π
ω

ð15Þ
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Main frequency ω (first) and its multiples, 2ω,3ω,…,nω
are called its harmonics. The main frequency is also
called first harmonic and the frequency of each coordi-
nate is written as an integer multiple of the main fre-
quency or first frequency. Thus, second, third, ..., nth
harmonics have frequencies 2ω,3ω,…,nω, respectively.
Constant a0 displays the average value of the function.
The quantities an and bn represent the range of sine and
cosine functions. The exact shape of a periodic function
depends on the number of sine and cosine functions, as
well as their range. The exact shape of the periodic func-
tion depends on the number of the range of sine
and cosine functions as well as their range. In other
words, the exact shape of the function determines the
number of sentences selected from the series. In the
mathematical representation, n, it represents the number
of selected sentences from the Fourier series (Alonso and
Finn, 1992).

In this research, the fast Fourier transform (FFT), the
Decimation-In-Frequency FFT algorithms method has
been used. FFT uses the idea of discrete Fourier trans-
form (DFT). In fact, FFT is the fast realization of DFT
that uses multiplication of matrices to reduce the compu-
tational steps (Mertins, 1999). In Figure 5, all the
research stages are provided in the form of a flowchart.

4 | RESEARCH FINDINGS

4.1 | Validation of gridded data of CPC
soil moisture regarding station data

Soil moisture data measured in agricultural meteorolog-
ical stations in Iran have been suffering from problems
such as high missing data, also the statistical period was
short, and sometimes no electronic registration was
done. Therefore, regarding the mentioned problems, a
short 2-year period (2015–2016) was selected for all
32 agricultural meteorological stations in Iran, and their
correlation coefficient was measured with the closest
gridded data of CPC soil moisture. The range of values
for the correlation coefficient was 0.65 in Jahrom Sta-
tion, and 0.89 in Manjil Station at the probability level
of α = 0.05. Generally, it can be concluded that the cor-
relation coefficients of stations located in arid and semi-
arid regions were lower and those of stations located in
wetter areas were higher. Figure 6 shows a line diagram
for two time series of soil moisture in Gharakhil Station
in the North of Iran. The correlation coefficient of these
two time series in Gharakhil Station at the probability
level of α = 0.05 was obtained at 0.7 and the time-series
behaviour was almost similar to each other.

4.2 | Spatiotemporal variation of RRV

The first step in calculating the DMI is to select the
appropriate moving time windows. Chanda et al. (2014)
examined the sensitivity of the DMI to various time-
moving windows and suggested that 5-year time-moving
windows could be a good choice for calculating the DMI.
Therefore, in this study, the soil moisture time series for
a period of 64 years (1955–2018) were received from the
CPC database, NOAA, for the framework of Iran's politi-
cal borders and were divided into shorter periods of
5 years. The end result of this division was to obtain
60 blocks of 5 year moving windows (1955–1959, 1956–
1960, …, 2013–2017, 2014–2018) for the Soil moisture
time series.

Then, for each of these 5-year moving windows, RRV
was calculated and then their choropleth map was pre-
pared. The total choropleth map prepared at this stage
reached 180 maps. Due to the large number of maps, it
was decided to sample 12 maps for each case with an
interval of 5 years in the article. As can be seen in
Figure 7, in most of the maps prepared for reliability, the
northern parts of Iran had higher values and the south-
eastern parts had lower values. It should be noted that
higher values indicate greater reliability and lower values
indicate lower reliability. Whenever the amount of soil
moisture does not fall below the set threshold even once
during a period of 5 years, then the Reliability will be
equal to 1 for that period, otherwise the reliability will be
values lower than 1. Figure 8 shows the spatiotemporal
variation of the resilience values. Resilience values also
correspond exactly to reliability values and its values
change between 0 and 1. As can be seen in Figure 8, large
parts of the northern and western halves have high resil-
ience and the southern and eastern halves have lower
resilience. Spatiotemporal variation vulnerability
(Figure 9) values also show almost identical temporal
and spatial patterns with reliability and resilience. Large
parts of the northern half of Iran have less vulnerability
(less than 4 mm) and the southern half has more vulner-
ability (more than 24 mm). It should be noted that the
unit for measuring vulnerability is millimetres, whereas
reliability and resilience values are without units of mea-
surement because they are measured based on probabilis-
tic values between 1 and 0.

The reasons for the higher values of reliability and
resilience and the lower values of vulnerability in the
northern and western half of Iran compared to its south-
ern and eastern half, are the existence of more precipita-
tion, lower PWP and finally higher soil moisture.
Therefore, it is unlikely that the soil moisture in these
areas will remain below the PWP threshold for a long
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time. However, there is a strong tendency to stay below
the PWP threshold in the southern and eastern half of
Iran, due to the prevalence of arid and semi-arid

climates, very low precipitation and low PWP Soil mois-
ture. Therefore, their reliability and resilience values are
very low and their vulnerability values are very high.

FIGURE 5 The flowchart of

methodology in this study

FIGURE 6 Line diagram for time series of soil moisture in

Gharakhil Station in north of Iran and the time series of CPC soil

moisture in the closest point to Gharakhil Station, along with the

Pearson correlation coefficient value between them [Colour figure

can be viewed at wileyonlinelibrary.com]

FIGURE 7 Choropleth maps of spatiotemporal variation

reliability values on Iran for the period 1955–2018 (out of a total of

60 maps, for example only 12 maps with a time interval of 5 years

are given) [Colour figure can be viewed at wileyonlinelibrary.com]
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4.3 | Spatiotemporal variation of DMI

Pairwise scatter plots of RRV values for all gridded
points within Iran's political borders are drawn to better
understand the interrelationships between them, and
Figure 10 provides an example. As shown in Figure 10,
the relationship between reliability and resilience
(Figure 10a) is a positive relationship and the relation-
ship between vulnerability–resilience (Figure 10b) and
vulnerability–reliability (Figure 10c) is a negative one.
Kendall's tau correlation coefficient values also confirm
the positive relationship between reliability and resil-
ience (0.332) and the negative relationship between reli-
ability and vulnerability (−0.991) and resilience and
vulnerability (−0.342). Maity et al. (2013) and Chanda
et al. (2014) in their studies on India also found the
same relationships with slight differences in the values
of RRV. Therefore, according to the joint characteristics
of reliability–vulnerability and resilience–vulnerability,
in this study, the combined reliability–vulnerability
combination was used to develop the DMI for monitor-
ing long-term droughts in Iran.

Then seven copulas Gumbel, Clayton, Plackett, Frank,
AMH, JOE, and Normal were tried to obtain the best-fit
copula for describing the joint distribution between reliabil-
ity and vulnerability. As can be seen in Table 1, the statisti-
cal measure Snð Þ of the Gaussian copula is much lower
than that of the other joints, indicating that the Gaussian
copula provides the optimum fit. However, some studies,
such as Maity et al. (2013) and Chanda et al. (2014),
found Plackett Copula to be a more appropriate copula
for calculating the joint distribution (between resilience
and vulnerability). Finally, the Gaussian copula was

selected to obtain the joint distribution between reliabil-
ity and vulnerability in this study. Therefore, according
to this index, drought is an unfavourable climatic phe-
nomenon that is associated with increased vulnerability
and decreased reliability in an area.

Spatial variations of DMI were also examined by a set
of 60 maps prepared for the entire study period (1955–
2018). Out of these 60 maps, 12 maps are given as an
example in Figure 10 with an interval of 5 years. As can
be seen in Figure 11, the values of the DMI are always
and consistently high for the south, east and centre of
Iran, which shows the great tendency of these regions to
drought, while for the western and northern half of Iran,
this index shows a much lower value. These variations in
the values of DMI in the geographical area of Iran can
have different causes, but certainly spatial extent, cli-
matic diversity, topography, soil type, and temporal–
spatial distribution of precipitation have played the most
important role.

To study the DMI temporal variations, out of a total of
622 gridded points within Iran's political borders, eight
sample points were selected and their time series diagrams
were prepared (Figure 12). The selection of these eight
points was based on the highest value of the DMI mea-
sured during the study period. For example, point ‘a’ rep-
resents the point where the highest DMI was between 0.6
and 0.7. Point ‘b’ represents the point where the highest
DMI was between 0.5 and 0.6. Finally, point ‘h’ refers to a
point where DMI values are zero for the entire period
under study. According to these graphs (Figure 12a–h) it
can be clearly seen that in all of them, with the exception
of graph h, where all the DMI values were zero, it is an
almost periodic definite behaviour is observed in them.

FIGURE 8 Choropleth maps of spatiotemporal variation

resilience values on Iran for the period 1955–2018 (out of a total of

60 maps, for example only 12 maps with a time interval of 5 years

are given) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 Choropleth maps of spatiotemporal variation

vulnerability values on Iran for the period 1955–2018 (out of a total
of 60 maps, for example only 12 maps with a time interval of

5 years are given) [Colour figure can be viewed at

wileyonlinelibrary.com]
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4.4 | Spectral analysis of DMI time series

To study the changing spectral Pattern of droughts in
Iran, first the Soil moisture time series that were received
for a period of 64 years (1955–2018) from the CPC data-
base, NOAA, was divided into two equal periods of
32 years. Then the DMI was calculated based on 5 year
moving windows for both periods separately. Spectral
analysis by Fourier transform method was used to iden-
tify the dominant periods or frequencies in the DMI time
series. Given that Fourier transform is problematic in the
nonstationary series Spectral analysis, the stationary con-
dition of the DMI series for both periods was examined
for all gridded points within Iran's political borders. In
places where there was no static condition, static trans-
formations were performed using seasonal and non-
seasonal differencing. Then the data were analysed
spectrally.

The output of Spectral analysis on the DMI time
series is a periodogram (Figure 13). This periodogram
actually shows the relationship between power and fre-
quency. The high power at a frequency indicates the pre-
dominance of that frequency during the desired time
series. In this study, frequency is shown in terms of Cycle
per year. In other words, periodicities or cycles are mea-
sured on a yearly basis. For example, the periodograms of
a selected point (point a in Figure 12) are shown sepa-
rately for the first 32-year period (1986–1955) and the sec-
ond 30-year period (1987–2018) in Figure 13. Based on
these periodograms, it can be seen that in the first
30 years, the three dominant Periodicities based on the
highest powers were Periodicities of 2.73, 2.5, and
2.14 years, respectively (Figure 13a), while in the second
32-year period, these periodicities changed in nature and
the three dominant periodicities of this period were
cycles of 10, 3.75, and 2 years, respectively (Figure 13b).

FIGURE 10 Pairwise scatter plot between (a) reliability-resilience, (b) resilience–vulnerability and (c) reliability–vulnerability [Colour
figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Fitting copulas given to

pairs of resilience and vulnerability

variables to obtain a joint probability

distribution

Copula Gumbel Clayton Plackett Frank AMH JOE Normal

Sn 0.3696 0.24538 0.5631 0.8452 1.2485 1.1113 0.10608

FIGURE 11 Choropleth maps of

spatiotemporal variation DMI values

on Iran for the period 1955–2018 (out
of a total of 60 maps, for example

only 12 maps with a time interval of

5 years are given) [Colour figure can

be viewed at wileyonlinelibrary.com]
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Accordingly, for all gridded points within Iran's politi-
cal borders, the three periodicities or the first three peri-
odic components with the highest powers were extracted
for both the first 32-year period (1955–1986) and the sec-
ond 32-year period (1987–2018). In Figure 14, the left
panel shows the spatial distribution of the three Periodic-
ities or the first three periodic components of the first
32-year period (1955–1986) and the right panel shows the

spatial distribution of the three periodicities or the first
three periodic components of the second 32-year period
(1987–2018). As can be seen in Figure 14, the dominant
periods in the DMI time series are very diverse and
include periods of 2 to 30 years. Since the value of DMI
for parts of north, northwest, northeast, and west of Iran
in all two periods studied has always been zero, no
change should be expected for these parts of Iran.

FIGURE 12 DMI time series changes plot for 8 selected points during the period 1955–2018. The horizontal axis numbers from number

1 represent the time period 1959–1955, number 2 represents the time period 1960–1956, … and number 60 represents the time period 2018–
2014 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 13 Periodograms of a

selected point (point a in Figure 9)

separately for (a) the first 32-year

period (1986–1995) and (b) the

second 32-year period (1987–2018)
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Comparing the maps of these two periods for the south,
southwest, southeast, east, and centre of Iran, these dif-
ferences are clearly visible (Figure 14).

Finally, in order to obtain a better view of the spec-
tral changes between the two periods studied, a map of
their changes in periodicities was prepared. In Figure 15,
the points whose periodicities have changed in nature
from shorter periodicities in the first 32 years to longer
periodicities in the second 32 years are shown as red cir-
cles. However, periodicities that were longer in the first
32-year period and shortened in the second 32-year
period are shown as green dots. According to Figure 15,
it is clear that for parts of the northwest, northeast, west,
southwest, and south of Iran, periodicity of droughts

have been prolonged whereas the periodicity of dro-
ughts in the eastern, southeastern and central parts of
Iran has been shortened. The results of this study are
almost in line with the results of Mahmoudi and
Daneshmand (2018). By spectral analysis of time series
obtained from EDI for 41 stations studied in Iran, they
showed that the dominant periods in the drought time
series of Iran are very diverse and range from 2 to
22 years. They also claim that the severity of wet years
was declining in Iran and the severity of drought was
increasing. In addition, Mahmoudi and Daneshmand
(2018) have reported that the probability of droughts
in Iran is increasing and their return period is shorter
than the past.

FIGURE 14 The first three

periodicities with the highest powers

for the first 32-year period (1955–
1986) and the second 32-year period

(1987–2018) [Colour figure can be

viewed at wileyonlinelibrary.com]

MAHMOUDI ET AL. 4159



In Tables 2, 6 points out of 622 gridded points whose
droughts spectral patterns have been changed over time,
within the Iranian political borders, were chosen as sam-
ples. The geographical location of these 6 points has been
marked by capital letters (A–F) in Figure 12. These six
points selection method was that points A, B, and C rep-
resent points whose periodicity has been shortened from
the first 32-year period to the second 32-year period. The
points D, E, and F are those whose periodicity has been
longer in the first 32-year period than the second 32-year
period. Based on Table 2, these changes in the spectral
patterns of Iran's droughts can be clearly seen in their
periodicity.

5 | CONCLUSION

The main objective of the current study was to investigate
the changes in spectral patterns of droughts in Iran. To
achieve this goal, first, the long-term time series of DMI
was calculated based on components such as vulnerabil-
ity, reliability, and resilience, for 60 years by the use of
gridded soil moisture data from the CPC NOAA, within
the Iranian political borders. The results indicated that
the DMI's value for the southern, eastern, and central
areas of Iran has been continuously high, while it has
been low for the western and northern halves. The high
and low values of this index are indicative of very high

FIGURE 15 Comparison map of

in the periodicity of droughts

between the first 32-year period

(1955–1986) and the second 32-year

period (1987–2018). Red dots indicate

periodicities changes from smaller to

larger and green dots indicate

periodicities changes from larger to

smaller [Colour figure can be viewed

at wileyonlinelibrary.com]

TABLE 2 The droughts' spectral patterns changes in the select points from the first 32-year to the second 32-year period

Points

The first 32-year period (1955–1986) The second 32-year period (1987–2018)

First
periodicity

Second
periodicity

Third
periodicity

First
periodicity

Second
periodicity

Third
periodicity

A 3.33 7.50 15 3.33 2.14 6

B 7.50 15 3.75 3.33 2.14 3

C 15 30 3.75 7.5 3 15

D 2.73 10 2.14 15 2.14 3.75

E 10 2.31 3.75 3 10 30

F 3.33 7.50 3.75 10 15 7.5

Note: The points A, B, and C represent the points with shorter periodicity in the first 32-year period than the second 32-year period (marked with a darker
colour), and the points D, E, and F are those whose periodicity have been longer in the first 32-year period than the second 32-year period.
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and very low propensity for drought in these areas, respec-
tively. These differences in DMI values in the Iranian geo-
graphical area can be due to different reasons such as the
spatial extent, climatic diversity, topography, soil type, and
temporal–spatial distribution of precipitation.

For extraction of the spectral patterns of the droughts
in Iran during the 60 years under investigation (1958–
2018), it was divided into two 32-year periods. Then, by
the use of the spectral analysis, the three first periodic-
ities or periodic components with the highest power were
extracted for each period and ultimately, these periodic-
ities were compared. The results indicated that the
drought periodicities in the north-west, north-east, west,
south-west, and south of Iran have become longer, that
is, their nature has been changed from shorter periodic-
ities to longer ones. This change of nature in their first
three periodicities has been sometimes from 2–10 years
to 2–15 years, from 2–10 years to 3–30 years, and from 3–
8 years to 8–15 years. However, the periodicities of
droughts in the eastern, south-eastern, and central Iran
has changed from longer periodicities to shorter ones. It
has been changed from 3–15 years to 2–6 years, from 3–
15 years to 2–3 years, and from 3–30 years to 3–15 years.
In a more general conclusion, it can be stated that the
return periods in the northeastern, northwestern, west-
ern, southwestern, and southern parts of Iran have
become longer, while it has become shorter in the east,
southeast, and centre. These changes led to the increase
in the frequency of droughts in the east, southeast, and
centre, making them among the most vulnerable areas in
terms of droughts. Thus, regarding the revealing changes
in the spectral patterns of droughts in Iran, water
resources management policy-making must be revised
based on these changes, especially in the arid and semi-
arid areas, so that its adverse effects on the farmers' sus-
tainable livelihood would be reduced.

However, apart from the results of this study, there
would be remained two basic questions that should be
responded to in further studies. First question: the long-
term process of the propensity to droughts in Iran is
based on what spatial–temporal patterns? Are these
spatial–temporal patterns in line with the results
obtained from the current study? The second question:
are the spectral patterns of other drought indices, espe-
cially the meteorological drought indices, in line with the
results of the current study which has been focused on
the long-term drought propensity?
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