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Abstract:

In the recent past, a variety of statistical and other modelling approaches have been developed to capture the properties of
hydrological time series for their reliable prediction. However, the extent of complexity hinders the applicability of such
traditional models in many cases. Kernel-based machine learning approaches have been found to be more popular due to
their inherent advantages over traditional modelling techniques including artificial neural networks(ANNs ). In this paper, a
kernel-based learning approach is investigated for its suitability to capture the monthly variation of streamflow time series.
Its performance is compared with that of the traditional approaches. Support vector machines (SVMs) are one such kernel-
based algorithm that has given promising results in hydrology and associated areas. In this paper, the application of SVMs
to regression problems, known as support vector regression (SVR), is presented to predict the monthly streamflow of the
Mahanadi River in the state of Orissa, India. The results obtained are compared against the results derived from the traditional
Box–Jenkins approach. While the correlation coefficient between the observed and predicted streamflows was found to be
0Ð77 in case of SVR, the same for different auto-regressive integrated moving average (ARIMA) models ranges between 0Ð67
and 0Ð69. The superiority of SVR as compared to traditional Box-Jenkins approach is also explained through the feature space
representation. Copyright  2009 John Wiley & Sons, Ltd.
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INTRODUCTION

Natural complexity of hydrologic variables drives the
application of statistical approaches to analyse their sta-
tistical behavior. The need to improve such methods
to capture the inherent complexity of hydrologic vari-
ables, such as streamflow, rainfall, etc. has been recog-
nized for centuries. It is acknowledged that a reliable
prediction of streamflow is essential to effectively man-
age the available water resources. It helps in reservoir
operation, flood control and warning, planning reser-
voir capacity, and economical usage of water such as in
agriculture, industry, power generation, navigation, etc.
However, depending on the inherent complexity, tradi-
tional statistical methods, such as transfer function model,
Box–Jenkins approach, etc., were found to be inadequate.
As a consequence, many new methodologies have been
introduced to understand the variations of hydrological
variables and to predict their future time steps.

In the last decade, machine learning techniques such
as artificial neural networks (ANNs), fuzzy logic, genetic
programming, etc. have been widely used in the mod-
elling and prediction of hydrological variables. Among
these techniques, support vector machines (SVMs) have
gained popularity in many traditionally ANN-dominated
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fields. SVMs are learning algorithms that use a hypothesis
space comprising linear functions in a higher dimensional
feature space, trained with a learning algorithm from opti-
mization theory that implements a learning bias derived
from statistical learning theory (Cristianini and Shawe-
Taylor, 2000).

SUPPORT VECTOR MACHINES

SVMs in their present form were first developed for
classification problems in the early 1990s by Vapnik
and others at AT&T Bell Laboratory (Boser et al., 1992;
Guyon et al., 1993). SVM was introduced for regression
in 1995, and the first applications were reported in the late
1990s (Drucker et al., 1997, Vapnik, 1998, 2000). Since
then, applications of SVMs have seen a rapid rise in fields
as varied as text classification to pattern recognition to
forecasting in hydrology and other areas.

Though the applications of SVMs in hydrology have
been limited in terms of absolute numbers, the results
have been encouraging. (Dibike et al. (2001) applied
SVM in remotely sensed image classification and regres-
sion (rainfall/runoff modelling) problems. (Liong and
Sivapragasam (2002) also reported a superior SVM per-
formance compared to ANN in forecasting flood stage.
(Bray and Han (2004) used SVMs to identify a suit-
able model structure and its parameters for rainfall runoff
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modelling. The model was compared with a transfer func-
tion model and the study outlined a promising area of
research for further application of SVMs in unexplored
areas. (She and Basketfield (2005) also reported superior
results in forecasting spring and fall season streamflows
in the Pacific Northwest region of the United States
using SVM. In 2006, to forecast seasonal and hourly
flows, new data-driven SVM-based models were pre-
sented. Empirical results obtained from these models
showed promising performance in solving site-specific,
real-time water resources management problems. In addi-
tion, seasonal volume predictions were improved using
SVMs (Asefa et al., 2005). (Khadam and Kaluarachchi
(2004) discussed the impact of accuracy and reliability
of hydrological data on model calibration. This, cou-
pled with application of SVMs, was used to identify
faulty model calibration which would have been unde-
tected otherwise. (Qin et al. (2005) used least squares
support vector machines (LS-SVMs), a non-linear kernel-
based machine, to demonstrate the excellent general-
ization property of SVMs and its potential for further
applications in area of general hydrology. Applicability
of SVMs was also demonstrated in downscaling general
circulation models (GCMs), which are among the most
advanced tools for estimating future climate change sce-
narios. The results presented SVMs as a compelling alter-
native to traditional ANN to conduct climate impact stud-
ies (Tripathi et al., 2006). Anandhi et al. (2008) down-
scaled monthly precipitation to basin scale using SVMs
and reported the results to be encouraging in their accu-
racy while showing large promise for further applications.

Overall, the comparison between SVM and ANN has
shown the superior performance of SVM in regression.
In this paper, the application of support vector regression
(SVR) to forecast the streamflow of the Mahanadi River
is presented. The results are compared with the traditional
Box–Jenkins approach and the potential of SVR in
monthly streamflow prediction is demonstrated. Before
describing the methodology, a brief description of feature
space and kernel functions is presented in the following
section.

METHODOLOGY

Supervised machine learning

SVMs are a kind of supervised machine learning tech-
nique which belongs to a family of generalized lin-
ear classifier. The formulation embodies the structural
risk minimization (SRM) principle, as opposed to the
empirical risk minimization (ERM) approach commonly
employed within statistical learning methods. SRM min-
imizes an upper bound on the generalization error, as
opposed to ERM which minimizes the error on the train-
ing data. It is this difference that equips SVMs with a
greater potential to generalize. Moreover, the solutions
offered by traditional neural network models may tend
to fall into a local optimal solution, whereas a global

optimum solution is guaranteed for SVM. SVMs can be
applied to both classification and regression problems.

Radial basis function as kernel

A brief and basic introduction to karnel function and
feature space is provided in Appendix. The flexibility of
the SVM is provided by the use of kernel functions that
implicitly map the data to a higher dimensional feature
space. A linear solution in the higher dimensional feature
space corresponds to a non-linear solution in the original,
lower dimensional input space. This makes SVM a feasi-
ble choice for solving a variety of problems in hydrology,
which are non-linear in nature. There are methods avail-
able that use non-linear kernels in their approach towards
regression problems while applying SVMs. One such
approach involves using the radial basis function (RBF)
and is called LS-SVMs. The main advantage of LS-SVM
is that it is computationally more efficient than the stan-
dard SVM method, since the training of LS-SVM requires
only the solution of a set of linear equations instead of the
long and computationally demanding quadratic program-
ming problem involved in the standard SVM (Suykens
and Vandewalle, 1999). In comparison with some other
feasible kernel functions, the RBF is a more compact,
supported kernel and able to shorten the computational
training process and improve the generalization perfor-
mance of LS-SVM, a feature of great importance in
designing a model. (Dibike et al. (2001) applied different
kernels in SVR to rainfall–runoff modelling and demon-
strated that the RBF outperforms other kernel functions.
(Han and Cluckie (2004) indicated that the centralized
feature of the RBF enables it to effectively model the
regression process. Also, many works on the use of SVR
in hydrological modelling and forecasting have demon-
strated the favourable performance of the RBF (Liong
and Sivapragasam, 2002; Choy and Chan, 2003; Yu and
Liong, 2007). Therefore, the RBF, which has a parameter
�, is adopted in this study and its mathematical form is
presented later.

Support vector regression (SVR)

In SVR, fxi, yigN
iD1 is considered as a training set, in

which xi 2 <p represents a p-dimensional input vector
and yi 2 < is a scalar measured output, which represents
the system output. The goal is to construct a function
y D f�x� which represents the dependence of the output
yi on the input xi. The form of this function is

y D wT��x� C b �1�

where w is known as the weight vector and b the bias.
This regression model can be constructed using a non-

linear mapping function f�ž�. By mapping the original
input data onto a high-dimensional space, the non-linear
separable problem becomes linearly separable in space.
The function f (ž): <p ! <h is a mostly non-linear
function which maps the data into a higher, possibly
infinite, dimensional feature space. The main difference
from the standard SVM is that LS-SVM involves equality
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constraints instead of inequality constraints, and works
with a least squares cost function. The optimization
problem and the equality constraints are defined by the
following equations:

min J�w, e� D 1

2
wTw C �

1

2

N∑
iD1

e2
i �2�

subject to

yi D wTf�xi� C b C ei, i D 1, . . . , N �3�

where ei is the random error and g 2 <C is a regulariza-
tion parameter in optimizing the trade-off between mini-
mizing the training errors and minimizing the model’s
complexity. The objective is now to find the optimal
parameters that minimize the prediction error of the
regression model. The optimal model will be chosen by
minimizing the cost function where the errors ei are min-
imized. This formulation corresponds to the regression in
the feature space and, since the dimension of the feature
space is high, possibly infinite, this problem is difficult
to solve. Therefore, to solve this optimization problem,
the following Lagrange function is given:

L�w, b, e; ˛� D J�w, e� �
N∑

iD1

˛ifwTf�xi� C b C ei � yig
�4�

The solution of Equation (4) can be obtained by partially
differentiating with respect to w, b, ei and ˛i, i.e.

∂L

∂w
D 0 ���! w D

N∑
iD1

aif�xi� �5�

∂L

∂b
D 0 ���! b D

N∑
iD1

ai D 0 �6�

∂L

∂ei
D 0 ���! ai D g ei, i D 1, . . . , N �7�

∂L

∂xi
D 0 ���! wTf�xi� C b C ei � yi D 0,

i D 1, . . . , N �8�

Finally, the estimated values of b and ai, i.e. Ob and Oai, can
be obtained by solving the linear system and the resulting
LS-SVM model can be expressed as

y D f�x� D
N∑

iD1

OaiK�x, xi� C Ob �9�

where K(x,xi) is a kernel function. Here, the non-linear
RBF kernel is defined as:

K�x, xi� D exp
(

� 1

s2 jjx � xijj2
)

�10�

where s is the kernel function parameter of the RBF
kernel.

The regularization parameter g is also necessary in
LS-SVM model and determines the trade-off between

the fitting error minimization and smoothness of the
estimated function. It is not known beforehand which g

and � are the best for a particular application problem
to achieve the maximum performance with LS-SVM
models. Thus, the regularization parameter g and the
value of � from the kernel function have to be tuned
during model calibration. In this work, a grid-search
technique is used for tuning these two parameters, using
cross-validation on the training set to find out the optimal
parameter values. The LS-SVM model thus obtained is
used to estimate the desired output which is finally used
to predict the monthly streamflow.

PERFORMANCE OF SVR FOR STREAMFLOW
PREDICTION

Study area and datasets

The Mahanadi River, which encloses a drainage area of
132 100 square km, is located in the eastern part of India.
The Mahanadi rises in the highlands of Chhattisgarh and
flows through Orissa to reach the Bay of Bengal slowly
for 900 km. It is one of the longest rivers in the country
and drains a substantial part of peninsular India. Rainfall
comes predominantly from the summer monsoon (June
through September). The average annual rainfall in the
basin is 1463 mm. Figure 1 shows the locations of the
Mahanadi River Basin and the Basantpur station, from
where the streamflow data was collected for this study.

Streamflow data from the Basantpur station (Station
Code EM000R2), operated by the Water Resources
Agency, were obtained from Central Water Commission,
Govt. of India. Among these records, data for 23 years
(June 1972 to May 1995) were used for calibration, and
data for 9 years (June 1995 to May 2004) were used to
test the model performance.

Data normalization and parameter calibration

The observed streamflow data is normalized to prevent
the model from being dominated by the variables with
large values, as is commonly used in data-driven models.
The performance of LS-SVM with normalized input data
in the range from 0 to 1 has shown to outperform the
same with unscaled input data (Bray and Han, 2004).
Therefore, the data is normalized and finally the model
outputs are back-transformed to their original scale. The
normalization (also back-transformed) is carried out using

yi,j D xi,j � mj

sj
�11�

where yi,j is the normalized value for i-th year and j-th
month; xi,j is the observed value for i-th year and j-th
month; mj and sj are the mean and standard deviation,
respectively, for j-th month.

The SVR model used herein has two parameters (g, �)
to be determined. These parameters are interdependent,
and their (near) optimal values are often obtained by
a trial-and-error method. The analyses and calculations
of SVR herein are performed using LS-SVM and based
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Figure 1. Location map of catchment and sub-basins of the Mahanadi River (Source: Central Water Commission, Bhubaneswar)

on the above-derived parameters, and the model is used
to perform stage discharge forecasting. The model used
four different combinations of datasets to calibrate and
develop the model. One of these four datasets (containing
one input vector, with a lag of 1) was used as a sample
set to estimate the trade-off between g and �. The
resulting error parameters (correlation coefficient (CC ),
root mean square and Nash–Sutcliffe efficiency (NSE)
coefficient) between the predicted and observed values
were compared and the best combination was chosen for
further testing and validation. The results are shown in
Table I. From top to bottom in each cell of Table I, the
statistics are (1) CC between the observed and predicted
value of streamflow; (2) the root mean square error
(RMSE) between the observed and predicted value of
streamflow; and (3) the NSE coefficient. A higher value
of the first statistic indicates a better model performance.
Performance statistics in the cell corresponding to the best
combinations are shown in boldface, which are found to
be 2 and 1Ð5 for g and s, respectively.

Results and Discussion

Having decided on the values of parameters, four
different cases of input variables were tested to decide the
optimum number of inputs for the best possible results.
Two hundred and seventy-six training datasets containing
one, two, three and four input vectors (previous time
steps) as a single coordinate were used to separately train
each model. Validation of each model was carried out
with the remaining 102 validation datasets. The results
were compared and some interesting observations were
made. Model performances are shown in Table II in terms
of different error parameters, i.e., RMSE, CC and NSE
coefficient, for different sets of data, containing multiple
inputs. The statistics are obtained between the normalized
observed and predicted streamflow values. From Table II,
it is observed that the best performance is obtained for the
‘two inputs’ case. Beyond this, the performance decreases

Table I. Performance statistics for different combinations of ker-
nel parameters g and sa

s g

0Ð1 2 4 6 8 10

0.5 0Ð7264 0Ð7091 0Ð7022 0Ð6993 0Ð6979 0Ð6971
0Ð9928 0Ð8847 0Ð884 0Ð8841 0Ð8841 0Ð884
0Ð301 0Ð4449 0Ð4458 0Ð4456 0Ð4456 0Ð4458

1 0Ð7361 0Ð7207 0Ð7141 0Ð7101 0Ð7074 0Ð7054
0Ð9776 0Ð8835 0Ð8807 0Ð8804 0Ð8806 0Ð881
0Ð3222 0Ð4464 0Ð4499 0Ð4503 0Ð45 0Ð4495

1.5 0Ð7391 0Ð7231 0Ð7206 0Ð7191 0Ð7178 0Ð7166
0Ð9704 0Ð889 0Ð8847 0Ð8825 0Ð8812 0Ð8804
0Ð3322 0Ð4395 0Ð4449 0Ð4477 0Ð4493 0Ð4503

2 0Ð741 0Ð7217 0Ð72 0Ð7194 0Ð7191 0Ð7189
0Ð966 0Ð8924 0Ð8895 0Ð8878 0Ð8866 0Ð8855
0Ð3382 0Ð4352 0Ð4389 0Ð441 0Ð4426 0Ð4439

2.5 0Ð7426 0Ð7204 0Ð7188 0Ð7183 0Ð7182 0Ð7181
0Ð963 0Ð894 0Ð8919 0Ð8908 0Ð8899 0Ð8892
0Ð3424 0Ð4331 0Ð4358 0Ð4372 0Ð4383 0Ð4392

3 0Ð7438 0Ð7193 0Ð7175 0Ð7172 0Ð7171 0Ð7172
0Ð9608 0Ð895 0Ð8934 0Ð8925 0Ð8918 0Ð8913
0Ð3453 0Ð4319 0Ð434 0Ð4351 0Ð4359 0Ð4366

a Each cell shows CC, RMSE and NSE coefficient between the normal-
ized values of observed and predicted streamflow during model develop-
ment period for one input.

as the number of inputs increases. Thus, the optimum
number of inputs is two for the given streamflow series. A
plot between the observed and predicted streamflow using
two inputs is shown in Figure 2 for the model testing
period. The CC between the observed and predicted
values is found to be 0Ð77. However, it is observed
from the Figure 2 that for some years the peak values
during monsoon period are not predicted properly (e.g.
2000, 2003). There might be some other reasons apart
from the endogenous property, which is extracted from
the time series itself. To investigate the relative skill of
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Table II. RMSE, correlation coefficient and Nash coefficient for
Normalized model outputs

No. of Performance statistics
inputs

RMSE Correlation coefficient NSE coefficient

1 0Ð8890 0Ð7230 0Ð4395
2 0Ð8716 0Ð7475 0Ð4612
3 1Ð0193 0Ð5793 0Ð2632
4 1Ð0745 0Ð5232 0Ð1812

SVR compared to other models that use the endogenous
property of the time series, the model performance is
compared with that of the Box–Jenkins approach (Box
et al., 1994).

Different types of Box–Jenkins models are known,
such as auto-regressive (AR) and auto-regressive moving
average (ARMA) or ARIMA. The model order and
parameter values depend on the statistical properties
of time series. For example, an AR model is a linear
regression of the current value of the series against one
or more prior values of the series. Thus, the AR model
for univariate time series can be expressed as

xt D υ C �1xt�1 C �2xt�2 C Ð Ð Ð C �pxt�p C At �12�

where d D (
1 � ∑p

iD1 fi
)

m, with m denoting the process
mean, xt is the observed value and At is white noise at
time t. The value of p is called the order of the AR model.
Similarly, the order of the moving average is denoted
as q. The term ‘integrated’ deals with the stationary
property of the time series and its order is denoted as
d. If the time series is stationary, d D 0. Details of the
ARIMA approach can be found elsewhere (Makridakis
et al., 1998).

Autocorrelogram and partial autocorrelogram for the
streamflow time series were obtained, and based on these

correlograms, ARIMA(5,0,1) and ARIMA(3,0,2) were
tentatively chosen to be competent. The CC between
the normalized observed and predicted streamflow were
found to be 0Ð67 to 0Ð69 for ARIMA (5,0,1) and
ARIMA (3,0,2) respectively, during the testing period.
It is observed that ARIMA (3,0,2) shows better results
than the ARIMA (5,0,1). However, the performance of
SVR is even better than both the ARIMA models. The
prediction performance of ARIMA (3,0,2) is shown in
Figure 2. A plot of the predicted streamflow is shown
along with the SVR results for the model testing period.
It is observed that the peaks are not captured well in
the case of ARIMA (3,0,2) as compared to SVR even
though the CCs are close to each other (0Ð77 for SVR
and 0Ð75 for ARIMA). However, it can also be observed
that there is a phase shift between observed and predicted
peak streamflow values. This is due to the fact that
only the previous step streamflow values are used as
the input (endogenous inputs). Consideration of other
inputs (exogenous input) which have more immediate
effect on streamflow, such as rainfall, may improve
the performance further. The reason behind the superior
results from SVR can be explained by the basic concept
of mapping from the input space to the feature space,
which is developed during model calibration. For ‘two
inputs’ case (which is also the best case for the time
series analysed), the input and output space can be shown
in a three-dimensional figure (Figure 3). A ‘smoothened’
and ‘fitted through observations’ surface is also shown
in this figure. The ‘smoothness’ and ‘fitting through
observations’ are ‘conflicting-with-each-other’ properties
and controlled by the parameters g and s as explained
before. These parameters are obtained for the specific
time series being analysed as was done before. The
important aspect is its basic difference from ARIMA
approach, in which the fitted surface is linear in nature

Figure 2. Comparison between observed and predicted streamflow for SVR and ARIMA (during testing period)
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Figure 3. Input–output space for the ‘two inputs’ case developed by LS-SVM

(a linear surface for ‘two inputs’ case). It might be
possible to get a non-linear surface in case of non-linear
ARIMA. However, even this non-linear surface has a
regular pattern presumed by the modeller. Observation
to the fitted surface in case of SVR indicates a more
complex nature of non-linearity, through different peaks
and troughs. This yields the better suitability for the time
series which is possibly having non-linearity. Thus, the
prediction performances for a linear time series by both
SVR and ARIMA approaches might be equal; however,
it will be better in case of SVR if non-linearity exists in
the time series, which is captured through the feature
space. With the increase in the number of inputs (if
found suitable for other cases), the dimension of the
feature space increases, which is not possible to visualize.
However, keeping the basic concept of feature space the
same, the characteristics of the time series is captured
and used for its prediction.

CONCLUSIONS

Prediction of monthly streamflow using SVR was of
interest in this work. The study was carried out using data
collected from the Basantpur station on the Mahanadi
River in India. LS-SVM was used for parameter cal-
ibration and model development. The problem-specific
subjective parameters g and s were obtained based upon
the model performance during the calibration period. It
was found that g D 2 and s D 1Ð5 provided the best per-
formance for the model. While considering the model
parsimony, it was found that the ‘two input’ case yielded
the best performance. The model was tested for the period
October 1995 to April 2004 and different error statistics
(RMSE, CC and NSE coefficient) were obtained. These
statistics confirm the good correspondence between the

observed and predicted streamflow values even though
for some years the peak values are not well cap-
tured. However, a comparison between the Box–Jenkins
approach and the SVR approach indicates the superior-
ity of the latter. The reason behind the strong potential
of SVR lies in the non-linear nature of the feature space
captured and utilized by SVR. Thus, the approach can be
applied to other hydrological time series with a non-linear
nature to achieve a better prediction performance than
would be obtained from linear modelling approaches,
such as the Box–Jenkins approach. However, there are
a few other issues involved in SVR approach, such as
the use of grid-search technique to fine-tune the kernel
variables and the use of exogenous inputs, which may be
of further research interest.
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APPENDIX

Feature space and kernel functions

The basic working principle of the SVMs is to map the
data in some other dot product space (called the feature
space) via a non-linear mapping and perform the linear
algorithm in the feature space. As the evaluation of a dot
product is involved, the feature space is high dimensional
and thus requires high computational resources and
time. In some cases, however, a simple kernel can be
formulated and its efficiency evaluated.

Copyright  2009 John Wiley & Sons, Ltd. Hydrol. Process. 24, 917–923 (2010)
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Real-world complex problems require a more expres-
sive hypothesis space than linear functions, as the avail-
able linear learning machines are limited by their com-
putational powers. In other words, the target data can-
not be expressed as a simple linear combination of the
given attributes. One important property of linear learning
machines is that they can be expressed in a dual represen-
tation. This means that the hypothesis can be expressed
as a linear combination of the training points, so that
the decision rule can be evaluated using just the inner
products between the test point and the training points.
If a way of computing the inner product in feature space
directly as a function to the original input points is avail-
able, it becomes possible to build a non-linear learning
machine and it is known as direct computation method of
kernel function, denote it by K. In other words, a kernel
function can be defined as a function K, such that for all
x, z 2 X,

K�x, z� D hf�x� ž f�z�i �A1�

There are two basic characteristic of a kernel function,
(1) the function must be symmetric, i.e.

K�x, z� D hf�x� ž f�z�i D hf�z� ž f�x�i D K�z, x��
�A2�

and (2) it must satisfy Cauchy–Schwartz inequality
(Cristianini and Shawe-Taylor, 2000)

K�x, z�2 D hf�x� ž hf�z�i2 � jjf�x�jj2jjf�z�jj2 �A3�

Above equations, though necessary, however, are not
sufficient to guarantee a feature space as described by
the kernel function. However, once characterized, kernel
representations offer an alternative solution by projecting
the data into a high-dimensional feature space to increase
the computational power of the linear learning machines.
Out of the various kernel functions available to develop
a model, non-linear kernel functions are more efficient in
analysing complex relations between real-world problems
and are thus used in present work. This study makes use
of LS-SVM, a kind of SVM learning approach which
consists of RBF kernel, to develop a model and forecast
the streamflow.
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