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Abstract: This study borrows the measures developed for the operation of water resources systems as a means of characterizing droughts in a
given region. It is argued that the common approach of assessing drought using a univariate measure (severity or reliability) is inadequate as
decision makers need assessment of the other facets considered here. It is proposed that the joint distribution of reliability, resilience, and
vulnerability (referred to as RRV in a reservoir operation context), assessed using soil moisture data over the study region, be used to char-
acterize droughts. Use is made of copulas to quantify the joint distribution between these variables. As reliability and resilience vary in a
nonlinear but almost deterministic way, the joint probability distribution of only resilience and vulnerability is modeled. Recognizing the
negative association between the two variables, a Plackett copula is used to formulate the joint distribution. The developed drought index,
referred to as the drought management index (DMI), is able to differentiate the drought proneness of a given area when compared to other
areas. An assessment of the sensitivity of the DMI to the length of the data segments used in evaluation indicates relative stability is achieved
if the data segments are 5 years or longer. The proposed approach is illustrated with reference to the Malaprabha River basin in India, using
four adjoining Climate Prediction Center grid cells of soil moisture data that cover an area of approximately 12,000 km2. DOI: 10.1061/
(ASCE)HE.1943-5584.0000639. © 2013 American Society of Civil Engineers.
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Introduction

Drought is recognized as a prolonged below-normal supply of
water. Due to its inherent complexity, variable spatial and temporal
extent, and impact, a universally accepted definition of droughts
is not possible (Heim 2002). The American Meteorological
Society (1997) has classified droughts into four categories:
meteorological, agricultural, hydrological, and socioeconomic.
Meteorological drought is related to below-normal precipitation,
agricultural drought is related to the shortfall of soil moisture,
hydrological drought is related to the inadequacy of water resources
to meet demands, and socioeconomic drought is based on ensuing
economic consequences for the region. Considerable attention has
been focused on quantifying drought through a series of derived
attributes and is the focus of the research presented here.

In general, drought is quantified using indices that are derived
from incident precipitation and evapotranspiration for the region.
These hydrologic variables influence the soil moisture status,
which is a primary input for agricultural droughts. Onset of agri-
cultural droughts is indicated if the soil moisture falls below a

predefined threshold value, such as the permanent wilting point.
Since the early twentieth century, several indices have been devel-
oped to characterize droughts (see Keyantash and Dracup 2002;
Heim 2002; Mishra and Singh 2010, 2011; Dai 2011). A brief re-
view is presented here with an emphasis on agricultural droughts,
which is the main focus of this paper.

An approximate chronological development of meteorological
drought indices includes Munger’s index (Munger 1916), the pre-
cipitation effectiveness index (Thornthwaite 1931), Blumenstock’s
index (Blumenstock 1942), the antecedent precipitation index
(API) (McQuigg 1954; Waggoner and O’Connell 1956), the
Palmer drought severity index (PDSI) (Palmer 1965), the rainfall
anomaly index (RAI) (van Rooy 1965), the drought area index
(Bhalme and Mooley 1980), the standardized precipitation index
(SPI) (McKee et al. 1993) and effective precipitation (Byun and
Wilhite 1999). Thornthwaite (1948) also used precipitation minus
evapotranspiration as a drought index. In API, both the amount and
timing of precipitation are incorporated, and although it was origi-
nally designed to estimate soil moisture content for use in flood
forecasting, more recent use has been to assess its impact on design
floods (Pui et al. 2011). This index is computed on a daily basis and
thus can be a measure of short-term drought. The PDSI, along with
the Palmer hydrological drought index (PHDI) and the Palmer
moisture anomaly index (PMAI) (aka Z Index) (Palmer 1965),
can be treated as the first breakthrough in the development of
drought indices. Even though the PDSI is perhaps the most promi-
nent meteorological index used (Heim 2002), several criticisms
and limitations have been noted in the literature (Alley 1984).
Keyantash and Dracup (2002) showed that the PDSI is more of
a hydrological index, and the time scale of drought addressed
by the PDSI is unclear. More recent assessments of drought have
utilized SPI as a probabilistic means of characterizing rainfall
anomalies (Keyantash and Dracup 2002).
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McGuire and Palmer (1957) developed the moisture adequacy
index (MAI) to measure agricultural drought. The MAI is
expressed as a percentage ratio of actual evapotranspiration and
potential evapotranspiration. The PMAI (aka Z Index), one of
the three Palmer indices, is an intermediate term in the computation
of PDSI (Keyantash and Dracup 2002). Palmer (1968) also devel-
oped the Crop Moisture Index (CMI) to monitor the weekly change
of soil moisture condition. The value of this index changes very
rapidly, and the index is suitable only for very short-term drought
assessment. Bergman et al. (1988) developed another index known
as the Soil Moisture Anomaly Index (SMAI). The SMAI fluctuates
at a moderate rate as compared to the CMI (Bergman et al. 1988).
The Vegetation Condition Index (VCI) (Kogan 1995, 1997; Liu and
Kogan 1996) allows drought detection by monitoring vegetation
health. However, it is useful for summer seasons. During the cold
season, when vegetation is mostly in a dormant state, its utility is
limited (Heim 2002; Mishra and Singh 2010). Among the different
existing agricultural drought indices, the Computed Soil Moisture
(CSM) (Huang et al. 1996) was identified as the most suitable one
by Keyantash and Dracup (2002) using predefined subjective
weightage factors to different desirable aspects of a drought index.

Historical development of different indices for hydrological
droughts include the PHDI (Palmer 1965), the Total Water Deficit
(TWD) (Dracup et al. 1980), the Surface Water Supply Index
(SWSI) (Shafer and Dezman 1982), and the Cumulative Stream-
flow Anomaly (CSA) (Keyantash and Dracup 2002). Detailed re-
view of these indices is left out as our focus is on the agricultural
drought indices. As a summary, an overall comparison between
different indices by Keyantash and Dracup (2002) indicates that
the suitability of agricultural drought indices (also hydrological
drought indices) is inferior with respect to that of meteorological
drought indices.

It can be further concluded from the overall review of different
drought indices, that most of these drought-related indices indicate
the ongoing (current) status of the drought, as characterized using a
single metric. In this study, we attempt to quantify long-term char-
acteristics of drought of a given area, which may change slowly (on
say a decadal time frame) owing to low-frequency variability and
change in the climate. In this context, a new index is proposed,
which seeks to quantify the long-term drought characteristics of
a given area, providing catchment managers with a tool that
assesses the frequency (reliability), vulnerability, and ability to
recover (resilience) from a drought. The reliability, resilience,
and vulnerability concept was used earlier in the context of water
resources management. In this study, these measures are used in the
context of drought; thus, the name of the index is proposed as the
drought management index (DMI). The proposed index ranges
from 0 to 1, with higher values indicating higher drought proneness
of the area and vice versa.

Traditionally, most drought-related indices are based on one or
two attributes of the hydrologic time series used in their formu-
lation (i.e., time series of soil moisture in case of agricultural
drought, time series of precipitation in case of meteorological
drought, and time series of streamflow/reservoir storage in case
of hydrological drought). And, in most of the cases, these particular
attributes fall below a predefined threshold during drought events,
which can be analogous to failure of the system. However, a system
failure should be simultaneously characterized by its reliability,
resilience, and vulnerability, as is done in the context of water
supply management with single or multiple reservoir systems.
The joint behavior of these parameters should be considered while
characterizing the failure (drought). Whereas the reliability and
resilience behave in a similar way (Hashimoto et al. 1982), the

interrelationship between resilience and vulnerability or reliability
and vulnerability should be jointly used to characterize the drought.

The theory of copula is used to obtain the joint distribution be-
tween resilience and vulnerability. In the recent past, copulas have
been used for various hydrological analyses (De Michele and
Salvadori 2003; Favre et al. 2004; De Michele et al. 2005; Grimaldi
and Serinaldi 2006a, b; Zhang and Singh 2006, 2007; Renard
and Lang 2007; Gebremichael and Krajewski 2007; Kao and
Govindaraju 2007a, b; Maity and Nagesh Kumar 2008; Villarini
et al. 2008; Zakaria et al. 2010; Vandenberghe et al. 2010). Appli-
cation of multivariate joint distribution between drought variables
has gained popularity in the recent past (Bonaccorso et al. 2003;
Nadarajah 2009; Mishra et al. 2009; Vangelis et al. 2011). For in-
stance, Vangelis et al. (2011) used bivariate probability analysis to
assess the severity of drought episodes assuming normal distribu-
tion of precipitation and potential evapotranspiration. Probabilistic
analyses of drought duration, intensity, and return period also have
been undertaken by many other researchers (Fernandez and Salas
1999; Chung and Salas 2000; Cancelliere and Salas 2004;
Nadarajah 2009), mostly using the time series of precipitation or
streamflow as the key variable. With improved understanding of
the impacts of oceanic phenomena on drought characteristics,
hydrologists have also studied the variation and characteristics of
hydrological droughts in relation to El Niño-Southern Oscillation
(ENSO) events (Ryu et al. 2010; Wong et al. 2010). Meteorological
and hydrological droughts are in turn linked to agricultural
droughts. Even though the vulnerability of a region to agricultural
droughts has been studied (Wilhelmi and Wilhite 2002), a compre-
hensive analysis quantifying the risk of system failure (drought
event) is lacking. In this context, the new index, DMI, is proposed
here to measure the extent of agricultural drought risk over a catch-
ment. Resilience and vulnerability of the soil moisture series are
computed to obtain the new index. Previous research shows that
the dependence of correlated stochastic variables involved in
droughts can be modeled successfully through copulas (Shiau
2006; Shiau et al. 2007; Kao and Govindaraju 2008; Shiau and
Modarres 2009; Serinaldi et al. 2009; Song and Singh 2010a, b;
Kao and Govindaraju 2010; Mikabari et al. 2010; AghaKouchak
et al. 2010; Wong et al. 2010). For instance, Kao and Govindaraju
(2008) demonstrated the suitability of Plackett copula (Plackett
1965) for both positive and negative dependence while analyzing
extreme rainfall events. Song and Singh (2010b) used meta-
elliptical copulas to model the dependence of drought duration,
severity, and interarrival time. Wong et al. (2010) studied drought
characteristics (intensity, duration, and severity) conditioned on dif-
ferent ENSO states using Gumbel-Hougaard as well as t-copulas.
Thus, copulas provide flexibility in terms of selecting suitable
marginals and dependence structure of variables. This makes cop-
ula an attractive tool for modeling the joint distribution between
reliability, resilience, and vulnerability, which is used in this study.
The proposed method and computation of the DMI is illustrated in
and around Malaprabha River basin considering four adjoining
CPC (Climate Prediction Center) grids of soil moisture data that
covers an approximately 12,000 km2 area.

Methodology

The overall methodology can be broadly divided into three parts:
(1) assessing reliability-resilience-vulnerability (RRV) for the
hydrological time series, (2) fitting a suitable copula to obtain
the joint probability distribution between these measures, and
(3) developing a copula-based DMI as a measure of long-term
drought characteristics over the region. These parts are elaborated
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separately but in relation with each other in the following
subsections.

Reliability-Resilience-Vulnerability of Soil Moisture
Time Series

The concept of RRV was introduced by Hashimoto et al. (1982) in
the context of water resources systems. In this paper, the concept of
RRV is used in the context of agricultural drought through the
analysis of temporal variation of soil moisture. The failure or unsat-
isfactory stage is considered as the depletion of soil moisture below
the Permanent Wilting Point (PWP), which is an indicator of agri-
cultural drought as mentioned earlier. The PWP is the minimum
amount of soil moisture required for the plants not to wilt (Taiz
and Zeiger 1991). If the soil moisture falls below this limit, the
plants can no longer come out of their drooping stage and eventu-
ally die. PWP depends on the integrated effects of plant, soil and
atmospheric conditions at a particular location. Let X1;X2; : : : ;Xn
be the time series of soil moisture having a data length n to assess
the RRV. If Xt ≥ PWP, it is considered a satisfactory stage, denoted
as S and if Xt < PWP, it is considered an unsatisfactory stage,
denoted as F.

Reliability

Reliability is defined by the probability that a system is in a
satisfactory state (Hashimoto et al. 1982). In the context of soil
moisture, reliability may be defined as the probability that the soil
moisture is above a certain threshold (here PWP). Thus, the
reliability α is stated as

α ¼ PðXt ∈ SÞ ð1Þ
where S = the satisfactory stage as stated before. From the time
series, α can be computed as

α ¼ Lt
n → ∞

1

n

Xn
t¼1

Zt ð2Þ

where Zt ¼ 1 if Xt ∈ S and Zt ¼ 0 if Xt ∈ F.

Resilience

Resilience is a measure that indicates how quickly the system can
return to a satisfactory stage after it has fallen below the satisfactory
threshold. This can be defined as the ratio of the probability of
transition from the unsatisfactory to the satisfactory stage and
the probability of failure, i.e.,

γ ¼ PðXt ∈ F;Xtþ1 ∈ SÞ
PðXt ∈ FÞ ð3Þ

where S and F are as defined earlier. The numerator, probability
of transition from the unsatisfactory to the satisfactory stage is
denoted as ρ. In the long run, the number of times the system
transforms from the satisfactory to the unsatisfactory stage and
from the unsatisfactory to the satisfactory stage will be same.
Thus, it can be eventually expressed as ρ ¼ PðXt ∈ F;Xtþ1 ∈ SÞ ¼
PðXt ∈ S;Xtþ1 ∈ FÞ. From the time series, ρ can be computed as

ρ ¼ Lt
n → ∞

1

n

Xn
t¼1

Wt ð4Þ

where Wt = the event of transformation from the satisfactory to
the unsatisfactory stage (or vice versa) and Wt ¼ 1 if Xt ∈ S
and Xtþ1 ∈ F and Wt ¼ 0 otherwise. The denominator of

Eq. (3) can be expressed as PðXt ∈ FÞ ¼ 1 − PðXt ∈ SÞ. Again,
PðXt ∈ SÞ is expressed as reliability α as explained before. Thus,
Eq. (3) can be expressed as

γ ¼ ρ
1 − α

ð5Þ

Vulnerability

Vulnerability is a measure of severity of a failure event, once it has
occurred. It is defined as

ν ¼
X
j∈F

sjej ð6Þ

where sj = the numerical indicator of severity for an observation xj,
which belongs to the unsatisfactory state; ej = the probability of
that xj, corresponding to sj, which is the most unsatisfactory
and severe outcome that occurs from the set of unsatisfactory states.
In the context of soil moisture, vulnerability is a probability
weighted average of the soil moisture deficits (with respect to
the PWP of the location) of failure events. Thus, the shortfall of
the available soil moisture below the PWP is the severity indicator,
and vulnerability is measured in terms of the mean soil moisture
deficit caused during the failure events, assuming that deficits of
different magnitudes are equiprobable.

Interrelationships between Reliability-Resilience-
Vulnerability and the Role of Copula

The interrelationship between reliability, resilience, and vulnerabil-
ity needs to be considered while assessing drought characteristics.
In order to do this, the theory of copulas is utilized. Many research-
ers have successfully used copulas to perform multivariate hydro-
logic analysis as reported earlier. Previous literature suggests that
negative association between random variables can be effectively
captured by various copulas, which are explained in this section.

Joint Probability Distribution Using Copulas

A copula is a function that joins or couples together univariate mar-
ginal distributions to form a multivariate joint distribution (Nelsen
2006). Let us consider that X and Y are two continuous random
variables with marginal Cumulative Distribution Functions (CDFs)
FðxÞ and GðyÞ, respectively, and joint distribution function
Hðx; yÞ. Sklar’s (1959) theorem states that, for a joint distribution
function H with margins F and G, there exists a copula C for all
ðx; yÞ in the extended real line R̄ such that

Hðx; yÞ ¼ C½FðxÞ;GðyÞ� ð7Þ
If F and G are continuous, then C is unique; also C is unique on

the simultaneous range of F and G. In the context of RRVanalysis,
X represents either reliability or resilience, Y represents vulnerabil-
ity, and the objective is to develop their joint distribution.
Recognizing the fact that these pairs possess negative association
(shown later), Gaussian copula, Frank copula, and Plackett copulas
are initially selected to compare their suitability to capture the
joint behavior between reliability-vulnerability and resilience-
vulnerability. “Copula-Based Drought Management Index” pro-
vides a brief mathematical background of these copulas.

Gaussian copula belongs to the class of elliptical copula, which
is able to take care of entire range of positive and negative asso-
ciation between random variables. The bivariate Gaussian copula is
defined as
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CGðu; vÞ ¼
Zφ−1ðuÞ

−∞

Zφ−1ðvÞ

−∞

1

2πð1 − ρ2Þ1=2 exp
�
− x2 − 2ρxyþ y2

2ð1 − ρ2Þ
�
dydx

ð8Þ

Dependence parameter of this copula ρ is related to the
Kendall’s tau, τ , by

τ ¼ 2

π
sin−1ðρÞ ð9Þ

Among the popular Archimedean family of copulas, the Frank
copula (also a few others copulas) is able to capture the entire range
of dependence. The Frank copula is defined as

CFðu; vÞ ¼ − 1

θF
ln

�
1þ ðe−θFu − 1Þðe−θFv − 1Þ

ðe−θF − 1Þ
�

ð10Þ

where θF = the dependence parameter, which is related to the
Kendall’s tau, τ , by

τ ¼ 1þ 4

θF
½D1ðθFÞ − 1� ð11Þ

where D1 is the first-order Debye function, which is defined as
D1ðθFÞ ¼ ∫ θF

0 ½t=ðet − 1Þ�dt for θF > 0 and D1ð−θFÞ ¼ D1ðθFÞ þ
ð1=2Þ (Genest 1987; Zhang and Singh 2006).

Another copula, which is also able to capture both the positive
and the negative association between variates is known as Plackett
copula (Plackett 1965; Nelsen 2006). It is defined as

CPðu; vÞ ¼
½1þ ðθp − 1Þðuþ vÞ� −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ ðθp − 1Þðuþ vÞ�2 − 4uvθpðθp − 1Þ

q
2ðθp − 1Þ ð12Þ

where θp = the dependence parameter of this copula, which is the
cross product ratio between the random variables. θp can be
estimated by the pseudo likelihood function (Genest et al.
1995). It can also be estimated directly from the observations
and sample medians (Mardia 1970). The sample medians divide
the observations into four quadrants: (1) where observations of both
the variables are greater than their respective median values,
(2) where observations are less than the median for the first
marginal and greater than the median for the second marginal,
(3) where observations of both the variables are less than their re-
spective median values, and (4) where observations are greater than
the median for the first marginal and less than the median for the
second marginal. If θ̂p is the cross product ratio estimated from
observations, then it can be expressed as Eq. (13):

θ̂p ¼ n00n11
n01n10

ð13Þ

where n11, n01, n00, and n10 are the number of observations in the
first, second, third, and fourth quadrants, respectively. The possible
range of θ̂p is between zero and infinity. A value less than one in-
dicates a negative association, whereas the positive association is
indicated by the values greater than or equal to one. For a detailed
theoretical derivation, readers may refer to Kao and Govindaraju
(2008). Their findings showed that the theory of constant cross
product ratio, on which the Plackett copula is based, is applicable
for both discrete and continuous random variables. In this study, a
bivariate Plackett copula model is also adopted due to its ability to
capture negative association between variates.

Copula-Based Drought Management Index

Based on the joint distribution between resilience and vulnerability,
an index is to be developed that will convey the simultaneous
information of resilience and vulnerability. It is clear from the
previous discussion that more favorable conditions can be indicated
with the increase in resilience. Here, drought is identified as an
unfavorable phenomenon. On the other hand, conditions are less

favorable with the increase in vulnerability. Thus, the proposed
DMI should increase with the increase in vulnerability and with
the decrease in resilience and vice versa. This can be achieved
by a joint measure of probability that indicates exceedence in
resilience and nonexceedence in vulnerability. Thus, the DMI is
defined as

DMI ¼ PðR > r;V ≤ vÞ ð14Þ
where Pð · · · Þ = probability of the event ð · · · Þ, R = resilience, V =
vulnerability, and r and v = the reduced resilience and reduced vul-
nerability (see the appendix for further information), respectively,
calculated from the observed soil moisture series using a suitable
threshold. As mentioned earlier, this threshold cannot be adopted
randomly. The PWP is a suitable threshold based on the soil-crop
combination at a particular location. To obtain actual values of DMI
for a location, the PWP pertaining to that location must be used.

Assessment of DMI for Malaprabha River Basin

Study Area and Data Used

Soil moisture data from the CPC from 1961 to 2010 for four grid
points in and around the Malaprabha River basin (up to the Mal-
aprabha reservoir, Fig. 1) are used for this analysis. For the purpose
of testing the newly proposed index, soil moisture series for five
other locations (26°15 000 0 0 lat × 72°15 000 0 0 long, 22°15 000 0 0 lat×
78°15 000 0 0 long, 30°15 000 0 0 lat × 76°15 000 0 0 long, 12°15 000 0 0 lat×
75°45 000 0 0 long, 26°15 000 0 0 lat × 90°45 000 0 0 long), having widely
different climate regimes, have also been used. Monthly gridded
soil moisture data has been reconstructed by Fan and van den Dool
(2004) with a spatial resolution of 0.5° × 0.5°. The monthly data set
is averaged soil moisture equivalent to standing water height. CPC
soil moisture data (in millimeters) is provided by the NOAA/OAR/
ESRL PSD, Boulder, Colorado, USA, from their website at http://
www.esrl.noaa.gov/psd/. Readers may note that this is not reanal-
ysis data, and it is argued that the soil moisture data from reanalysis

862 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / JULY 2013

J. Hydrol. Eng. 2013.18:859-869.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
he

 I
nd

ia
n 

In
st

 o
f 

T
ec

hn
ol

og
y 

K
ha

ra
gp

ur
 L

ib
ra

ri
an

 o
n 

07
/2

3/
13

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.

http://www.esrl.noaa.gov/psd/
http://www.esrl.noaa.gov/psd/
http://www.esrl.noaa.gov/psd/
http://www.esrl.noaa.gov/psd/
http://www.esrl.noaa.gov/psd/


data are not reliable due to the bias in precipitation (van den Dool
et al. 2003; Fan and van den Dool 2004).

Reliability, Resilience, and Vulnerability of Soil
Moisture Data

The 50-year (1961–2010) soil moisture time series obtained from
the CPC is split into shorter durations of 5 years for each of the four
grid points in the study region. The effect of the data length is in-
vestigated and reported in later sections. Based on soil type and
crops grown in the study area, the PWP is taken as 250 mm. How-
ever, it can vary from one location to another depending on the soil-
crop combination. When DMI is to be computed for a particular
location, the specific PWP for that location must be used. The effect
of different values of PWP (in case of different soil-crop combina-
tions) is investigated and reported in later sections of this paper.

Reliability, resilience, and vulnerability are assessed for each
5-year-long series from all the grid points. These are computed us-
ing Eqs. (1)–(6) as explained in the methodology. The values of

reliability, resilience, and vulnerability computed from the set of
5-year time series are found to conform to an approximate Gaussian
distribution (using standard tests of distributional fit). Moreover,
resilience and vulnerability values were found to have better fit
as compared to reliability (as measured by the Kolmogorov-
Smirnov test resulting in p-values equal to 0.132 for reliability,
0.551 for resilience, and 0.998 for vulnerability).

Pairwise scatter plots are prepared to understand their interrela-
tionship. These pairwise scatter plots are shown in Fig. 2. It is no-
ticed that reliability and resilience exhibit a well-defined monotonic
nonlinear relationship that allows the specification of one given
the other. This observation is not new, rather it is in agreement
with the observation of Hashimoto et al. (1982) in case of water
resources systems that “Resilience generally shows the same trend
as reliability.”

On the other hand, the relationships between reliability and
vulnerability and also resilience and vulnerability are found to
be scattered with a negative association. As mentioned before, both
reliability or resilience and vulnerability of the events should be

15o15’ N 

Forest

Agricultural area 
Grass Land

Water 

Built-up area

74o15’ E 74o30’ E 74o45’ E 75o00’ E 

15o30’ N 

15o45’ N 

Fig. 1. Location of Malaprabha River basin along with locations of grid point for soil moisture data
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considered simultaneously while assessing the drought character-
istics. Thus, a joint specification of reliability-vulnerability or
resilience-vulnerability is proposed here as a more versatile basis
for characterizing drought. As it is found that reliability and
resilience follow a similar trend and have an almost determin-
istic relationship, any one of the pairs reliability-vulnerability or
resilience-vulnerability can be considered. In this study, resilience-
vulnerability is considered for developing the new index for long-
term drought characterization.

Joint Distribution between Resilience and Vulnerability
of Soil Moisture Data

Different copulas are initially selected to derive joint distribution
between observed resilience and vulnerability. Kendall’s tau be-
tween resilience and vulnerability is found to be −0.285, which
confirms the negative association between them. The dependence
parameter of the Gaussian copula, ρ, is found to be −0.432.
Similarly, dependence parameters of Frank copula (θF) and
Plackett copula (θP) are also estimated as described in “Methodol-
ogy.” θF is estimated to be −0.893, and θP is estimated to be 0.347.
A comparison between Gaussian, Frank, and Plackett copulas is
performed to assess their suitability in characterizing the joint dis-
tribution (please refer to the appendix). It is noticed from the results
(Table 1) that statistical measures (Sn, Tn) are lowest for Plackett

copula, indicating it to be more suitable than Gaussian and Frank
copulas. So, the Plackett copula is selected to obtain the joint dis-
tribution between resilience and vulnerability. The joint probability
density function (pdf) and joint CDF between reduced variables of
resilience and vulnerability are represented by a contour plot in
Fig. 3(a). Probability density values at specific observed pairs of
resilience and vulnerability are also computed and shown as col-
ored points in the same plots of joint pdf and CDF. Reliability and
vulnerability are also negatively associated as is evident from the
sample estimate of the cross product ratio, which is obtained as
0.273. The contour plots [Fig. 3(b)] representing the joint pdf and
joint CDF between reliability and vulnerability are very similar to
those of resilience and vulnerability as expected. Thus, any one of
the two negatively associated pairs between resilience-vulnerability
and reliability-vulnerability may be further analyzed for the com-
putation of DMI. The CDF of the former pair is used in this study to
compute the DMI for a given series by computing its resilience and
vulnerability values using Eq. (14).

Computation of DMI for Different Types of Soil
Moisture Series

DMI estimates for different types of soil moisture time series are
investigated in order to test performance. Having a specific range of
DMI (0 to 1) should reveal the difference between extreme (either
very dry or very wet) series in terms of its numerical value, even if
these types of series were not encountered during model develop-
ment. So, it is considered to test this with some series that might
be unforeseen during the development period. These series should
represent different climatic conditions such as desert and wet areas
and should have diversity in terms of reliability, resilience, and vul-
nerability combinations. For this purpose, soil moisture series from
different climatic parts of India are selected. We have selected soil
moisture series from five different locations in India (Fig. 4). These
locations have widely differing climatic patterns with respect to the
considered threshold (PWP for the study area), which are reflected
in their reliability, resilience, and vulnerability combinations. For
instance, the location in a desert area (marked by +) is very dry, and,
hence, a high DMI value must result if an extreme dry situation,
similar to this desert area, occurs in Malaprabha basin. On the other
hand, soil moisture conditions similar to that of the location in a
high rainfall zone (marked by •), when occurring in Malaprabha
basin, must produce low DMI. Similarly, soil moisture conditions
similar to locations at northern and central part of India will lead to
some intermediate DMI values. However, as the developed index
depends both on resilience and vulnerability, the value of drought
index should reflect this aspect.

Soil moisture time series from these five locations are shown in
Fig. 5. It can be visually noticed that the time series in Fig. 5(a)
(desert area) shows the driest condition (unfavorable), whereas
the series in Figs. 5(d) (west coast) and 5(e) (high rainfall zone
at northeast part of India) shows most wet condition (favorable)
case. Maximum variation is observed in the series located in the
west cost region. Resilience and vulnerability (with respect to
the PWP of the study area) are computed for each time series,
and the DMI values are computed as explained earlier. As can
be noticed, the DMI is very high for the series from the desert area

Fig. 2. Pairwise scatter plot between reliability, resilience, and
vulnerability

Table 1. Performance Measures for Different Copulas

Copula Sn Tn

Gaussian 0.0685 0.7766
Frank 0.0889 0.6142
Plackett 0.0406 0.5156
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(marked as + in Fig. 4) and zero for the series from the northeast
part of India (marked as • in Fig. 4). Other series have different
DMI values depending on their respective resilience and vulner-
ability values. For instance, the series located at the northern part
of India (marked as × in Fig. 4) is having very low resilience and
very high vulnerability. So even if the reliability of this series is

much higher as compared to the series at the desert area (marked
as + in Fig. 4), in terms of their ratios, the DMI of the series located
at northern part of India is as high as that of desert area. On the
other hand, the soil moisture series from the central part of India
(marked as o in Fig. 4) and that from the west coastal part (marked
as * in Fig. 4) are found to have similar reliability (and resilience)
values. However, the former has an almost 150% higher vulner-
ability value. So, the computed DMI value is much lower (approx-
imately 2%) at the latter location than that at the former location.
Thus, the reliability (or resilience) estimates may differentiate the
drought characteristics in an indiscernible scale. This would have
been acceptable if the vulnerability was same for these series.
However, as shown, this is not the case. Vulnerability varies con-
siderably between these series. Thus, computed DMI also differs
considerably from each other. This was the motivation behind
the development of this new drought-characterizing index, which
reflects the effective use of vulnerability information along with
resilience (or reliability) information.

Sensitivity of DMI for Time Length and Threshold Level
of Soil Moisture

Sensitivity analysis for length of data considered is investigated
for its possible impact on the final computation of DMI. Data
lengths ranging from 2 to 10 years are considered separately,
and the Plackett copula–based DMI is developed for each case.
The DMI for the five different soil moisture series is computed
for each case, and its variation with respect to different data lengths

Fig. 3. Joint pdf and joint CDF: (a) between reduced resilience and reduced vulnerability; (b) between reduced reliability and reduced vulnerability

Fig. 4. Location map of soil moisture series used for testing with
latitudes and longitudes and approximate costal line
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is studied. Results are shown in Fig. 6. It is observed that the com-
puted DMI more or less stabilizes beyond the data length of a 5- or
6-year period. To obtain a stable index as well as finer temporal
resolution to assess the temporal variation of DMI, it is desired
to select the minimum possible length of data from which a rea-
sonably stable estimate of the index can be obtained. Hence, a data
length of 5 years is selected because the computed index is more or
less stable for a data length longer than a 5-year period. Thus, for
computation of DMI, time scales should be 5 years or more.

The threshold value for failure is not a simple number but a pre-
defined physical parameter depending on the type of drought con-
sidered. For example, the PWP may be considered for agricultural
drought as indicated earlier, which can vary from one location to
another depending on the soil-crop combination. This threshold
may also vary for a particular location for different crops. If this
threshold increases (decreases) for a particular soil moisture time
series, the DMI value is expected to increase (decrease) for the
same soil moisture regime. For the present study, the effect of vary-
ing the threshold is studied for all the time series (from different
locations) considered for testing. Various threshold values are se-
lected ranging from 175 to 400 with an increment of 25. Computed
DMI are plotted in Fig. 7 for different values of threshold for the
same time series. It is found that the DMI increases with the in-
crease in threshold value as expected. It is further noticed that
the index is bounded by 0 and 1, and the increase in DMI value
can be observed for all the cases of time series with the increase

in the threshold value. Finally, the developed index, DMI, is found
to reflect the characteristics of different types of soil moisture
series. Thus, the use of vulnerability information along with resil-
ience information can be concluded to be more effective.

Fig. 6. Variation of DMI with respect to different data lengths

Fig. 5. Time series of soil moisture from five different locations across India with their reliability, resilience, vulnerability, and DMI values: (a) soil
moisture series at 26°15 000 0 0 lat × 72°15 000 0 0 long; (b) soil moisture series at 22°15 000 0 0 lat × 78°15 000 0 0 long; (c) soil moisture series at
30°15 000 0 0 lat × 76°15 000 0 0 long; (d) soil moisture series at 12°15 000 0 0 lat × 75°45 000 0 0 long; (e) soil moisture series at 26°15 000 0 0 lat ×
90°45 000 0 0 long
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5-Year Variation of DMI over Last 50 Years for the
Study Area Considered during Model Development

In “Sensitivity of DMI for Time Length and Threshold Level of
Soil Moisture,” DMI was computed for the five different soil mois-
ture time series from five different locations from India. It was
found to represent all types of drought characteristics. In this sec-
tion, DMI is computed for the soil moisture data for the area in and
around Malaprabha basin using the copula function developed in
“Joint Distribution between Resilience and Vulnerability of Soil
Moisture Data” [refer to Figs. 3(a and b)]. As mentioned earlier,
DMI values are found to stabilize when a data segment of at least
5 years is considered. Hence, the soil moisture data from the study
region for the period 1961–2010 is segmented into 5-year windows
and DMI is computed for each of them. The DMI is considered to
assess the drought characteristics of the basin for each 5-year period
starting from 1961. Results are shown in Fig. 8. It is observed that
the DMI varies in a cyclic pattern. Either the rising or falling phase
is approximately a decade long. An overall mild increasing trend is
also observed with a rate of 0.0048 per 5-year period or approx-
imately 0.01 per decade. This is from the equation of the overall
trend line with the slope of 0.0048 as shown in Fig. 8. However, the
cyclic pattern is more prominent as compared to the overall increas-
ing trend. Thus, the drought characteristics of the study region
follow a cyclic pattern with a slow increasing trend. It is further
noticed that currently the basin is in the rising phase of DMI. It is
expected that the same may be in the falling phase a decade later as
is evident from Fig. 8.

Before concluding, it is worthwhile to mention here that the use
of PWP as a threshold is analogous to standardization with respect
to the soil moisture regime of that region since it allows a compari-
son of drought risks of different locations relative to their natural
regimes. The regular standardization procedure followed in other
drought indices such as the SPI is avoided here since it has certain
drawbacks. For instance, even a small deficit in precipitation may
be reflected as a large negative value for the locations with small
variation in precipitation (or any other hydrologic variable for
drought) (Mallya et al. 2011). However, DMI does not suffer from
such shortcomings as the PWP is a specific quantity at a region for a
particular crop. Moreover, the SPI is ineffective for longer time
scales due to very high temporal overlap (Mallya et al. 2011).
On the other hand, DMI is designed to capture the long-term
drought characteristics.

Conclusions

The reliability, resilience, and vulnerability derived from soil mois-
ture data are investigated in this paper. A new index to characterize
the drought proneness of a catchment is developed using the joint
information of resilience and vulnerability. Plackett copula is used
to obtain the joint distribution of resilience and vulnerability of soil
moisture time series. The developed index, DMI considers the in-
formation of both resilience and vulnerability. This is important
from an effective drought characterization point of view as this in-
dex simultaneously considers the frequency/recovery period as well
as the severity of droughts—once a drought has occurred. For five
different soil moisture time series from different locations, it is ob-
served that even for same resilience intervals, the obtained DMI
values depend on their vulnerability values. DMI is found to sta-
bilize over a time period of 5 years or more, suggesting the use of a
5-year period for assessment of DMI variability. While investigat-
ing the temporal variation of DMI for the study area, a cyclic pat-
tern was observed with a slight increasing trend. Current status of
Malaprabha was found to be in rising phase with an indication of
falling trend a decade later. The study can be extended to investi-
gate spatial variation of DMI, which will be useful for analysis
over a larger area, say a country. However, soil moisture data at
different spatial points, preferably gridded, is required. Further ex-
tensions to assess the changes due to global warming as simulated
by General Circulation Models are in progress and will be reported
in the future.

Appendix. Identification of the Appropriate Copula

For all the data points (reduced variable of resilience, u1 and
vulnerability, u2), values of empirical CDF are obtained and
denoted as Cn. For the bivariate case considered in this study,
Cn is estimated as

CnðuÞ ¼
1

n

Xn
i¼1

IðUi1 ≤ u1;Ui2 ≤ u2Þ ð15Þ

where u ¼ ½u1; u2� = the reduced variable of resilience (u1) and
vulnerability (u2), IðAÞ ¼ 1 if A is true, and IðAÞ ¼ 0 if A is false.
Reduced variables are obtained after transforming through their
marginal distribution, i.e., u1 ¼ ϕ−1ðRÞ and u2 ¼ ϕ−1ðVÞ, where
R = the resilience, V = the vulnerability, and ϕ−1 = the inverse
of cumulative normal distribution. Uijði ¼ 1; : : : ; n and j ¼
1; 2Þ are known as pseudo-observations. These are obtained as
Uij ¼ Rij=ðnþ 1Þ where Rij = the ranks of the data.

Fig. 7. Variation of DMI with respect to different threshold values

Fig. 8. Variation of 5-year DMI for the study region over last 50 years

JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / JULY 2013 / 867

J. Hydrol. Eng. 2013.18:859-869.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
he

 I
nd

ia
n 

In
st

 o
f 

T
ec

hn
ol

og
y 

K
ha

ra
gp

ur
 L

ib
ra

ri
an

 o
n 

07
/2

3/
13

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Values of Cn are arranged in an ascending order and plotted as
a solid line in Fig. 9. For each value of empirical CDF, values of
CDF using Gaussian (CG), Frank (CF), and Plackett (CP) copulas
are also obtained for the corresponding data. These values are also
plotted on the same plot (Fig. 9).

The suitable copula will produce the values of resulting cdf
close to those obtained by empirical copula. Genest et al. (2009)
suggested metrics, such as, Sn ¼ ∫ ½0;1�2DnðuÞ2dCnðuÞ and

Tn ¼ supu∈½0;1�2 jDnðuÞj, where DnðuÞ ¼
ffiffiffi
n

p ðCn − CÞ and n =
the number of data points. Superscripts of Cθn are omitted to make
it general (i.e., applicable to all the copulas). The values of Sn and
Tn are given in Table 1.
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