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Abstract The concurrent influence of large-scale, coupled oceanic–atmospheric
circulation patterns was established to have an effect on hydrologic variability
across the world. El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole
(IOD) are, in particular, important for Indian hydroclimatology. However, it is now
established that rather than just a few well-known teleconnection patterns, a Global
Climate Pattern (GCP) comprising of a global field of several climate anomalies are
responsible for above-normal and below-normal precipitation events over entire
India. The existence of a GCP for hydrological extremes in an even smaller spatial
scale is illustrated in this study. The central part of India, consisting of the con-
tiguous homogeneous meteorological subdivisions—West Madhya Pradesh, East
Madhya Pradesh, Vidarbha, and Chattisgarh (hereinafter ‘central India’), is selected
as the study area. Hydrological extremes (this study focus on precipitation) in the
study area are identified in terms of the Standardized Precipitation Anomaly Index
(SPAI), which is suitable for quantifying extreme events in a monsoon-dominated
climatology. After investigation of the global anomaly fields of five climate vari-
ables, a set of 19 specific zones of climate anomalies from across the world are
found to constitute the GCP for the hydrological extremes in the study region. The
identified GCP is further utilized in a Support Vector Machine (SVM) model to
investigate the potential of the GCP in foreseeing dry and wet extremes over the
study area.
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Introduction

The association of large-scale atmospheric–oceanic circulation patterns and hydro-
logic variables across the world has been established through several studies. Recent
studies have confirmed that asymmetry in the response of rainfall anomalies in
different parts of the world result from opposite phases of low variability oceanic
circulation patterns (King et al. 2013; Qiu et al. 2014). For example, observed
changes in the frequency and intensity of precipitation extremes in Europe are now
largely explained by the persistence in atmospheric circulation patterns over the
North Atlantic (Willems 2013). Changes in large-scale circulation patterns are found
to be responsible for the observed long-term warming and drying in central Europe
(Philipp et al. 2007). For the past two decades, the role of specific oceanic–atmo-
spheric circulation phenomenon such as, El Niño–Southern Oscillation (ENSO),
Indian Ocean Dipole (IOD), Equatorial Indian Ocean Oscillation (EQUINOO),
Pacific Decadal Oscillation (PDO), Atlantic Multi-decadal Oscillation (AMO),
North Atlantic Oscillation (NAO) in triggering and enhancing droughts and floods
on a continental scale have been the focus of research (Chiew and McMahon 2002;
Terray et al. 2003; Gadgil et al. 2004; Goswami et al. 2006; Maity and Nagesh
Kumar 2006, 2008; Feng and Hu 2008; Li et al. 2008; Mo and Schemm 2008; Ting
et al. 2011; Singhrattna et al. 2012; Oubeidillah et al. 2012; Jiang et al. 2013; Rogers
2013; Wang et al. 2013). Some of the recent advances establish the influence of
ENSO and AMO in relation to the variability of China’s summer precipitation (Gu
et al. 2009; Ye 2014) as well as the frequency of its extreme precipitation events (Fu
et al. 2013). The effect of NAO is found to affect winter precipitation, river flow, and
temperature in the Mediterranean region (Brandimarte et al. 2011).

Some of the most frequently researched phenomena are ENSO and IOD, pri-
marily because they influence rainfall anomalies in a large number of countries
across the world. For instance, the unusual warming of the central and eastern
tropical Pacific Ocean during the El Niño events is known to be responsible for
below-normal precipitation in Indonesia and the surrounding Pacific islands and
above-normal precipitation in the western coast of South America. The role of
ENSO in biennial relationship of rainfall variability between Central and equatorial
South America was also recently identified (Wu and Zhang 2010). In the Indian
context, the occurrence of an El Niño event in the Pacific generally indicates that
rainfall deficiencies are in the offing––dry and drought conditions may be expected
due to poor Indian Summer Monsoon Rainfall (ISMR). However, the relationship
between circulation patterns and the occurrence of anomalous continental scale
hydrologic behavior is often very complicated. This is due to the possible
involvement of a number of factors, some more rare than others, which lead to the
optimum conditions for the development of an extreme hydrologic event. Thus, in a
recent study, a direct relationship (as opposed to an inverse relationship) of ENSO
with the rainfall and streamflow series in Mahanadi river basin of south India was
observed (Panda et al. 2013). Again, some studies postulate that the ENSO-ISMR
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relationship has weakened over the years (Viswambharan and Mohanakumar
2014). Apart from ENSO, the other most significant circulation pattern affecting
ISMR is the IOD (Saji et al. 1999; Webster et al. 1999). A positive IOD event,
which is accompanied by high SST over the western Indian Ocean, is known to
affect ISMR positively with abundant rainfall in the Indian subcontinent and dry
and drought conditions in Australia and Indonesia.

Existing literature indicates that most of the previous studies had investigated the
role of specific large-scale Oceanic–Atmospheric Circulation Patterns (OACPs) in
causing extreme hydrologic events such as droughts and floods. However, it is now
established that apart from the well-known teleconnection patterns such as ENSO,
IOD, etc., the concurrent effect of global anomaly fields of several climate variables
influences hydrologic events in a regional scale (Chanda and Maity 2016).
Considering the entire Indian landmass (also referred as all-India) as the test bed, it
was demonstrated that a distinct Global Climate Pattern (GCP) consisting of 15
climate anomaly zones is responsible for the occurrence of dry and wet events. The
potential of the GCP in predicting dry and wet events on an all-India scale is also
established. In fact, the GCP is found to be more useful as precursor of hydrologic
extremes in India compared to the most commonly used hydroclimatic telecon-
nection patterns in the Indian context. The objective of this study is to explore the
existence of a distinct GCP for hydrologic events on a smaller spatial scale. Central
India is selected as the target area to explore the association of regional dry/wet
events with global anomaly fields of five climate variables––sea surface tempera-
ture, surface pressure, air temperature, wind speed, and total precipitable water. The
specific GCP for central India, once identified, is utilized as an input to a prediction
model for categorizing hydrologic events into dry, normal, and wet. Based on
experience from the previous study, a temporal scale of three months is adopted for
this study as the climate anomaly zones are found to be sufficiently well-defined at
this scale for identification of GCP.

Study Area and Data

The India Meteorological Department (IMD) divides India into 36 homogenous
meteorological subdivisions. Out of these, four contiguous subdivisions, namely,
West Madhya Pradesh, East Madhya Pradesh, Vidarbha, and Chattisgarh are
considered together as the study area (Fig. 1). The study area is referred as ‘central
India’. The monthly precipitation data of the aforementioned four subdivisions are
obtained from IMD for the period 1959–2010. The datasets are downloaded from
the website of Indian Institute of Tropical Meteorology (IITM) (ftp://www.tropmet.
res.in/pub/data/rain/iitm–regionrf.txt). The method of development of the
dataset along with the information of the raingauge distribution may be found in
Parthasarathy et al. (1995), Rajeevan et al. (2006). The climate variables used for
this study are the global fields of Sea Surface Temperature (SST), Surface Pressure
(SP), Air Temperature (AT), Wind Speed (WS), and Total Precipitable Water
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(TPW). Monthly global gridded datasets of these variables are obtained from
National Oceanic and Atmospheric Administration (NOAA) (http://www.esrl.noaa.
gov/psd/data/gridded/data.ncep.reanalysis.surface.html) for the period 1958–2010.
The spatial resolution of AT, SP, WS and TPW data is 2.5° lat � 2.5° lon and that
of SST data is of 2° lat � 2° lon.

Methodology

Quantification of Dry and Wet Events Through Standardized
Precipitation Anomaly Index (SPAI)

Since the study area (i.e., central India) encompasses of the four aforementioned
meteorological subdivisions, the monthly rainfall of these four meteorological
subdivisions is averaged to get the monthly time series rainfall over the study area.
In order to identify the GCP for dry and wet extremes, the time series of
Standardized Precipitation Anomaly Index (SPAI) is computed from the obtained

Fig. 1 Study area consisting of the four contiguous homogeneous meteorological Sub divisions
of India––West Madhya Pradesh, East Madhya Pradesh, Vidarbha, and Chattisgarh (modified from
map provided by Indian Institute of Tropical Meteorology, Pune, web address: www.tropmet.res.in
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precipitation time series. Details of the anomaly-based SPAI can be found in
Chanda and Maity (2015). The SPAI is established to be a generalized index that is
suitable for the characterization of meteorological droughts in monsoon-dominated
climatology such as India (Chanda and Maity 2015). A temporal scale of three
months is used for SPAI computation and the period 1961–1990 is used to represent
the long-term climatology, based on which the rainfall anomalies are calculated.
Following the guideline of the U.S. Drought Monitor regarding the threshold value
of Standardized Precipitation Index (SPI) indicating drought, the criteria adopted
for this study are: SPAI–3 values less than −0.8 are designated as dry events, those
greater than 0.8 are designated as wet events and those in between are designated as
normal events.

Identification of the Global Climate Pattern (GCP)
for Central India

Since a temporal scale of 3 months is used for identifying the dry and wet events,
the global climate anomaly fields are also considered at a temporal scale of three
months. For each dry event (i.e., SPAI-3 < −0.8), the climate anomaly field at the
preceding 3-month period is considered. For instance, for a dry event comprising
the months April–May–June, the global climate anomaly field is obtained from the
period January–February–March. For each of the climate variables, the global
anomaly field corresponding to all observed dry events during the period 1959–
2000 is obtained and they are averaged event-wise to get the mean global gridded
climate anomaly field for dry events (Chanda and Maity 2016). A similar procedure
is followed to get the mean global gridded climate anomaly field for wet events for
each climate variable. For a given climate variable, the grid-wise difference of
anomalies between dry and wet events is computed and maps showing the anomaly
differences are plotted. On inspection of these maps, it is found that contrasting
(above-normal/below-normal) features of climate anomalies are revealed during dry
and wet events at the target location. A particular zone on the globe consisting of
opposite anomalies of a climate variable corresponding to dry and wet events at the
study area is considered as one of the variables constituting the GCP. All such
variables, together forming the GCP, are used as input to a prediction model for
categorizing dry and wet events.

Utilization of the Identified GCP for Prediction of Dry
and Wet Events in Central India

The potential of the GCP in prediction of dry and wet events in India has been
recently established (Chanda and Maity 2016). In this study, a smaller target area,
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i.e., central India has been selected and the GCP responsible for dry and wet
extremes in this region is investigated. The potential of the identified GCP for
prediction of hydrologic extremes in central India is assessed through the following
steps.

Reduction of Dimensionality of GCP

Since the curse of dimensionality of inputs could affect the prediction process, it is
wise to reduce the large number of variables constituting the GCP. However, the
information contained in the identified inputs must not be lost in the process.
Hence, principal component analysis (PCA) (Jolliffe 1986) is used to orthogonally
transform the dataset from a number of observed correlated variables to a number of
uncorrelated components which explain the variance of the target variable in a
gradually decreasing order. The number of principal components considered should
be such that it should be large enough to substantially explain the variability.
However, it should not be too large so as to hamper the SVM training owing to high
dimensionality.

Model for Classification of Dry and Wet Events

Once a number of principal components of the GCP are identified as inputs, the
next step is to devise a prediction model that can classify the events into different
categories. The three categories that are considered in this study are dry
(SPAI < −0.8), normal (−0.8 � SPAI � 0.8) and wet (SPAI > 0.8), respec-
tively. It is true that sometimes more number of categories, indicating different
levels of severities of dry and wet events, are of interest. However, any finer
categorization is avoided here since the observed number of events in each category
would then become too less to train the prediction model as well as to evaluate the
prediction performance. Support Vector Machines (SVM) are one of the machine
learning techniques that classify data points using a hypothesis space of linear
functions in a high-dimensional feature space. It maps the input space to a higher
dimensional feature space and selects a hyperplane to attain maximum separation
between the different classes. SVMs have been successfully used in hydrological
applications (Bray and Han 2004; Qin et al. 2005; She and Basketfield 2005;
Tripathi et al. 2006; Lin et al. 2006; Anirudh and Umesh 2007; Kişi and Çimen
2009; Chen et al. 2010; Maity et al. 2010; Samsudin et al. 2011; Bhagwat and
Maity 2012; Zakaria and Shabri 2012; Raghavendra and Deka 2014). SVM-based
models may be suitably used in classifying dry, normal and wet events based on the
selected components (Chanda and Maity 2016).

Following Chanda and Maity (2016), two SVM models (named SVM-I and
SVM-II) are used simultaneously to process the inputs, i.e., the selected principal
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components. SVM-I performs classification into two categories––dry
(SPAI < −0.8) and not dry (SPAI � −0.8), while SVM-II performs classification
into two categories––not wet (SPAI � 0.8) and wet (SPAI > 0.8). After training
the two SVM models during the model development period (1959–2000), they are
used for classification for both model development (1959–2000) and testing period
(2001–2010). At any given time step, the output from the two SVM models is
logically joined to obtain the final output. When the output of SVM-I is dry and that
of SVM-II is not wet, then the event is categorized as dry. When the output of
SVM-I is not dry and that of SVM-II is wet, then the event is categorized as wet.
When the outputs of SVM-I and SVM-II are not dry and not wet, respectively, the
event is categorized as normal. If the outputs of the two SVM models are contra-
dictory, i.e., SVM-I classifies the event as dry and SVM-II classifies it as wet, then
the model fails to categorize the event. However, these events are also categorized
into normal to prevent loss of data during evaluation of prediction performance,
which is a little deviation from Chanda and Maity (2016). The categorization
procedure is illustrated with the help of a flowchart (Fig. 2). It may be noted that
three-way classification (say, groups A, B, and C) through SVMs is also possible.
However, in such cases, two steps need to be followed. First, the classification has
to be performed between ‘Group A’ versus ‘Group B and Group C’. In the next
step, the candidates falling in the second category may be classified further into
‘Group B’ and ‘Group C’. For such classification, training the SVM becomes
computationally too intensive. Thus, in this study, two separate SVM models for
bi-category classification are used simultaneously and their outputs are logically
joined to obtain a three-way classification.

Selected Principal 
Components

SVM II

SVM I

Dry

Not Dry

Not Wet

Wet

Dry

Normal

Normal

Wet

Fig. 2 Flowchart showing logical combination of the outputs of two SVMs to obtain final
categorization of hydrological events

Global Climate Pattern Behind Hydrological Extremes in Central India 77

dryadava@gmail.com



Evaluation of the Prediction Performance
Using GCP as Input

After obtaining the final output obtained from the logical combination of the two
SVM models, the prediction performance may be evaluated by constructing a
contingency table for both the development and the testing period. The potential of
classification of dry, normal, and wet events in the target area using the GCP as
input may be assessed by inspecting the number of events (in the three-way con-
tingency table) which are categorized correctly. Quantitatively, the model perfor-
mance may be assessed in terms of Contingency Coefficient (C) (Pearson 1904),
which is used to measure the degree of association in a contingency table for
N samples (Gibbons and Chakraborti 2011). It is expressed as

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Q

QþN

r
; ð1Þ

where Q is a statistic that tests the null hypothesis that there is no association
between the observed and predicted categories. Q is expressed as

Q ¼
Xm
i¼1

Xn
j¼1

NXij � Xi:Y:j
� �2

NXi:Y:j
; ð2Þ

where Xij is the number of cases falling in ith observed and jth predicted category,
m and n are the number of observed and predicted categories respectively, and
Xi: ¼

Pn
j¼1 Xij and Y:j ¼

Pm
i¼1 Yij. The statistics Q approximately follows

chi-square distribution with m ¼ m� 1ð Þ n� 1ð Þ degrees of freedom. The null
hypothesis (no association between observed and predicted categories) may be
rejected if the p-value is very low. The higher the value of C, the better the
association between observed and predicted categories. The maximum value of C is
theoretically 1, but its upper bound is given by

Cmax ¼
ffiffiffiffiffiffiffiffiffiffi
t � 1
t

r
; ð3Þ

where t ¼ min m; nð Þ (Gibbons and Chakraborti 2011). The C value as well as the
ratio C=Cmax may be used as a measure of the degree of association (Maity et al.
2013).
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Results and Discussions

Identification of the Global Climate Pattern for Central India

The SPAI values computed from the trimonthly rainfall series of central India are
used to categorize each time step in the development (1959–2000) and testing
period (2001–2010) as dry, normal and wet event. During the development period,
the number of dry, normal and wet events are found to be 90, 308, and 106
respectively. During the testing period, the same is found to be 27, 72, and 21
respectively.

As mentioned earlier, for each of the climate variables (SST, SP, AT, WS,
TPW), the global anomaly field corresponding to all observed dry events during the
period 1959–2000 is obtained and they are averaged event-wise to get the mean
global gridded climate anomaly field for dry events. Following a similar procedure,
the mean global gridded climate anomaly field for wet events is also obtained for
each variable. The grid-wise anomaly difference maps are subsequently investigated
for identifying the zones with contrasting anomaly features during dry and wet
events. For many grid locations, the difference in anomalies is found to be statis-
tically significant at 99% confidence level. From the large contiguous zones of
statistically significant anomaly differences, the core areas are selected as con-
stituent variables forming the GCP. In all, the GCP for central India is characterized
by 19 globally distributed zones from five climate variables. The spatial location
and extent of the zones are discussed in comparison to those identified in case of
‘all-India’ analysis (Chanda and Maity 2016) in the following subsections.

Global Fields of Sea Surface Temperature (SST)

Figure 3a reproduces the SST anomaly difference map for ‘all-India’ analysis from
Chanda and Maity (2016). For dry and wet extremes in central India, which is the
target area for this study, the global SST anomaly difference map is shown in
Fig. 3b.

The large positive anomaly zone (5°N–5°S and 100°W–140°W) in the equatorial
Pacific Ocean is evident in the case of all-India analysis as well as ‘central India’
analysis. However, for central India, this zone is not as strong as in the case of the
SST patterns for all-India. The lessening of this zone in extent as well as magnitude
may be indicative of the fact that the effect of El Niño on dry and wet extremes in
central India are weaker than the same on dry and wet extremes occurring on
all-India scale. In both Fig. 3a, b, the positive anomaly differences in northern
Pacific Ocean (40°N–48°N and 150°W–165°W) are even stronger than those in the
equatorial region. The two negative anomaly zones in the Pacific (20°S–26°S and
160°E–170°E; 40°S–50°S, 114°W–124°W) are found to be potent in both Fig. 3a,
b. However, the negative anomaly region (26°N–34°N, 136°E–144°E) along the
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coast of Japan is found to be relatively less well defined in case of central India
(Fig. 3b). In general, it is observed that warm anomaly pockets in the eastern part of
Pacific Ocean and cold anomaly pockets in the western part of Pacific Ocean are
associated with dry events in central India as well as ‘all-India’.

As in case of the SST over Pacific Ocean, the negative anomaly regions in
sub-equatorial Indian Ocean (8°S–16°S and 74°E–80°E) and to the west of
Australia (6°S–14°S and 114°E–124°E) are similar in extent and magnitude in
Fig. 3a, b. The strong negative anomaly region (16°N–26°N and 70°W–80°W)
between the North and South Americas is also equally well defined in both the
figures.

Thus, it may be concluded that the global SST zones responsible for dry and wet
extremes in central India are identical to those of all-India. Hence, 8 SST zones are
selected as constituents of the GCP for central India.

Fig. 3 Differences in mean SST anomalies during dry events (SPAI-3 < −0.8) and wet events
(SPAI-3 > 0.8) over a India (Chanda and Maity 2016) and b central India
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Global Fields of Surface Pressure (SP)

Figure 4a reproduces the SP anomaly difference map for ‘all-India’ analysis from
Chanda and Maity (2016). For dry and wet extremes in central India, the global SP
anomaly difference map is shown in Fig. 4b. The positive anomaly zone in northern
Pacific (55°N–65°N and 145°W–160°W) as well as the negative anomaly zone in
tropical Pacific (15°N–30°N, 145°W–160°W) is found to be very well defined and
strong for both ‘all-India’ and central India. In addition to these two regions in
Pacific Ocean, a very prominent positive anomaly zone in the western part of
equatorial Pacific (5°S–5°N, 170°E–210°E) is observed in case of central India. The
whole of Arabian Sea, Indian Ocean, and Bay of Bengal exhibit positive anomalies
in both Fig. 4a, b. The signature of this region is represented through the zone 10°
N–20°N, 55°E–65°E. The mild negative anomaly region in the Atlantic is also
similar in extent and magnitude in both the figures. Thus, a total of 5 SP zones is
selected as constituents of the GCP for central India.

Fig. 4 Differences in mean SP anomalies during dry and wet events in a India (Chanda and Maity
2016) and b central India
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Global Fields of Air Temperature (AT), Wind Speed (WS),
and Total Precipitable Water (TPW)

Since the variables AT, WS, and TPW generally influence convective activity on a
smaller spatial scale, the anomaly fields of these variables are investigated around
the Indian subcontinent region. The patterns of anomaly differences of AT during
dry and wet events in case of ‘all-India’ and in case of ‘central India’ are shown in
Fig. 5a, b, respectively. Similar comparative figures for WS and TPW are shown in
Figs. 6a, b and 7a, b, respectively. In case of AT, it is observed that a positive
anomaly region at the nook of the Bay of Bengal is associated with dry events for
all-India as well as for central India. For central India, a negative anomaly zone
below the landmass of Pakistan and Iran is also found to be very much prominent in
extent and magnitude, much more than that observed in case of the all-India study.
Hence, both the AT zones––(20°N–30°N and 85°E–95°E) and (20°N–25°N and
60°E–65°E) are considered in the pool of GCP for central India.

Positive WS anomalies in the Indian Ocean are found to be associated with dry
events in all-India as well as central India. As observed in case of AT, here also, a
zone of importance can be located over the landmass of Pakistan and Iran. This
positive anomaly region was evident in case of ‘all-India’ also, but the magnitude of
the anomaly was not as large as in the present case. As a result, two WS zones––
(0°–5°N, 70°E–85°E) and (25°N–30°N, 60°E–70°E) are considered while devel-
oping the GCP for central India.

Very strong negative TPW anomalies around the Persian Gulf are found to be
associated with dry events in ‘India’ as well as ‘central India’. Additionally, a
positive anomaly zone located to the west of Pakistan is also found to be very
prominent in case of central India. The hint of this zone was evident in case of

Fig. 5 Differences in mean AT anomalies during dry and wet events in a India (Chanda and
Maity 2016) and b central India
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all-India study also, but was not as well defined. Thus, TPW zones––(5°N–15°N
and 55°E–65°E) and (25°N–30°N and 55°E–60°E) are considered for central India.

Thus, in all, a total of 19 variables, each being denoted by a specific climate
anomaly from a distinct part of the globe, together constitutes the GCP for dry and
wet events in central India. The extent of these zones is specifically mentioned in
Table 1. It is observed that many of the variables are equally important factors
affecting hydrologic extremes in the ‘central India’ region as well as on an
‘all-India’ scale. However, it is noted that often the extent of the anomaly zones as
well as their magnitudes differ in case of the present study concerning central India

Fig. 6 Differences in mean WS anomalies during dry and wet events in a India (Chanda and
Maity 2016) and b central India

Fig. 7 Differences in mean TPW anomalies during dry and wet events in a India (Chanda and
Maity 2016) and b central India
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and the all-India study. Moreover, some local factors (such AT, WS and TPW)
which have limited influence on the hydrologic extremes of India are found to be
more influential in case of central India.

Utilization of the Identified GCP for Prediction of Dry
and Wet Events in Central India

As mentioned earlier, the number of principal components selected should sub-
stantially explain the variability and also alleviate the curse of dimensionality. It is
found that the first seven principal components together explain about 72.5% of the
variability. Hence, the seven selected principal components of the 19-dimensional
GCP for the model development period are used as inputs to train the two SVM
models. The models are then used for classification of the events at each time step
(both development and testing period) into dry, normal, or wet category. The
prediction performance is subsequently assessed by inspecting the contingency
table (Table 2). During the development period, 59 out of the 90 observed dry
events are correctly predicted while 12 and 19 observed droughts are wrongly
predicted as normal and wet respectively. Of the 106 observed wet events, 60 are

Table 1 Identified representative zones of climate anomalies to characterize the global climate
pattern (GCP) responsible for hydrologic extremes in central India

Physical variable Symbol Latitude Longitude

Air temperature AT1 20°N–30°N 85°E–95°E

Air temperature AT2 20°N–25°N 60°E–65°E

Wind speed WS1 0°N–5°N 70°E–85°E

Wind speed WS2 25°N–30°N 60°E–70°E

Total precipitable water TPW1 5°N–15°N 55°E–65°E

Total precipitable water TPW2 25°N–30°N 55°E–60°E

Surface pressure SP1 15°N–30°N 145°W–160°W

Surface pressure SP2 30°S–40°S 0°W–10°W

Surface pressure SP3 55°N–65°N 145°W–160°W

Surface pressure SP4 10°N–20°N 55°E–65°E

Surface pressure SP5 5°S–5°N 170°E–210°E

Sea surface temperature SST1 40°N–48°N 150°W and 164°W

Sea surface temperature SST2 16°N–26°N 70°W–80°W

Sea surface temperature SST3 20°S–26°S 160°E–170°E

Sea surface temperature SST4 4°N and 4°S 100°W and 140°W

Sea surface temperature SST5 8°S and 16°S 74°E and 80°E

Sea surface temperature SST6 6°S–14°S 114°E–124°E

Sea surface temperature SST7 40°S–50°S 116°W–124°W

Sea surface temperature SST8 26°N–34°N 136°E–144°E
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correctly predicted while 30 and 16 observed wet events are wrongly predicted as
dry and normal, respectively. During the testing period, the number of observed dry
events predicted correctly is 11 (out of a total of 27) and the number of observed
wet events predicted correctly is 17 (out of a total of 21). The value of the
Contingency Coefficient C is obtained as 0.281 and 0.364 during the development
and testing period respectively. The low p-values and reasonably good C/Cmax

ratios indicate a good performance considering that prediction of regional hydro-
logical extremes is immensely complicated due to large uncertainty in the climatic
system. Thus, it is observed that GCP identified for hydrological extremes in central
India may serve as effective precursors of dry and wet events.

Conclusion

This study reinforces the fact that hydrological extremes at the regional scale are
caused by the concurrent effect of several climate anomaly fields across the globe
rather than only well-known atmospheric–oceanic circulation patterns. A total of 19
globally distributed anomaly zones of different climate variables are found to
constitute the Global Climate Pattern (GCP) responsible for hydrological extremes
in central India. For the large-scale variables such as sea surface temperature and
pressure, the zones of importance for central India are more or less similar to that of
all India. However, for variables like air temperature, wind speed and total pre-
cipitable water, the number of influential zones is found to be more in number and
relatively better defined for central India than that in case of all-India.

The identified GCP for central India is found to have potential use as precursor
of hydrologic extremes in the target area. The SVM-based modeling approach used
in this study exhibits reasonably good potential of GCP in foreseeing the above-
and below-normal precipitation events. It may be possible to obtain more reliable
prediction using GCP by adopting further sophisticated modeling approach.
Moreover, as a future extension of this work, the illustrated methodology may be
applied for other homogeneous meteorological subdivisions of India having con-
siderably different precipitation regime.
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