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Reasons and approaches to study process dynamics

Most chemical plants operate 24 × 7 in a continuous mode of operation with periodic
shut-down for maintenance.
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Dynamics?
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Dynamics?

Dynamics is that branch of mechanics which deals with the motion of bodies under the
action of forces.
During motion, the coordinates of the system relative to a frame of reference change
with time.

Mechanical engineers - vehicle
dynamics

Aerospace engineers - flight dynamics

What’s the generalisation, and how may
systems relevant to chemical engineering
utilise this?
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Process dynamics - Change of process variables with time

Transient behaviour during staged-operations

hn
dxn(i , t)

dt
= Ln−1xn−1(i , t) + Vn+1(t)yn+1(i , t)−Vn(t)yn(i , t)−Ln(t)xn(i , t) (1)

i : index for the component

n : index for the plate

h : liquid holdup

x : mole fraction in the
liquid phase

y : mole fraction in the
vapour phase

L : liquid flowrate

V : vapour flowrate

Composition in each tray
changes with time!!!
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Process dynamics - Change of process variables with time

Transient operation of n cascade CSTRs with reversible series reactions

dc1(1)

dt
= −

(
k1 +

1

θ

)
c1(1) + k ′1c2(1) +

1

θ
c1(0) (2)

c1(n) : concentration of the i th species in the nth reactor

c1(0) : concentration of the i th species in the feed entering the first tank

θ : holding time

Concentrations in the reactors change with time!!!
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Process dynamics - Change of process variables with time

Transient operation of a jacketed CSTR

dC

dt
=

F

V
(Cf − C )− r (3)

dT

dt
=

F

V
(Tf − T ) +

(
−∆H

ρcp

)
r − UA

V ρcp
(T − Tj) (4)

F : volumetric feed rate

Cf : concentration of the
reactant in the feed

Tf : temperature of the
feed

C : concentration of the
reactant in the reactor

T : temperature of the
reaction mixture

Fj : volumetric flowrate of
the heating/cooling fluid

Tj : temperature of the
heating/cooling fluid

V : volume of the reactor

r : rate of reaction

Concentration and
temperature in the reactor
change with time!!!
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Some definitions

Dynamical system

A system is said to be a dynamical system if it has “at least one” variable associated
with it which is a “function of time”.

hn
dxn(i , t)

dt
= Ln−1xn−1(i , t) + Vn+1(t)yn+1(i , t)−Vn(t)yn(i , t)−Ln(t)xn(i , t) (5)

dc1(1)

dt
= −

(
k1 +

1

θ

)
c1(1) + k ′1c2(1) +

1

θ
c1(0) (6)

dC

dt
=

F

V
(Cf − C )− r (7)

dT

dt
=

F

V
(Tf − T ) +

(
−∆H

ρcp

)
r − UA

V ρcp
(T − Tj) (8)
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Some definitions

Dynamical variable

The time-dependent variable whose time rate of change is described by the model
equation is called the dynamical variable.

hn
dxn(i , t)

dt
= Ln−1xn−1(i , t) +Vn+1(t)yn+1(i , t)−Vn(t)yn(i , t)−Ln(t)xn(i , t) (9)

dc1(1)

dt
= −

(
k1 +

1

θ

)
c1(1) + k ′1c2(1) +

1

θ
c1(0) (10)

dC

dt
=

F

V
(Cf − C )− r (11)

dT

dt
=

F

V
(Tf − T ) +

(
−∆H

ρcp

)
r − UA

V ρcp
(T − Tj) (12)
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Some definitions

Order of a system - Old definition

Order of a system is the order of the ODE that models the system.

dC

dt
=

F

V
(Cf − C )− r

dT

dt
=

F

V
(Tf − T ) +

(
−∆H

ρcp

)
r

− UA

V ρcp
(T − Tj)

Two first order ordinary differential equations. So what’s the order?
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Some definitions

Order of a system - New definition

Order of a system is the “number of first order” ODE’s that model the system.
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Some definitions

Linear system

A system is said to be a linear system if its governing dynamical equations are linear.

Principle of linearity

If L̂ is an operator in a linear vector space and u and v are the two vectors in the linear
vector space then the operator L̂ is said to be linear if it satisfies the following:

L̂(u + v) = L̂(u) + L̂(v) (13)

L̂(αu) = αL̂(u) (14)

where α is an element of the field over which the vector space is defined.

A system which does not follow the above principle of linearity is referred to as a
non-linear system.
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An example of a linear first order system

dh(t)

dt
=

1

A
(q1 − q2) (15)

Dynamical variable: h(t)

Order of the system = 1
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Cooling of a body in an infinite fluid

Consider a liquid reservoir at temperature

T∞ in which a body of temperature T0 is

immersed at time t = 0. The time rate of

change of temperature of the body as a

function of system and material properties

can be obtained by modeling the energy

balance of the system.
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Cooling of a body in an infinite fluid

dT

dt
=
−hAs

ρVc
(T − T∞) (16)

h = heat transfer coefficient

As = surface area of the solid body

ρ = density of the solid body

V = volume of the solid body

c = specific heat of the solid body

T = instantaneous temperature of the
solid body
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Cooling of a body in an infinite fluid

1 What is/are the equilibrium solution(s) of the system?

2 Solve the model equation analytically to determine the time evolution of the
system.

3 Develop the phase portrait for the system.

4 Develop the phase portrait without explicitly solving the governing equation.

5 Analyse the solutions and the phase portraits for T0 < T∞, T0 = T∞ and
T0 > T∞.

6 Study the effect of different system and material properties on the system
dynamics.

7 Comment upon the bifurcation in the system.
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Example of a higher order system

dh(t)

dt
=

1

A
(q1 − q2) (17)

Order of the system = 1

Dynamical variable: h(t)

dh1(t)

dt
=

1

A1
(q1 − q2) (18)

dh2(t)

dt
=

1

A2
(q2 − q3) (19)

Order of the system = 2

Dynamical variable: [h1(t) h2(t)]T
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Higher order linear autonomous systems

dx1
dt

=a11x1 + a12x2 + · · · a1NxN

dx2
dt

=a21x1 + a22x2 + · · · a2NxN

.

.

dxN
dt

=aN1x1 + aN2x2 + · · · aNNxN

Order of the system = N

Dynamical variable: [x1 x2 · · · xN ]T
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Higher order linear autonomous systems

d

dt


x1
x2
.
.

xN

 =


a11 a12 . . . a1N
a21 a22 . . . a2N
. . . . . .
. . . . . .

aN1 aN2 . . . aNN





x1
x2
.
.
.

xN

 (20)

Nth order dynamical equation: dx
dt = Ax 1st order dynamical equation: dx

dt = ax
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Solution of N th order linear autonomous equation

Theorem

The solutions to a linear autonomous equation of the form dx
dt = Ax are given as

x =
N∑
i=1

cie
λi tvi (21)

where,
λi ’s are the eigenvalues of A
vi ’s are the corresponding eigenvectors
ci ’s are present in the field over which the vector space of solutions is defined
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Analysis of a free spring-mass system

Consider the case of a single linear spring
of spring constant k with mass m
attached to it such that the motion of the
mass is confined only along the direction
of the spring axis. The following equations
govern the dynamics of the system.
Free undamped system:

m
d2x

dt2
+ kx = 0 (22)

Free vibration with damping:

m
d2x

dt2
+ c

dx

dt
+ kx = 0 (23)
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Analysis of a free spring-mass system

Convert the dynamical equations into matrix equations and analyse

1 the equilibrium solution(s)

2 the phase portraits

3 the stability of the system

4 the effect of different parameters on the dynamical behaviour of the system
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Example of a non-autonomous system

dh(t)

dt
=

1

A
(q1 − q2) (24)
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Example of a non-autonomous system

dh1(t)

dt
=

1

A1
(q1 − q2) (25)

dh2(t)

dt
=

1

A2
(q2 − q3) (26)
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MIMO systems

Transient behaviour during staged-operations

hn
dxn(i , t)

dt
= Ln−1xn−1(i , t)+Vn+1(t)yn+1(i , t)−Vn(t)yn(i , t)−Ln(t)xn(i , t) (27)

i : index for the component

n : index for the plate

h : liquid holdup

x : mole fraction in the
liquid phase

y : mole fraction in the
vapour phase

L : liquid flowrate

V : vapour flowrate
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A general N th order non-autonomous system

dx1
dt

=a11x1 + a12x2 + · · · a1NxN + b11u1 + b12u2 + · · · b1MuM

dx2
dt

=a21x1 + a22x2 + · · · a2NxN + b21u1 + b22u2 + · · · b2MuM

.

.

dxN
dt

=aN1x1 + aN2x2 + · · · aNNxN + bN1u1 + bN2u2 + · · · bNMuM
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A general N th order non-autonomous system

d

dt


x1
x2
.
.

xN

 =


a11 a12 . . . a1N
a21 a22 . . . a2N
. . . . . .
. . . . . .

aN1 aN2 . . . aNN





x1
x2
.
.
.

xN

+


b11 b12 . . . b1M

b21 b22 . . . b2M

. . . . . .

. . . . . .
bN1 bN2 . . . bNM





u1

u2

.

.

.
uM


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Output equations

dh(t)

dt
=

1

A
(q1 − q2) (28)

Parag A. Deshpande, IIT Kharagpur Process Dynamics and Control 30



A general N th order non-autonomous system

dx1
dt

=a11x1 + a12x2 + · · · a1NxN + b11u1 + b12u2 + · · · b1MuM

dx2
dt

=a21x1 + a22x2 + · · · a2NxN + b21u1 + b22u2 + · · · b2MuM

.

.

dxN
dt

=aN1x1 + aN2x2 + · · · aNNxN + bN1u1 + bN2u2 + · · · bNMuM

y1= c11x1 + c12x2 + · · · c1NxN + d11u1 + d12u2 + · · · d1MuM

y2= c21x1 + c22x2 + · · · c2NxN + d21u1 + d22u2 + · · · d2MuM

.

.

yP= cP1x1 + cP2x2 + · · · cPNxN + dP1u1 + dP2u2 + · · · dPMuM
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A general N th order non-autonomous system

d

dt


x1
x2
.
.

xN

 =


a11 a12 . . . a1N
a21 a22 . . . a2N
. . . . . .
. . . . . .

aN1 aN2 . . . aNN





x1
x2
.
.
.

xN

+


b11 b12 . . . b1M

b21 b22 . . . b2M

. . . . . .

. . . . . .
bN1 bN2 . . . bNM





u1

u2

.

.

.
uM




y1
y2
.
.

yP

 =


c11 c12 . . . c1N
c21 c22 . . . c2N
. . . . . .
. . . . . .

cP1 cP2 . . . cPN





x1
x2
.
.
.

xN

+


d11 d12 . . . d1M

d21 d22 . . . d2M

. . . . . .

. . . . . .
dP1 dP2 . . . dPM





u1

u2

.

.

.
uM


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A general N th order non-autonomous system

dx

dt
= A x + B u (29)

y = C x + D u (30)

x: N × 1 y: P × 1

A: N × N B: N ×M

C : P × N D: P ×M
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Similarity solution: Basic concepts

Similar matrices

If P is a non-singular matrix such that P−1 A P = B then A and B are called similar
matrices.

Similarity transformation

The operation P−1 A P = B is called similarity transformation.

Important properties of similar matrices

Similar matrices have same eigenvalues.

If x is an eigenvector of A with an eigenvalue λ then P−1 x will be the eigenvector
of B with the same eigenvalue λ.

Parag A. Deshpande, IIT Kharagpur Process Dynamics and Control 34



Similarity solution: Diagonalisation

Consider P made from the augmentation of eigenvectors of A.

A P = A [ x1 | x2 | · · · | xN ]

= [ A x1 | A x2 | · · · | A xN ]

= [ λ1 x1 | λ2 x2 | · · · | λN xN ]

= P Λ

where,

Λ =


λ1 0 . . . 0
0 λ2 . . . 0
. . . . . .
. . . . . .
0 0 . . . λN


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Analysis of a forced spring-mass system

Consider the case of a single linear spring
of spring constant k with mass m
attached to it such that the motion of the
mass is confined only along the direction
of the spring axis. The following equations
govern the dynamics of the system.
Free undamped system:

m
d2x

dt2
+ kx = 0 (31)

Free vibration with damping:

m
d2x

dt2
+ c

dx

dt
+ kx = 0 (32)
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Analysis of a forced spring-mass system

Consider the case of a single linear spring
of spring constant k with mass m
attached to it such that the motion of the
mass is confined only along the direction
of the spring axis. The following equations
govern the dynamics of the system.
Forced vibration without damping:

m
d2x

dt2
+ kx = F0sinωt (33)

Forced vibration with damping:

m
d2x

dt2
+ c

dx

dt
+ kx = F0sinωt (34)
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Phase portraits for higher order systems

d

dt

x1
x2
x3

 =

a 0 0
0 b 0
0 0 c

x1
x2
x3

 (35)

λ1 = a, λ2 = b, λ3 = c

v1 =

1
0
0

, v2 =

0
1
0

, v3 =

0
0
1


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Phase portraits for higher order systems

d

dt

x1
x2
x3

 =

1 2 −1
0 3 −2
0 2 −2

x1
x2
x3

 (36)

λ1 = 2, λ2 = 1, λ3 = −1

v1 =

3
2
1

, v2 =

1
0
0

, v3 =

0
1
2


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Phase portraits for higher order systems

d

dt

x1
x2
x3

 =

 0 1 0
−1 0 0
0 0 −1

x1
x2
x3

 (37)

λ1 = i , λ2 = −i , λ3 = −1

v1 =

−i
1
0

, v2 =

 i
1
0

, v3 =

0
0
1


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A 4th order linear autonomous system

dx1
dt

= x1 + x2 − x3 (38)

dx2
dt

= x2 + x4 (39)

dx3
dt

= x3 + x4 (40)

dx4
dt

= x4 (41)
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A complex reaction system

Consider a system of elementary reaction in series of the type A→ B → C . The
kinetics of the reaction system is given by the following equations.

dCA

dt
= −k1CA (42)

dCB

dt
= k1CA − k2CB (43)

dCC

dt
= k2CB (44)

The reactions are carried out in a batch reactor with the respective initial
concentrations as CA0, CB0 and CC0, respectively. Analyse the effects of various
parameters associated with the system on the time evolution of the concentrations of
the chemical species.
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Non-linear systems

Definition: Linear system

A system is said to be a linear system if its governing dynamical equations are linear.

Principle of linearity

If L̂ is an operator in a linear vector space and u and v are the two vectors in the linear
vector space then the operator L̂ is said to be linear if it satisfies the following:

L̂(u + v) = L̂(u) + L̂(v)

L̂(αu) = αL̂(u)

where α is an element of the field over which the vector space is defined.

A system not following the above principle of linearity is referred to as a non-linear
system.
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Non-linear systems

dh(t)

dt
=

1

A
(q1 − q2) (45)

Dynamical variable: h(t)

Order of the system = 1
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Non-linear systems

dT

dt
=
−hAs

ρVc
(T − T∞) (46)

h = heat transfer coefficient

As = surface area of the solid body

ρ = density of the solid body

V = volume of the solid body

c = specific heat of the solid body

T = instantaneous temperature of the
solid body
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Linearisation of non-linear systems

d

dt


x1
x2
.
.

xN

 =


a11 a12 . . . a1N
a21 a22 . . . a2N
. . . . . .
. . . . . .

aN1 aN2 . . . aNN





x1
x2
.
.
.

xN

+


b11 b12 . . . b1M

b21 b22 . . . b2M

. . . . . .

. . . . . .
bN1 bN2 . . . bNM





u1

u2

.

.

.
uM




y1
y2
.
.

yP

 =


c11 c12 . . . c1N
c21 c22 . . . c2N
. . . . . .
. . . . . .

cP1 cP2 . . . cPN





x1
x2
.
.
.

xN

+


d11 d12 . . . d1M

d21 d22 . . . d2M

. . . . . .

. . . . . .
dP1 dP2 . . . dPM





u1

u2

.

.

.
uM


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Linearisation of non-linear systems

dx

dt
= A x + B u (47)

y = C x + D u (48)

x: N × 1 y: P × 1

A: N × N B: N ×M

C : P × N D: P ×M

Parag A. Deshpande, IIT Kharagpur Process Dynamics and Control 47



Linearisation of non-linear systems

Non-linear dynamical and output equations

dx1
dt

= f1(x1, x2, · · · xn, u1, u2, · · · um)

dx2
dt

= f2(x1, x2, · · · xn, u1, u2, · · · um)

.

.

dxN
dt

= fN(x1, x2, · · · xn, u1, u2, · · · um)

y1 = g1(x1, x2, · · · xn, u1, u2, · · · um)

y2 = g2(x1, x2, · · · xn, u1, u2, · · · um)

.

.

yP = gP(x1, x2, · · · xn, u1, u2, · · · um)
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Linearisation of non-linear systems

Let the steady state of the non-linear system be described by the vector
[x1s x2s · · · xns u1s u2s · · · ums ]T

fi (x1, x2, · · · xn, u1, u2, · · · um) = fi (x1s , x2s , · · · xns , u1s , u2s , · · · ums)

+
∂fi
∂x1

∣∣∣∣
ss

(x1 − x1s) +
∂fi
∂x2

∣∣∣∣
ss

(x2 − x2s) + · · ·

+
∂fi
∂u1

∣∣∣∣
ss

(u1 − u1s) +
∂fi
∂u2

∣∣∣∣
ss

(u2 − u2s) + · · ·

gj(x1, x2, · · · xn, u1, u2, · · · um) = gj(x1s , x2s , · · · xns , u1s , u2s , · · · ums)

+
∂gj
∂x1

∣∣∣∣
ss

(x1 − x1s) +
∂gj
∂x2

∣∣∣∣
ss

(x2 − x2s) + · · ·

+
∂gj
∂u1

∣∣∣∣
ss

(u1 − u1s) +
∂gj
∂u2

∣∣∣∣
ss

(u2 − u2s) + · · ·
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Linearisation of non-linear systems

[x∗1 x∗2 · · · x∗N ] = [(x1 − x1s) (x2 − x2s) · · · (xN − xNs)]T

[u∗1 u∗2 · · · u∗M ] = [(u1 − u1s) (u2 − u2s) · · · (uM − uMs)]T

[y∗1 y∗2 · · · y∗P ] = [(y1 − y1s) (y2 − y2s) · · · (yP − yPs)]T

dx∗

dt
= A x∗ + B u∗ (49)

y∗ = C x∗ + D u∗ (50)

x∗ = [x∗1 x∗2 · · · x∗N ]T ; u∗ = [u∗1 u∗2 · · · u∗M ]T ; y∗ = [y∗1 y∗2 · · · y∗P ]T

(51)

A
ij

=
∂fi
∂xj

∣∣∣∣
ss

; B
ij

=
∂fi
∂uj

∣∣∣∣
ss

; C
ij

=
∂gi
∂xj

∣∣∣∣
ss

; D
ij

=
∂gi
∂xj

∣∣∣∣
ss

(52)
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Linear vs. non-linear population growth models

A linear model for population growth:
Assumptions

Population confined to the region i .e. no entry and exit of members

Growth rate is a function of the instantaneous population

No death; birth only from the present members, no explicit birth rate term
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Linear vs. non-linear population growth models

A non-linear model for population growth:
Assumptions to overcome the issues of the linear model

Population confined to the region i .e. no entry and exit of members

Growth rate is a function of the instantaneous population

No death; birth only from the present members, no explicit birth rate term

Growth rate proportional to the instantaneous population only for small
populations

Negative growth rate at large populations so as to “limit” the population

dx

dt
= ax

(
1− x

N

)
(53)
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Logistic population growth model with harvesting

A non-linear model for population growth:
Assumptions to overcome the issues of the linear model

Population confined to the region i .e. no entry but exit of members at a constant
rate

Growth rate is a function of the instantaneous population

No death; birth only from the present members, no explicit birth rate term

Growth rate proportional to the instantaneous population only for small
populations

Negative growth rate at large populations so as to “limit” the population

dx

dt
= ax

(
1− x

N

)
−h (54)
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Logistic population growth with critical threshold

The logistic growth model for the population growth of a species accounted for
carrying capacity of the system. Imagine a population which goes to extinction if the
initial population if below a certain number i .e. there exists a threshold population for
the species to survive. The features of such a population dynamics are:

Upper limit on the population based on the carrying capacity

Exponential growth at initial stages and saturation at later stages

Extinction when the initial population is less than the threshold population

dx

dt
= −ax

(
1− x

λ1

)(
1− x

λ2

)
(55)

λ1: carrying capacity; λ2: threshold population; 0 < λ2 < λ1
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Bifurcations in non-linear systems

dx

dt
= ax − ax2 (56)

dx

dt
= a− x2 (57)

dx

dt
= ax − x2 (58)

dx

dt
= ax − x3 (59)
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Non-linear systems in higher dimensions

dx1
dt

= −x1 (60)

dx2
dt

= x2
1 + x2 (61)
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Non-linear systems in higher dimensions

dx1
dt

= x2
1 (62)

dx2
dt

= −x2 (63)

Parag A. Deshpande, IIT Kharagpur Process Dynamics and Control 57



Non-linear systems in higher dimensions

Hartman-Grobman theorem

The orbit structure of a dynamical system in the neighbourhood of a hyperbolic
equilibrium point is topologically equivalent to the orbit structure of its linearised
system
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Non-linear systems in higher dimensions

dx1
dt

= x2
1 − x2

2 − 1 (64)

dx2
dt

= 2x2 (65)
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Reactor stability analysis

Transient operation of a jacketed CSTR

dC

dt
=

F

V
(Cf − C )− r (66)

dT

dt
=

F

V
(Tf − T ) +

(
−∆H

ρcp

)
r − UA

V ρcp
(T − Tj) (67)

F : volumetric feed rate

Cf : concentration of the
reactant in the feed

Tf : temperature of the
feed

C : concentration of the
reactant in the reactor

T : temperature of the
reaction mixture

Fj : volumetric flowrate of
the heating/cooling fluid

Tj : temperature of the
heating/cooling fluid

V : volume of the reactor

r : rate of reaction
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Kermack-McKendrick (SIR) model

Model assumptions:

The total population is constant

The population is divided into three compartments

susceptibles, S , who can catch the disease
infectives, I , who have the disease and can transmit it
removed class, R, namely, those who have either had the disease, or are recovered,
immune or isolated until recovered

Recovery confers immunity to the individual

Incubation period is zero

The population is well-mixed
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Kermack-McKendrick (SIR) model

Model assumptions:

The gain in the infective class is at a rate proportional to the number of infectives
and susceptibles, that is, rSI , where r > 0 is a constant parameter

The rate of removal of infectives to the removed class is proportional to the
number of infectives, that is, aI where a > 0 is a constant parameter
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Kermack-McKendrick (SIR) model

dS

dt
= −rSI (68)

dI

dt
= rSI − aI (69)

dR

dt
= aI (70)

r : infection rate (> 0)
a: removal rate (> 0)
Initial conditions:
S(0) = S0, I (0) = I0, R(0) = 0
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Kermack-McKendrick (SIR) model

Key questions?

1 Given r , a, S0 and the initial number of infectives I0, whether the infection will
spread or not?

2 If the infection does spread, how does it develop with time?

3 When will it start to decline?

4 When do you declare the spread of an infectious disease an “epidemic”
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Lorenz equations

Setting up the model:

Consider earth’s atmosphere to consist of a single fluid particle

The particle is heated from below and is cooled from outside

The atmosphere is modelled as a two-dimensional fluid cell

The weather is predicted considering all variables as constants except

convection rate
horizontal temperature variation
vertical temperature variation
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Lorenz equations

dx

dt
= σ(y − x) (71)

dy

dt
= rx − y − xz (72)

dz

dt
= xy − bz (73)

x : variable signifying convection rate
y : variable signifying horizontal
temperature variation
z : variable signifying vertical temperature
variation

σ: Prandtl number
r : Rayleigh number
b: parameter related to the system size

σ, r , b > 0; σ > b + 1
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Analysis of dynamical systems in transform domain

Consider a mixing tank for the mixing of
two streams with pure components A and
B to get the desired concentration of B,
CBout , as shown.

Fi ’s: volumetric flowrates

Ci ’s: molar concentrations

FA is assumed to be much larger
than FB

All densities are similar

Analyse the effect of system variables on
the outlet concentration of B.
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Ideal forcing functions
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(p, q) order systems

g(s) = K
τs+1 → y(t) = AK (1− et/τ )

g(s) = K1K2
(τ1s+1)(τ2s+1) → y(t) = AK1K2

(
1−

(
τ1

τ1−τ2

)
et/τ1 −

(
τ2

τ2−τ1

)
et/τ2

)

g(s) = K(χs+1)
τs+1 → y(t) = AK

(
1−

( τ−χ
τ

)
et/τ

)

g(s) = K(χs+1)
(τ1s+1)(τ2s+1) → y(t) = AK

(
1−

(
τ1−χ
τ1−τ2

)
et/τ1 −

(
τ2−χ
τ2−τ1

)
et/τ2

)
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Transform domain analysis

u(t) =

{
0, t < 0

A, t > 0
(74)

y(t) = AK (1− e−t/τ ) (75)
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Transform domain analysis

u(t) =


0, t < 0

A, 0 < t > b

0, t > b

(76)

y(t) =


AK (1− e−t/τ ), t < b

AK [(1− e−t/τ ))−
(1− e−(t−b)/τ)], t > b

(77)
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Transform domain analysis

u(t) =

{
0, t < 0

At, t > 0
(78)

y(t) = AKτ(e−t/τ +
t

τ
− 1) (79)
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Transform domain analysis

u(t) =

{
0, t < 0

A sinωt, t > 0
(80)

y(t) = AK [
ωτ

1 + ω2τ2
e−t/τ

+
1√

1 + ω2τ2
sin(ωt + φ)] (81)
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Transform domain analysis - Pure capacity systems

u(t) =

{
0, t < 0

A, t > 0
(82)

y(t) = AKt (83)
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Transform domain analysis - Pure capacity systems

u(t) =


0, t < 0

A, 0 < t > b

0, t > b

(84)

y(t) =

{
AKt, 0 < t < b

AKb, t > b
(85)
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Transform domain analysis - Pure capacity systems

u(t) =

{
0, t < 0

At, t > 0
(86)

y(t) =
AKt2

2
(87)
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Transform domain analysis - Pure capacity systems

u(t) =

{
0, t < 0

A sinωt, t > 0
(88)

y(t) =
AK

ω
(1− cosωt) (89)
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MIMO systems

dx1
dt

=a11x1 + a12x2 + · · · a1NxN + b11u1 + b12u2 + · · · b1MuM

dx2
dt

=a21x1 + a22x2 + · · · a2NxN + b21u1 + b22u2 + · · · b2MuM

.

.

dxN
dt

=aN1x1 + aN2x2 + · · · aNNxN + bN1u1 + bN2u2 + · · · bNMuM

y1= c11x1 + c12x2 + · · · c1NxN + d11u1 + d12u2 + · · · d1MuM

y2= c21x1 + c22x2 + · · · c2NxN + d21u1 + d22u2 + · · · d2MuM

.

.

yP= cP1x1 + cP2x2 + · · · cPNxN + dP1u1 + dP2u2 + · · · dPMuM
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MIMO systems

dx

dt
= A x + B u (90)

y = C x + D u (91)

x: N × 1 y: P × 1

A: N × N B: N ×M

C : P × N D: P ×M
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Analysis of dynamics of discrete-time systems

Continuous - discrete-time interconversions

1 Conversion of analog input signals to discrete signals

2 Conversion of continuous models to discrete-time models

3 Conversion of discrete-time signals back to continuous signals
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Sampling and reconstruction of signals

y∗(nT ) = y(nT )δ(t − nT ) (92)

y∗(t) = y∗(0) + y∗(T ) + y∗(2T ) · · · (93)

y∗(t) = y(0)δ(t) + y(T )δ(t − T ) + y(2T )δ(t − 2T ) + · · · (94)

y∗(t) =
∞∑
n=0

y(nT )δ(t − nT ) (95)

y∗(s) =
∞∑
n=0

y(nT )e−nTs (96)

m(t) = m(nT ) +

(
dm

dt

)
nT

(t − nT ) +
1

2!

(
d2m

dt2

)
nT

(t − nT )2 + · · · (97)
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z-transforms

Definition

If y(0), y(T ), y(2T ) · · · be the values of a continuous function y(t) sampled at a
uniform interval of period T then the z-transform of the sampled sequence is given as

Z{y(0), y(T ), y(2T ) · · · } =
∞∑
n=0

y(nT )z−n (98)

The above definition can be defined for the corresponding continuous function
y(t) also

z-transform maps the discrete-time signal from t-domain to z-domain

z-transform is dependent upon the sampling interval

Different continuous functions exhibiting same sampled values at same discrete
times will have the same z-transforms
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z-transforms

y(t) = y(0) + y(T ) + y(2T ) · · · (99)

y(t) = y(0)δ(t) + y(T )δ(t − T ) + y(2T )δ(t − 2T ) + · · · (100)

y(t) =
∞∑
n=0

y(nT )δ(t − nT ) (101)

ȳ(s) =
∞∑
n=0

y(nT )e−nTs (102)
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Some z-transforms

y(t) = c (103)

ŷ(z) = c

(
1

1− z−1

)
(104)

y(t) = e−at (105)

ŷ(z) =

(
z

z − e−aT

)
(106)
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Some z-transforms

y(t) = sinωt (107)

ŷ(z) =
zsinωT

z2 − 2zcosωT + 1
(108)

y(t) = cosωt (109)

ŷ(z) =
z2 − zcosωT

z2 − 2zcosωT + 1
(110)

Parag A. Deshpande, IIT Kharagpur Process Dynamics and Control 85



z-transform inversion

Exercise: Invert the following z-transform

ŷ(z) =
z

z2 − 4z + 3
(111)
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Pulse transfer function

Definition

Analogous to the Laplace domain transfer function, the pulse transfer function, g(z),
relates the sampled input, û(z), to the discritised output signal, ŷ(z), according to the
relation

ŷ(z) = g(z)û(z) (112)

The input and output signals must be sampled synchronously (i.e., at the same time),
and also at the same rate!!!
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Pulse transfer function

Exercise: Determine the “No hold” pulse transfer function of a first order process

Exercise: Determine the pulse transfer function of a first order process with zero-order
hold element

Exercise: Determine the step response of a discrete-time first-order system with
zero-order hold element
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