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Reasons and approaches to study process dynamics

Most chemical plants operate 24 x 7 in a continuous mode of operation with periodic
shut-down for maintenance.
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Reasons and approaches to study process dynamics

Dynamics

Linear Linear
Non-linear Non-linear

(Continuous )(Discrete—time)
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About the course

Part 1: Analysis of dynamics of linear
systems in state-space domain

@ Autonomous first order systems
@ Phase portraits of higher order systems

@ Non-autonomous higher order systems

Part 2: Analysis of dynamics of non-linear
systems in state-space domain

@ Non-linear first order systems
@ Higher order non-linear systems

@ Discrete systems, bifurcation and chaos
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Part 3: Transform domain analysis of linear
systems

@ Response to ideal forcing functions
@ Different types of transfer functions

@ Multiple input - multiple output systems

Part 4. Tranform domain analysis of
discrete-time systems

@ Introduction to Z-transforms
@ Response of discrete-time systems

@ Stability analysis of discrete-time systems

Process Dynamics and Control 4



00

N
Earth trz\iector_\r\ N

\\\ N\ // “ \\

=N

/2 Y
g

\\ h, =60 m‘,/ “ !

230 m

A 2

Parag A. Deshpande, IIT Kharagpur Process Dynamics and Control




Dynamics is that branch of mechanics which deals with the motion of bodies under the

action of forces.
During motion, the coordinates of the system relative to a frame of reference change

with time.

@ Mechanical engineers - vehicle

= dynamics
?\ *é — F‘
PEOATTRDY @ Aerospace engineers - flight dynamics

— — _Moon trajectory

» - N

/"” ,!// I‘;nhn,m\(;:\\\\ \\\’":;""” ‘
*g‘ ?\ What's the generalisation, and how may

“— g - systems relevant to chemical engineering
" | utilise this?
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Process dynamics - Change of process variables with time

Transient behaviour during staged-operations
dxn (i, t . . . .

b L e 200 Vs (a3 ) ValOya(i, )~ LoDl 1) (1)

i : index for the component y : mole fraction in the

h
n : index for the plate vapour phase

L : liquid flowrat
h : liquid holdup iquid flowrate

. V' . vapour flowrate
X : mole fraction in the

liquid phase Composition in each tray
changes with time!!!
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Process dynamics - Change of process variables with time

Transient operation of n cascade CSTRs with reversible series reactions

dccljgl) — <k1 + ;) a(1) + ke(1) + %cﬂo) )

c1(n) : concentration of the i species in the n®’ reactor
c1(0) : concentration of the it species in the feed entering the first tank

0 : holding time

A

Concentrations in the reactors change with time!!!
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Process dynamics - Change of process variables with time

Transient operation of a jacketed CSTR
dC F

—=—(G—-C) - 3
= (G- O) ()

dT F —AH UA

—=—(Tr=T — T-Tj 4

=T D (T ) e T 4)
F : volumetric feed rate F; : volumetric flowrate of F Fi
Cf : concentration of the the heating/cooling fluid (_]2: I 1 T
reactant in the feed T; : temperature of the =
T : temperature of the heating/cooling fluid
feed V : volume of the reactor _Jd| C T V r

: . Ei | F

C : concentration of the r : rate of reaction i I C
reactant in the reactor Concentration and Ti T
T : temperature of the temperature in the reactor
reaction mixture change with time!!!
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Some definitions

Dynamical system

hn dxnc(li'7 t) = Ln—lxn—l(i, t) + Vn+1(t).yn+1(i7 t) - Vn(t)y”(i’ t) B L”(t)Xn(i7 t) (5)
dall) _ _ <k1 n g) & (1) + Ke(1) + 5al(0) (6)
dC F

Ezv(Cf—C)_r @
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Some definitions

Dynamical variable

h, dxnosl', t) _ Lo 1Xn-1(i, t) + Vi 1(8)yng1 (i, £) = Va(£)yn(i, t) — Lo(t)xa(i, t) (9)
dccllf_l) — (kl + %) Cl(].) + k{CQ(].) + %CI(O) (10)
%:g(cf_c)_’ (11)
G (_pépH>’_ V(ﬁp(T— 7j) (12)
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Some definitions

Order of a system - Old definition

cT F
dC F f |
Ezv(Cf—C)—r Tf _— -
dT F —AH
~Eer-my+ (224),
dt Vv PCp - C TV r

- Ao Fi | F
VpCp J Tj |—>C
T

Two first order ordinary differential equations. So what's the order?

Parag A. Deshpande, IIT Kharagpur Process Dynamics and Control

12



Some definitions

Order of a system - New definition
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Some definitions

Linear system

Principle of linearity

A system which does not follow the above principle of linearity is referred to as a
non-linear system.
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An example of a linear first order system
q, _I

PO L - @) (15)

da A
@ Dynamical variable: h(t)
@ Order of the system =1
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Cooling of a body in an infinite fluid

. : - :
ggcljy T Consider a liquid reservoir at temperature
T~ in which a body of temperature Ty is
immersed at time t = 0. The time rate of
change of temperature of the body as a

function of system and material properties

can be obtained by modeling the energy
o balance of the system.
liquid
TOO
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Cooling of a body in an infinite fluid

Solid
6D

solid
bod

liquid
TOO
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4T _ —ha,
dt  pVc

(T - Tw) (16)
h = heat transfer coefficient

As = surface area of the solid body

p = density of the solid body

V' = volume of the solid body

¢ = specific heat of the solid body

T = instantaneous temperature of the
solid body
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Cooling of a body in an infinite fluid

© 00

What is/are the equilibrium solution(s) of the system?

Solve the model equation analytically to determine the time evolution of the
system.

Develop the phase portrait for the system.
Develop the phase portrait without explicitly solving the governing equation.

Analyse the solutions and the phase portraits for Ty < To,, To = Too and
To > T

Study the effect of different system and material properties on the system
dynamics.

Comment upon the bifurcation in the system.
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Example of a higher order system

q1—'

h(t)

—Q;

dh(t) 1

— = (g1 — 17
= (- ) (17)

@ Order of the system =1

o Dynamical variable: h(t)
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9.
4
MO La-w)  09)
T2~ - a) (19)

@ Order of the system = 2
@ Dynamical variable: [h(t) ha(t)]"

Process Dynamics and Control



Higher order linear autonomous systems

dX1

—— =a11xX1 + apXxe + - - - AANXN
dt

dX2

—— =ap1X1 + axpXp + - anXy
dt

dxn

i =an1Xx1 + anz2xo + - - - aNNXN

@ Order of the system = N
o Dynamical variable: [x; x» --- xn]7
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Higher order linear autonomous systems

T
X1 a1l a2 ain X
d | * a  ax an
— = (20)
dt
XN an1t  anz aNN
LXV
Nt order dynamical equation: ‘Zi—% = Ax 15t order dynamical equation: % = ax
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Solution of N order linear autonomous equation

Theorem

The solutions to a linear autonomous equation of the form % = Ax are given as

N
X = Zc,-eA"ty,- (21)

where,

Ai's are the eigenvalues of A

v;'s are the corresponding e_igenvectors

ci's are present in the field over which the vector space of solutions is defined
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Analysis of a free spring-mass system

Consider the case of a single linear spring
of spring constant k with mass m
attached to it such that the motion of the
mass is confined only along the direction
of the spring axis. The following equations
govern the dynamics of the system.

Free undamped system:

d?x

Free vibration with damping:

d’x dx
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Analysis of a free spring-mass system

Convert the dynamical equations into matrix equations and analyse
Q the equilibrium solution(s)
@ the phase portraits
© the stability of the system

Q the effect of different parameters on the dynamical behaviour of the system
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Example of a non-autonomous system
oF _l

dh(t)

“dt %(ql —q2) (24)
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Example of a non-autonomous system

" ‘ 10

h
— 4

3

dhcllit) = Ail (g1 — q2) (25)
dh;ﬁt) _ Aiz (@ — a3) (26)
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MIMO systems

Transient behaviour during staged-operations
dxn(i, t)
dt

i : index for the component y : mole fraction in the
vapour phase

hn = Lp_1xn—1(i, t)+ Var1(t)yns1(i, t) = Va(t)yn(i, t)— La(t)xa(i, t) (27)

i

n : index for the plate

L liquid f .
h - liquid holdup iquid flowrate "

. V . vapour flowrate
x : mole fraction in the

liquid phase

iil;
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A general N order non-autonomous system

dxq
gp uxutanxe e anx buiug + brouz + - biyum

dxo

ar =ap1X] + agxo + - - - anXy + boruy + booto + - bopup
dXN

o N1 +anax2 + - - annxy + byiur + byouo + - - bupupy
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A general N order non-autonomous system

X1 411 412 . . . ain
d X2 a1 ax» . . . an
dt N

XN ani 4aN2 - - - ann

Parag A. Deshpande, IIT Kharagpur

il bi1 b1z

2 b1 b
+

) bni  bnz
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q1—'

dh(t) _

9 = %(ql —q2) (28)
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A general N order non-autonomous system

Xm
e + aioxo + - - ainyXn + biiur + bioup + -+ - bimupm

dX2
o e + axxo + - - axy Xy + barur + bosus + -+ - boprupy

dXN

g A + anoxe + - - - annxn + byiur + byouz + - bymum

Y1= C11X1 + C1axo + - - - cunxn + diiuy + dipuo + - - - dipmum
Yo= C1X1 + X2 + -+ - ConyXpy + dorur + doouo 4 -+ - dopm

yp= cp1x1 + Cpaxa + - - cpyXn + dprur + dpauz + - - dppum
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A general N order non-autonomous system

X1 u
X1 alil aip ... ainN X b11 b12 ... b1M o
d |x a1 a» . . . amnw b1 b . . . b
— .| =1 . e . T+
dt .
XN aNt an2 - - . ann X'N bvi bn2 . . . bym uny
o i
%1 au e o-o-o-oan| | dii di2 . . . dim s
Y2 1 €2 . . . Op d1 dn . . . dou
= . . L. . +
P 1 cp2 - - . cpn] | dp1 dp2 . . . dpum
| XN Lum |
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> 1%

I

N x1

N x N

PxN
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A general N order non-autonomous system

y:

liey

IS

(29)
(30)
Px1
N x M
cPx M
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Similarity solution: Basic concepts

Similar matrices

then é and é are called similar

[lsy

If P is a non-singular matrix such that Q"l AP =
matrices.

Similarity transformation

The operation 2—1 A P = B is called similarity transformation.

Important properties of similar matrices

o Similar matrices have same eigenvalues.
o If x is an eigenvector of A with an eigenvalue A then 2—1 x will be the eigenvector
of B with the same eigenvalue \.
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Similarity solution: Diagonalisation

Consider P made from the augmentation of eigenvectors of A.

éﬁzé[>_<1|éz||XN]
:[é>_<1|é52’|é>_w]
=[x Aexo| o | Avxp ]
=PA

where,

A O 0
0 X 0

é:
0 O AN
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Analysis of a forced spring-mass system

Consider the case of a single linear spring
of spring constant k with mass m
attached to it such that the motion of the
mass is confined only along the direction
of the spring axis. The following equations
govern the dynamics of the system.

Free undamped system:

d?x

Free vibration with damping:

d?x dx

Parag A. Deshpande, IIT Kharagpur Process Dynamics and Control 36



Analysis of a forced spring-mass system

Consider the case of a single linear spring
of spring constant k with mass m
attached to it such that the motion of the
mass is confined only along the direction
of the spring axis. The following equations
govern the dynamics of the system.

Forced vibration without damping:

2
m% + kx = Fosinwt (33)

Forced vibration with damping:

2
m% + C% + kx = Fosinwt  (34)
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Phase portraits for higher order systems

d X1 a 0 o0 X1
212 =10 b o] |x (35)
t X3 0 0 ¢ X3
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Phase portraits for higher order systems

x|l =10 3 —2| |x (36)
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Phase portraits for higher order systems

d X1 0 1 0 X1
el =]1 0 0 | (37)
t 0 0 -1 |xs

M=i do=—i A\3=-1
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A 4t order linear autonomous system

%Zh +x2— X3 (38)
% — ot (39)
% =Xx3+ x4 (40)
% (41)
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A complex reaction system

Consider a system of elementary reaction in series of the type A— B — C. The
kinetics of the reaction system is given by the following equations.

dCxu

—2 =k 42
dt 1Ca (42)
dCg

—= = kiCa — k 4
o 1Ca — ko Cp (43)
dCc

— =k 44
g~ leCs (44)

The reactions are carried out in a batch reactor with the respective initial
concentrations as Cyag, Cgg and Ccg, respectively. Analyse the effects of various
parameters associated with the system on the time evolution of the concentrations of
the chemical species.
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Non-linear systems

Definition: Linear system

A system is said to be a linear system if its governing dynamical equations are linear.

Principle of linearity

If Lis an operator in a linear vector space and u and v are the two vectors in the linear
vector space then the operator L is said to be linear if it satisfies the following:

Lu+v) = L(u) + L(v)

L(au) = al(u)

where « is an element of the field over which the vector space is defined.

A system not following the above principle of linearity is referred to as a non-linear
system.
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Non-linear systems
g, _l

) _ L~ ) (45)

da A
@ Dynamical variable: h(t)
@ Order of the system =1
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Non-linear systems

Solid
&)

(o)
[s3=]
Q=

liquid
TOO
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4T _ —ha,
dt  pVc

(T—-Tx) (46)
h = heat transfer coefficient

As = surface area of the solid body

p = density of the solid body

V' = volume of the solid body

¢ = specific heat of the solid body

T = instantaneous temperature of the
solid body
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Linearisation of non-linear systems

X1
X2

XN

C11
@1

CP1

ail a2 . . . ainN
a1 a2 . . . aN
ani an2 - - . annN
_X1
Ci2 . . . QN o
Cp . . . OnN
cp2 . . . CpNn XN

Parag A. Deshpande, IIT Kharagpur

il b1 b2
2 bx1 by
_.I_
byi bno
L XN |
dii di2
dr1 dp»
+
dp1 dp>
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Linearisation of non-linear systems

> X

o)
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y: Px1
B: NxM
D: PxM



Linearisation of non-linear systems

Non-linear dynamical and output equations

% = fi(xi, x2,
dc%v = fy(x1, x2, -

y1 = gi1(x1, x2, -

y2 = g(x1, x2, -

yp = gP(XlaX27"'Xn) up, u,---

*Xn, U, U2, - -+

*Xn, Up, U2, - -+

*Xn, U, U2, - -+

*Xp, Uy, Uz, - -

*Xp, Ug, Uz, - -

Um)

Um)

Um)

- Um)

. Um)

Um)
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Linearisation of non-linear systems

Let the steady state of the non-linear system be described by the vector
[Xls X2s "+ Xps Uls U2s - - - Ums]T

fi(x1, X0, -+ Xn, U1, U2, - - - Um) = fi(X1s, X2s, - * * Xns, ULs, Uds, - - * Ums)
of; f
+ | (1 —x1s)+ =—| (x2—x)+---
8X1 ss 8X2 ss
o, f
+ | (w1 —us)+ =—| (u2—us)+---
8(11 ss au2 ss
g:j(X17X27 s Xp, Ui, U2, - - Um) = g:j(X157X2S7 © o Xns, Uls, U2sy " - - Ums)
og; 0g;
+ 28 (= xas) 2| (= xps) -
6X1 ss 6X2 ss
9g; Jg;
—_ —u 7 u» — u + P
+ Do Ss(ul 1s) + B ss( D — Udg)
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Linearisation of non-linear systems

[xi
[v7

[y{

x5 xm] =10 —xas) (k2 —xas) -+ (xv — xws)] T

uy - up] = [(u— u1s) (w2 — ws) -+ (um — ums)] "

viooypl =1 —yis) (2 —yas)--- (v — yps)] T

d;t =AX"+Bu (49)
y'=Cx'+Du (50)

=G gl wr=uf weuylTs Yy =y vyl

(51)
of; of; og; og;
- aXJ ss, - 8“] ss - 8XJ ss - 8XJ ss ( )

Parag A. Deshpande, IIT Kharagpur
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Linear vs. non-linear population growth models

A linear model for population growth:
Assumptions

@ Population confined to the region i.e. no entry and exit of members
@ Growth rate is a function of the instantaneous population

@ No death; birth only from the present members, no explicit birth rate term

Parag A. Deshpande, IIT Kharagpur Process Dynamics and Control 51



Linear vs. non-linear population growth models

A non-linear model for population growth:
Assumptions to overcome the issues of the linear model

@ Population confined to the region i.e. no entry and exit of members

@ Growth rate is a function of the instantaneous population

@ No death; birth only from the present members, no explicit birth rate term
°

Growth rate proportional to the instantaneous population only for small
populations

@ Negative growth rate at large populations so as to “limit” the population

K (1-3) (53)

Parag A. Deshpande, IIT Kharagpur Process Dynamics and Control 2



Logistic population growth model with harvesting

A non-linear model for population growth:
Assumptions to overcome the issues of the linear model

@ Population confined to the region i.e. no entry but exit of members at a constant
rate

@ Growth rate is a function of the instantaneous population
@ No death; birth only from the present members, no explicit birth rate term

@ Growth rate proportional to the instantaneous population only for small
populations

@ Negative growth rate at large populations so as to “limit” the population
d
P ax (1—5> —h (54)
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Logistic population growth with critical threshold

The logistic growth model for the population growth of a species accounted for
carrying capacity of the system. Imagine a population which goes to extinction if the

initial population if below a certain number i.e. there exists a threshold population for
the species to survive. The features of such a population dynamics are:

@ Upper limit on the population based on the carrying capacity
@ Exponential growth at initial stages and saturation at later stages

@ Extinction when the initial population is less than the threshold population

(o 2)3)

A1: carrying capacity; Aa: threshold population; 0 < Ay < A\
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Bifurcations in non-linear systems

% = ax — ax? (56)
% =a—x° (57)
% —ax— X2 (58)
% —ax =3 (59)
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Non-linear systems in higher dimensions

R (60)
ng
E = X]? + X2 (61)
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Non-linear systems in higher dimensions

g (62)
ng

Rl 63
. (63)
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Non-linear systems in higher dimensions

Hartman-Grobman theorem
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Non-linear systems in higher dimensions

%:xlz—x2—1 (64)
ng

2 _ 9 65
dt ~ 7° (65)
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Reactor stability analysis

Transient operation of a jacketed CSTR

dC F
E—v(Cf—C)—r
dT F

— = —(Tf =T
=yl T+ (
F : volumetric feed rate

Cr : concentration of the
reactant in the feed

T¢ : temperature of the
feed

C : concentration of the
reactant in the reactor

T : temperature of the
reaction mixture

Parag A. Deshpande, IIT Kharagpur

—AH) UA (7

r J—
PCp Vpcp
Fj : volumetric flowrate of
the heating/cooling fluid
T; : temperature of the
heating/cooling fluid
V' : volume of the reactor

r : rate of reaction

(66)

(67)

g T Fi

f .

Ts -L->T‘

"
- C TV r

Fi I_>CF:

Ti
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Kermack-McKendrick (SIR) model

Model assumptions:

@ The total population is constant
@ The population is divided into three compartments

o susceptibles, S, who can catch the disease

o infectives, I, who have the disease and can transmit it

e removed class, R, namely, those who have either had the disease, or are recovered,
immune or isolated until recovered

@ Recovery confers immunity to the individual
@ Incubation period is zero

@ The population is well-mixed
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Kermack-McKendrick (SIR) model

Model assumptions:

@ The gain in the infective class is at a rate proportional to the number of infectives
and susceptibles, that is, rS/, where r > 0 is a constant parameter

@ The rate of removal of infectives to the removed class is proportional to the
number of infectives, that is, al where a > 0 is a constant parameter
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Kermack-McKendrick (SIR) model

ds

dl

dR
i 7
o al (70)

r: infection rate (> 0)
a: removal rate (> 0)
Initial conditions:

S(0) = So, 1(0) = lp, R(0) =0
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Kermack-McKendrick (S/R) model

Key questions?

1
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Lorenz equations

Setting up the model:
@ Consider earth's atmosphere to consist of a single fluid particle
@ The particle is heated from below and is cooled from outside
@ The atmosphere is modelled as a two-dimensional fluid cell
@ The weather is predicted considering all variables as constants except

@ convection rate
o horizontal temperature variation
e vertical temperature variation

Parag A. Deshpande, IIT Kharagpur Process Dynamics and Control



Lorenz equations

dx
ax _ _ 71
e =oly—x) (71)
dy
— =rx—-y—xz 72
dt Y (72)
dz
Z —xy—b 73
da (73)

x: variable signifying convection rate o: Prandtl number

y: variable signifying horizontal r: Rayleigh number

temperature variation b: parameter related to the system size

z: variable signifying vertical temperature

variation

o, r,b>0,0>b+1

Parag A. Deshpande, IIT Kharagpur Process Dynamics and Control 66



Analysis of dynamical systems in transform domain

Consider a mixing tank for the mixing of
two streams with pure components A and
B to get the desired concentration of B,
Cgout, as shown.

Bf

@ F;'s: volumetric flowrates

@ C;'s: molar concentrations

@ F, is assumed to be much larger
than Fg X

CBlank r

@ All densities are similar

Analyse the effect of system variables on Fou v

the outlet concentration of B. > Coout
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Ideal forcing functions

Ideal step function Ideal rectangular pulse function Ideal impulse function
A A
u(t) u(t) u(t) %
0 0
0
t o b 0 t
Ideal ramp function Ideal sine function

u(t) /
0 0
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(p, q) order systems

gis) =7 — y(t) = AK(1 — e

K1 K: T T T T
g(S) = m — }/(t) = AK1K2 (1 — (ﬁ) et/ L — (ﬁ) et/ 2)

g(s) = Ko=) H(0) = Ak (1= () )

8(5) = etynern V(O =AK <1 ~(m=) e - (22) et/ﬁ)

Parag A. Deshpande, IIT Kharagpur Process Dynamics and Control 69



Transform domain analysis

Ideal step function

A

u(t)

0

0
t
0, t<0

u(t) =<3 " 74
(t) {A, t>0 (74)
y(t) = AK(1 —e7*7) (75)
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Transform domain analysis

Ideal rectangular pulse function
A
u(t)
0 L
o b
0, t<O0
u(t)=< A, 0<t>b (76)
0, t>b

AK(1 — e~ t/7), t<b
y(t) = { AK[(1 — e t/7))— (77)
(1—e D/ t>p
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Transform domain analysis

Ideal ramp function

t
0, t<0
u(t) = {At, t>0 (78)
y(t) = AKr(e 7+ = 1) (79)
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Transform domain analysis

Ideal sine function

o
° 4

u(t) = {Zsinwt, i i 8 (80)

y(t) = AK[W et/

+\/1—|—1W sin(wt + ¢)] (81)
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Transform domain analysis - Pure capacity systems

Ideal step function

A

u(t)

0

0
t
0, t<0

u(t) =<’ 82
(t) {A, t>0 (82)
y(t) = AKt (83)
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Transform domain analysis - Pure capacity systems

Ideal rectangular pulse function

A

u(t)

0

o b
0, t<0
u(t)=<{ A, 0<t>h (84)

0, t>b

AKt, 0<t<b

t) =
v() AKb, t> b

—N—
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Transform domain analysis - Pure capacity systems

Ideal ramp function

ut) /
0

0 t
0, t<0
u(t) = {At, t>0 (86)
AKt?
y(t) ==, (87)
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Transform domain analysis - Pure capacity systems

Ideal sine function

0
0 t
u(t) = {i\’sinwt7 Z i 8 (88)
y(t) = %(1 ~ coswt) (89)
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MIMO systems

dX1

A + aioxo + - - ainyXn + biiur + bioup + -+ - bimupm
dX2

o e + axxo + - - axy Xy + barur + bosus + -+ - boprupy

dXN
g A +anaxo + - - - annxny + byiur + byoux + - - bymup
Yy1= C11X1 + C1ax2 + - - - cunxn + diiuy + dipuo + - - - dipum

Yo= C1X1 + X2 + -+ - ConyXpy + dorur + doouo 4 -+ - dopy

yp= cp1X1 + Cpaxa + - - cpyXn + dprur + dpauz + - - dpmum

Parag A. Deshpande, IIT Kharagpur Process Dynamics and Control



MIMO systems

d
dfzéﬁég (90)
y=Cx+Du (91)
x: N x1 y: Px1
A N x N B: NxM

|lg}
B
X
=
IS

cPx M
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Analysis of dynamics of discrete-time systems

set *disturbance

point "
. final
controller electro—pneumatic controlled
= control process > ot

converter element

measurin -
transducer 9 <
sensor

Continuous - discrete-time interconversions
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Sampling and reconstruction of signals

y*(nT)=y(nT)é(t — nT) (92)
y*(t) =y*(0) +y*(T) +y*(2T) -~ (93)
y (1) = y(0)é(t) + y(T)é(t — T) + y(2T)s(t —2T) + - -- (94)
y*(t)=>_y(nT)s(t — nT) (95)
n=0
y*(s)=> y(nT)e "™ (96)
n=0
dm 1 /d?°m
m(t) = m(nT) + <dt) - (t—nT)+ o (dt2> nT (t—nT) +--. (97)
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z-transforms

Definition

@ The above definition can be defined for the corresponding continuous function
y(t) also
@ z-transform maps the discrete-time signal from t-domain to z-domain

@ z-transform is dependent upon the sampling interval

@ Different continuous functions exhibiting same sampled values at same discrete
times will have the same z-transforms
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z-transforms

y(t) =y(0) + y(T) +y(2T)--- (99)

y(t) = y(0)5(t) + y(T)o(t — T) + y(2T)o(t —2T) + - - (100)

y(t)=> y(nT)é(t - nT) (101)
n=0

y(s) =Y y(nT)e " (102)
n=0
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Some z-transforms

Yt =c (103)
9(2) = c ( 1 _12_1> (104)
y(t)=e (105)

<Z — aT) (106)
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Some z-transforms

y(t) = sinwt (107)
zsinw T
" = 108
() z2 —2zcoswT + 1 (108)
y(t) = coswt (109)
72 — zcoswT
" — 110
y(2) z2 —2zcoswT +1 (110)
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z-transform inversion

Exercise: Invert the following z-transform

V@) = 5 (111)
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Pulse transfer function

Definition

The input and output signals must be sampled synchronously (i.e., at the same time),
and also at the same rate!!!

(2) ———] g@ ———{(2)
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Pulse transfer function

Exercise: Determine the “No hold” pulse transfer function of a first order process

Exercise: Determine the pulse transfer function of a first order process with zero-order
hold element

Exercise: Determine the step response of a discrete-time first-order system with
zero-order hold element
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