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Advanced Microcontroller Bus Architecture (AMBA) I

[ Defines an on-chip communications standard for designing high-
performance embedded microcontrollers

 Three Components:
m Advanced High-performance Bus (AHB)
m Advanced System Bus (ASB)
m Advanced Peripheral Bus (APB)

High-bandwidth High-performance

On-chip RAM ARM processor

B UART Timer
R

High-bandwidth AHB or ASB | APB

Memory Interface D
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E Keypad P10

DMA bus
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APB & Its State Diagram

No Transfer

 APB is used to interface to any

peripherals which are of low IDLE
PSELx =0

bandwidth and do not require high PENABLE =0
performance of pipelined bus Transfer
Interface '
{ SETUE 1
PSELx =1
O Salient Features: i
m Low power consumption
m Reduced interface complexity ENABLE
m Latched address & control No Transfer =| oS X2 [ Transfer

m Suitable for many peripherals
APB State Diagram
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APB Bridge Interface

J APB bridge is the only bus master on the AMBA APB.

 APB bridge is also a slave on the higher-level system bus.

PSEL1 X
PSEL2 .
System bus Selects
Slave interface PSELnN R
PENABLE
APB > Strobe
Bridge
Read data PRDATA > PADDR Address
and
PRESETn PWRITE | Control
Reset
Clock —PCLK PWDATA > Write data
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APB Slave Interface

 APB slaves have a simple, yet flexible, interface.

 Exact implementation of the interface will be dependent on the
design style employed and many different options are possible.

Select PSELX
Strobe PENABLE
Address PADDR >
and
Control PWRITE APB
Slave
Reset PRESETN
Clock PCLK
Write data PWDATA > PRDATA > Read data
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APB Write Transfer
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APB Read Transfer
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Layered Random Test Architecture

_creates |
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---------------------- conditions  Jb--------oooomoe e
creates Test Bench
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to the DUT | <
; \JJ Driver Assertions Monitor
> DUT observes data
.................................................................. from the DUT
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Environment Setup & Execute

O Top-level test bench instantiates the DUT environment, builds it

and runs all steps in layered architecture by executing this
environment

L The test environment structure is as follows:

dut_env env; /[l DUT Environment
initial begin
env = new(mst_i1f, mon_i1¥f);
Il Creating environment: Master Interface and Monitor Interface

env.builld(Q); [l Building environment
env.run(Q); Il Run all steps
end
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Components of Environment

O Test bench Top-level components include:
m APB Atomic Generator
m APB Master
m APB Monitor
m Scoreboard

apb _cfg cfg; // specifies transaction

// configuration
apb_trans_channel gen2mas; // channel between

// generator & master
apb_trans_channel mon2scb; // channel between

// monitor & score-board
apb_trans_atomic gen gen; // APB transaction generator

apb_master mst; // APB master
apb_monitor mon; // APB monitor
dut_sb scb; // scoreboard

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 10




Overall Execution Flow

class apb cfg;

Generate Configuration _
rand int trans_cnt;

for Tests

y

this.randomized obj.randomize();
$cast(tr,this.randomized obj.copy());
this.out _chan.put(tr);

Generate Random
Test Scenarios

y

. In_chan.get(tr);
Execute Individual Test if ((tr.dir) == apb_trans::WRITE)
Scenarios do_write(tr);

' task apb_master::do_write(apb_trans tr);
Execute Commands
Corresponding to Test

endtask: do _write
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Signal Layer

d Specifies DUT interface signals
interface apb_ i1f(input PClk);

logic [ APB _ADDR WIDTH-1:0] PAddr;
logic PSel;
logic [ APB DATA WIDTH-1:0] PWData;
logic [ APB DATA WIDTH-1:0] PRData;
logic PEnable;
logic PWrite;
logic Rst;

/* master & monitor clocking blocks */

modport Master(clocking master cb);
modport Monitor(clocking monitor _cb);
modport Slave(input PAddr, PClk, PSel, PWData,
PEnable, PWrite, Rst, output PRData);
endinterface
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Command Layer

O APB master implements driver routines named do_read(),
do write() and do_idle()

task apb master::do write(apb trans tr);
// Drive Control bus
“APB_MASTER_IF.PAddr <= tr.addr;
“APB_MASTER IF.PWData <= tr.data;
“APB_MASTER _IF.PWrite <= 1"bl;
“APB_MASTER_IF.PSel <= 1%bl;

// Assert Penable
##1 ~APB MASTER IF.PEnable <= 1"bl;

// Deassert it
##1 “APB MASTER IF.PEnable <= 1°b0;
endtask: do write

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 13




Functional Layer

Q Functional layer (APB master) receives the transaction
generated by the scenario layer from the channel.

apb_trans tr;

in_chan.get(tr);

case (tr.dir)
apb_trans::READ: do _read(tr);
apb _trans::WRITE: do write(tr);
default: do_i1dle();

endcase
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Scenario Layer

O Scenario layer (APB atomic generator) creates individual
transaction object & sends to the functional layer through channel

apb_trans tr;
apb_trans atomic gen::new(.);
this.addr = 0; this.data = 0; this.dir=IDLE;

endfunction:new

apb_trans atomic _gen::main(.);
this.randomized obj.randomize();

$cast(tr, this.randomized_obj.copy());
this.out_chan.put(tr);

endfunction:main
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Test Layer

Q env creates an object of apb_c¥g which contains the

configuration for the tests for APB VIP

class apb cfg;
rand Int trans_cnt;
constraint basic {
trans_cnt > 5;
trans _cnt < 10;

}

endclass: apb cfg

apb_cfg cfg;
cfg.randomize();
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Monitor Execution Flow

Scoreboard
Driver /+ \ Scoreboard to
Callback Memory XMR
Mon2scb
/ Channel
Driver Monitor DUT
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Functional Layer (Monitor)

O dut_env creates an object of dut_sb which implements the
checker component

O Implements check read, check write etc.

O scoreboard waits for a transaction to be generated then waits for
the monitor to notify that this transaction occurred.

O determines the transaction correctness by applying the

following:
m Each generated WRITE transactions are stored to a register
file (which acts as a reference model in this case).
m Each generated READ transactions get their data field filled
from the register file (so to provide an expected result).
m each transactions is then compared on a first-come first-
serve basis.
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Functional Layer (code snippet for checker)

O Executes the following code in infinite loop:
mon2scb.get(mon_tr);
mas_tr = from master g.pop_ front();
exp_data = top.ml.memory read(mas_ tr.addr);
case(mas_tr.dir)
apb_trans::WRITE: check write(mas _tr, mon_tr, exp _data);
apb_trans::READ: check read (mas tr, mon_tr, exp data);

default: “vmm fatal(log, 'Fatal error: Scoreboard
received i1llegal master transaction");

endcase

iIf(match >= max_trans _cnt) begin
“vmm_verbose(this.log, $psprintf(*'Done scorboarding found
%d matches'"™, match));
this.notify.indicate(this.DONE);

end
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Command Layer (Checker)

O APB-Monitor uses callbacks to monitor the bus before and after the
transaction

while(l) begin
$cast(tr, randomized obj.copy());
// Pre-Rx Callback

“vmm_cal lback(apb_monitor_callbacks ,monitor_pre_rx(this, tr));
// Sample the bus using the apb sample() task
sample_apb(tr);
// Put the trans into the output channel
out_chan.put(tr);
// Add a Post-Rx Callback. Typically for Coverage or Scoreboard
“vmm_cal lback(apb_monitor_callbacks ,monitor_post_rx(this, tr));
“vmm_debug(log, tr.psdisplay(**"Monitor ==>"));

end
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AMBA APB Property Set

Q PSEL.:
m If PSELX is LOW for some slave x in the present cycle (1ST)
and in the next (2nd) cycle it goes HIGH, it must be also HIGH

in the next (3rd) cycle.

m At atime only one PSEL can be high i.e. only 1 slave can be
selected at a time.

d PENABLE:
m [f PENABLE is HIGH in the present cycle, it must go LOW in
the next cycle.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 21




AMBA APB Property Set (contd..)

O PSEL & PENABLE:

m If PSELX is LOW for some slave x in the present cycle (1st)
and in the next cycle (2nd) it becomes HIGH then one more
cycle later (3rd) PENABLE must also be HIGH.

m If all of the PSEL is LOW in the present cycle (1st) then in the
same cycle (1st) & also in the next cycle (2nd) PENABLE
must also be LOW.

m If PENABLE is HIGH (1st) and in the next cycle (2nd) PSEL is
HIGH, then one more cycle (3rd) later PSEL & PENABLE are
both HIGH.
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AMBA APB Property Set (contd..)

O PENABLE & PWDATA:

m |f PENABLE is HIGH in the present cycle then PWDATA will
hold the same value as the previous cycle.

Q PSEL & PWRITE:
m If PWRITE changes one of the PSEL must be HIGH.

O PENABLE & PWRITE:

m |f PENABLE is HIGH in the present cycle then PWRITE will
hold the same value as the previous cycle.

O PENABLE & PADDR:

m |f PENABLE is HIGH in the present cycle then PADDR will
hold the same value as the previous cycle.
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