AMBA APB - Case Study

Testing & Verification
Dept. of Computer Science & Engg, IIT Kharagpur

Pallab Dasgupta

Professor, Dept. of Computer Science & Engg.,
Professor-in-charge, AVLSI Design Lab,

Indian Institute of Technology Kharagpur

L
m
-

T

- F HEEER RN
F saEmanny 7 =

. —
i F ansnapa R N
. NEENE
Y. - o~ e B

Advanced Microcontroller Bus Architecture (AMBA) I

[Defines an on-chip communications standard for designing high-
performance embedded microcontrollers

 Three Components:
m Advanced High-performance Bus (AHB)
m Advanced System Bus (ASB)
m Advanced Peripheral Bus (APB)

High-bandwidth High-performance

On-chip RAM ARM processor

B UART Timer
R

High-bandwidth AHB or ASB | APB

Memory Interface D
G
E Keypad P10

DMA bus
master APB bridge

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 2

APB & Its State Diagram

No Transfer

 APB is used to interface to any

peripherals which are of low IDLE
PSELx =0

bandwidth and do not require high PENABLE =0
performance of pipelined bus Transfer
Interface '
{ SETUE 1
PSELx =1
O Salient Features: i
m Low power consumption
m Reduced interface complexity ENABLE
m Latched address & control No Transfer =| oS X2 [Transfer

m Suitable for many peripherals
APB State Diagram

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 3

APB Bridge Interface

J APB bridge is the only bus master on the AMBA APB.

 APB bridge is also a slave on the higher-level system bus.

PSEL1 X
PSEL2 .
System bus Selects
Slave interface PSELnN R
PENABLE
APB > Strobe
Bridge
Read data PRDATA > PADDR Address
and
PRESETn PWRITE | Control
Reset
Clock —PCLK PWDATA > Write data

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

APB Slave Interface

 APB slaves have a simple, yet flexible, interface.

 Exact implementation of the interface will be dependent on the
design style employed and many different options are possible.

Select PSELX
Strobe PENABLE
Address PADDR >
and
Control PWRITE APB
Slave
Reset PRESETN
Clock PCLK
Write data PWDATA > PRDATA > Read data

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 5

APB Write Transfer

T1 T2 LS. T4 i

w ML

Addr 1

PADDR 5 5KX
PWRITE é élj
[

PSEL

PENABLE / \

PWDATA X Déata L 0

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 6

APB Read Transfer

T1 12

PCLK ‘

T3 T4 TS

Addr 1

PADDR é éKX

PWRITE é é\\

PSEL é é//

PENABLE

—

PRDATA é éX

X Dam1K]

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

Layered Random Test Architecture

_creates |
interesting
---------------------- conditions Jb--------oooomoe e
creates Test Bench
random Tests !
transactions checks —_—
e i -- 1 FGEiECiies S, - -- - - - --------------~- identifies
N Verification transactions

~ | Generators _)
executes | Environment / o
transactions | : !

\ Transactor » Self-Check — Checker
supplies data | T f f
to the DUT | <
; \JJ Driver Assertions Monitor
> DUT observes data
.. from the DUT

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 8

Environment Setup & Execute

O Top-level test bench instantiates the DUT environment, builds it

and runs all steps in layered architecture by executing this
environment

L The test environment structure is as follows:

dut_env env; /[l DUT Environment
initial begin
env = new(mst_i1f, mon_i1¥f);
Il Creating environment: Master Interface and Monitor Interface

env.builld(Q); [l Building environment
env.run(Q); Il Run all steps
end

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 9

Components of Environment

O Test bench Top-level components include:
m APB Atomic Generator
m APB Master
m APB Monitor
m Scoreboard

apb _cfg cfg; // specifies transaction

// configuration
apb_trans_channel gen2mas; // channel between

// generator & master
apb_trans_channel mon2scb; // channel between

// monitor & score-board
apb_trans_atomic gen gen; // APB transaction generator

apb_master mst; // APB master
apb_monitor mon; // APB monitor
dut_sb scb; // scoreboard

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 10

Overall Execution Flow

class apb cfg;

Generate Configuration _
rand int trans_cnt;

for Tests

y

this.randomized obj.randomize();
$cast(tr,this.randomized obj.copy());
this.out _chan.put(tr);

Generate Random
Test Scenarios

y

. In_chan.get(tr);
Execute Individual Test if ((tr.dir) == apb_trans::WRITE)
Scenarios do_write(tr);

' task apb_master::do_write(apb_trans tr);
Execute Commands
Corresponding to Test

endtask: do _write

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 11

Signal Layer

d Specifies DUT interface signals
interface apb_ i1f(input PClk);

logic [APB _ADDR WIDTH-1:0] PAddr;
logic PSel;
logic [APB DATA WIDTH-1:0] PWData;
logic [APB DATA WIDTH-1:0] PRData;
logic PEnable;
logic PWrite;
logic Rst;

/* master & monitor clocking blocks */

modport Master(clocking master cb);
modport Monitor(clocking monitor _cb);
modport Slave(input PAddr, PClk, PSel, PWData,
PEnable, PWrite, Rst, output PRData);
endinterface

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 12

Command Layer

O APB master implements driver routines named do_read(),
do write() and do_idle()

task apb master::do write(apb trans tr);
// Drive Control bus
“APB_MASTER_IF.PAddr <= tr.addr;
“APB_MASTER IF.PWData <= tr.data;
“APB_MASTER _IF.PWrite <= 1"bl;
“APB_MASTER_IF.PSel <= 1%bl;

// Assert Penable
##1 ~APB MASTER IF.PEnable <= 1"bl;

// Deassert it
##1 “APB MASTER IF.PEnable <= 1°b0;
endtask: do write

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 13

Functional Layer

Q Functional layer (APB master) receives the transaction
generated by the scenario layer from the channel.

apb_trans tr;

in_chan.get(tr);

case (tr.dir)
apb_trans::READ: do _read(tr);
apb _trans::WRITE: do write(tr);
default: do_i1dle();

endcase

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

14

Scenario Layer

O Scenario layer (APB atomic generator) creates individual
transaction object & sends to the functional layer through channel

apb_trans tr;
apb_trans atomic gen::new(.);
this.addr = 0; this.data = 0; this.dir=IDLE;

endfunction:new

apb_trans atomic _gen::main(.);
this.randomized obj.randomize();

$cast(tr, this.randomized_obj.copy());
this.out_chan.put(tr);

endfunction:main

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 15

Test Layer

Q env creates an object of apb_c¥g which contains the

configuration for the tests for APB VIP

class apb cfg;
rand Int trans_cnt;
constraint basic {
trans_cnt > 5;
trans _cnt < 10;

}

endclass: apb cfg

apb_cfg cfg;
cfg.randomize();

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 16

Monitor Execution Flow

Scoreboard
Driver /+ \ Scoreboard to
Callback Memory XMR
Mon2scb
/ Channel
Driver Monitor DUT

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 17

Functional Layer (Monitor)

O dut_env creates an object of dut_sb which implements the
checker component

O Implements check read, check write etc.

O scoreboard waits for a transaction to be generated then waits for
the monitor to notify that this transaction occurred.

O determines the transaction correctness by applying the

following:
m Each generated WRITE transactions are stored to a register
file (which acts as a reference model in this case).
m Each generated READ transactions get their data field filled
from the register file (so to provide an expected result).
m each transactions is then compared on a first-come first-
serve basis.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 18

Functional Layer (code snippet for checker)

O Executes the following code in infinite loop:
mon2scb.get(mon_tr);
mas_tr = from master g.pop_ front();
exp_data = top.ml.memory read(mas_ tr.addr);
case(mas_tr.dir)
apb_trans::WRITE: check write(mas _tr, mon_tr, exp _data);
apb_trans::READ: check read (mas tr, mon_tr, exp data);

default: “vmm fatal(log, 'Fatal error: Scoreboard
received i1llegal master transaction");

endcase

iIf(match >= max_trans _cnt) begin
“vmm_verbose(this.log, $psprintf(*'Done scorboarding found
%d matches'"™, match));
this.notify.indicate(this.DONE);

end

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 19

Command Layer (Checker)

O APB-Monitor uses callbacks to monitor the bus before and after the
transaction

while(l) begin
$cast(tr, randomized obj.copy());
// Pre-Rx Callback

“vmm_cal lback(apb_monitor_callbacks ,monitor_pre_rx(this, tr));
// Sample the bus using the apb sample() task
sample_apb(tr);
// Put the trans into the output channel
out_chan.put(tr);
// Add a Post-Rx Callback. Typically for Coverage or Scoreboard
“vmm_cal lback(apb_monitor_callbacks ,monitor_post_rx(this, tr));
“vmm_debug(log, tr.psdisplay(**"Monitor ==>"));

end

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 20

AMBA APB Property Set

Q PSEL.:
m If PSELX is LOW for some slave x in the present cycle (1ST)
and in the next (2nd) cycle it goes HIGH, it must be also HIGH

in the next (3rd) cycle.

m At atime only one PSEL can be high i.e. only 1 slave can be
selected at a time.

d PENABLE:
m [f PENABLE is HIGH in the present cycle, it must go LOW in
the next cycle.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 21

AMBA APB Property Set (contd..)

O PSEL & PENABLE:

m If PSELX is LOW for some slave x in the present cycle (1st)
and in the next cycle (2nd) it becomes HIGH then one more
cycle later (3rd) PENABLE must also be HIGH.

m If all of the PSEL is LOW in the present cycle (1st) then in the
same cycle (1st) & also in the next cycle (2nd) PENABLE
must also be LOW.

m If PENABLE is HIGH (1st) and in the next cycle (2nd) PSEL is
HIGH, then one more cycle (3rd) later PSEL & PENABLE are
both HIGH.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 22

AMBA APB Property Set (contd..)

O PENABLE & PWDATA:

m |f PENABLE is HIGH in the present cycle then PWDATA will
hold the same value as the previous cycle.

Q PSEL & PWRITE:
m If PWRITE changes one of the PSEL must be HIGH.

O PENABLE & PWRITE:

m |f PENABLE is HIGH in the present cycle then PWRITE will
hold the same value as the previous cycle.

O PENABLE & PADDR:

m |f PENABLE is HIGH in the present cycle then PADDR will
hold the same value as the previous cycle.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 23

	Advanced Microcontroller Bus Architecture (AMBA)
	APB & Its State Diagram
	APB Bridge Interface
	APB Slave Interface
	APB Write Transfer
	APB Read Transfer
	Layered Random Test Architecture
	Environment Setup & Execute
	Components of Environment
	Overall Execution Flow
	Signal Layer
	Command Layer
	Functional Layer
	Scenario Layer
	Test Layer
	Monitor Execution Flow
	Functional Layer (Monitor)
	Functional Layer (code snippet for checker)
	Command Layer (Checker)
	AMBA APB Property Set
	AMBA APB Property Set (contd..)
	AMBA APB Property Set (contd..)

