
 CS60002: MC03

Mobile Computing
#MC03 Data Synchronization

CS60002: Distributed Systems
Winter 2006-2007

 CS60002: MC03

What kind of sync?
● “Sync” is an overloaded phrase

✗ Not semaphores synchronized () { ... }
✗ Not shared memory and not cache coherenc
✗ Not instruction pipelining
✔ SyncML, ActiveSync, cvs merge, database

replication, ...
● Data synchronization

– Two copies of data: on mobile and on server
– Need to keep them in sync

 CS60002: MC03

Data Sync

Wireless
Network

Contact Entry

Name: Ravi Patel
Home: +91-33-2424-5555

Mobile: +91-9999912345
Email: Ravi@xyz.com

Contact Entry

Name: Ravi Patel
Home: +91-33-2424-5555
Work: +91-33-2424-6666
Mobile: +91-9999912345

 CS60002: MC03

What to sync?

Contacts,
Calendar,
Tasks,
App databases,
Config data

SMS,
Call Logs,
EMail

MP3s,
Ringtones,
Photos

Radio Code,
OS and VM,
Application Code

Create,
Update &
Delete

Create &
Delete
only

Structured Unstructured

 CS60002: MC03

Sync Complexity
● Communication Complexity

– Alice and Bob wonder if they have the same string
– Can they decide without communicating all n bits?
– No!

● Assumptions help us optimize
– Assumption#1: Change log

● What if Alice and Bob knew what has changed since they
had the same string?

– Assumption#2: Blind faith in digital hashes
● May miss differences

 CS60002: MC03

Types of sync
● File sync

– Bit buckets. No semantics.
– Master/Slave only.
– No conflict resolution

● Application sync
– Application events

● e.g., “Meeting postponed”,
“task declined”

– Conflict resolution
– Bi-directional sync

cvs merge

rsync,
OTA-DM (None)

SyncML
HotSync
ActiveSync
....

File Application

Change
log

Hash-
based

 CS60002: MC03

Sync using Change Logs
● Universal applicability

– Used in File Sync (e.g., cvs merge)
✔ Used in Application Sync (e.g., Palm HotSync)

● Both Mobile and Server maintain change logs
– Log may detail actual create/update/delete entries
– Or just a timestamped list of modified items
– Or just a “changed-since-last-sync” marker

● Two types of sync operations
– Fast Sync (always sync to the same server)
– Slow Sync (sync to multiple servers)

 CS60002: MC03

Fast Sync

● What has changed since we last met?
– Same item+field changed in both copies => Conflict
– Jointly decide how the other party gets the edit

● Optimizations
– Mobile is resource constrained. Server is not.
– Mobile sends all changed items to server.
– Server collates and sends edits back to Mobile.

 CS60002: MC03

Slow Sync

● Works when Fast Sync does not
– Mobile is synced to >1 Servers (no “changed” flags)
– Change log overflowed, or is not trustworthy
– It has been too long since the last Slow Sync

● Simple, but inefficient
– Mobile sends all records to Server
– Server collates, and sends edits back to the client

 CS60002: MC03

Optimizations for Change Log Sync
● Use change logs, not just “changed” flags

– Maintain complete log of changes
– Log overflow => Next sync is a Slow Sync

● Trickle Sync (aka Replication)
– Soft-real-time bidirectional stream of change events

● Fall back to Slow Sync
– Periodically when connected over WiFi or USB

● Resource constraints on Mobiles
– Battery, RAM, Flash

 CS60002: MC03

PDA/Mobile Sync Products
● HotSync

– Palm OS
● IntelliSync

– Acquired by Nokia
– “Anywhere” Server

● ActiveSync
– Microsoft Mobile
– Renamed(?) in Vista

● SyncML
– OMA standard
– Sync two DOM's

● PIM, email, code, ...
– Widely supported

● BlackBerry
– Proprietary

 CS60002: MC03

Hash-based Sync
● No change log required

– Will sync two snapshots without any history
– Used for “merge”, and not for bi-directional sync
– Can be wrong

● Interesting problems
– Substring identification

● Cut-n-paste editing
● “Replace all” edits

– Lossless compression and other encodings

 CS60002: MC03

rsync

● File synchronization problem
– Bob wishes to have Alice's copy
– Should Alice just send the whole file to Bob?
– No. rsync can help

● Andrew Tridgell, Paul Mackerras, “The rsync algorithm”,
http://rsync.samba.org/tech_report/tech_report.html

 CS60002: MC03

rsync

● Bob
– Partitions string into fixed blocks of size S
– Sends weak rolling hash and strong hash for each

● Alice
– Trusts hashes to locate those blocks
– Sends stream of “insert block” & “insert data”

● Bob
– Follows commands to construct Alice's copy

 CS60002: MC03

Code/Firmware update

● A special case of sync (or data compression)
– Mobile to Server: “I have V 3.3 – x + y”
– Server to Mobile: “Apply these deltas ...”

● Constraints
– Server: Scale to support millions of Mobiles
– Network: Bandwidth
– Mobile: Battery, RAM, Flash

Wireless
Network

V 3.1
V 3.2
V 3.3
V 3.4

V 3.3 – x + y

 CS60002: MC03

Three Problems in Code Sync

1) Small patches
• Compute small delta from V3.3 to V3.4
• Plenty of resources, since patches will be reused

2) Data compression
• Plenty of resources for compression
• Limited resources for decompression

3) Application of patches
• Limited “disk” space
• Rollback on failure

bsdiff

 CS60002: MC03

Prefix Sort

● Several linear time algorithms
– e.g., Juha K¨arkk¨ainen and Peter Sanders, “Simple

Linear Work Suffix Array Construction”, ICALP 2003
● Can be used to find substring in O(m+log n)

–

“ACAIA” 0: ACAIA
1: CAIA
2: AIA
3: IA
4: A

4: A
0: ACAIA
2: AIA
1: CAIA
3: IA

 CS60002: MC03

bsdiff

● Problem
– Generate small patch from V3.3 to V3.4 binaries
– “Replace all” changes to data & branch addresses

● Solution
– Allow 50% mismatches in 8-byte segments

● Control file (add/insert)
● Difference file (fix small mismatches)
● New content file

– Colin Percival, Naive differences of executable code,
http://www.daemonology.net/bsdiff/, 2003

 CS60002: MC03

Recap
● File and Application Sync
● Sync using Change log

– Fast vs. Slow
● Hash-based Sync

– Rsync
● Code Sync

– Prefix sort
– bsdiff Please read!

Please read!

Please read!

