Mobile Computing #MC03 Data Synchronization

CS60002: Distributed Systems Winter 2006-2007

What kind of sync?

- "Sync" is an overloaded phrase
 - * Not semaphores synchronized () { ... }
 - Not shared memory and not cache coherenc
 - Not instruction pipelining
 - SyncML, ActiveSync, cvs merge, database replication, ...
- Data synchronization
 - Two copies of data: on mobile and on server
 - Need to keep them in sync

Data Sync

What to sync?

Create, Update & Delete	Contacts, Calendar, Tasks, App databases, Config data	Radio Code, OS and VM, Application Code
Create &	SMS,	MP3s,
Delete	Call Logs,	Ringtones,
only	EMail	Photos

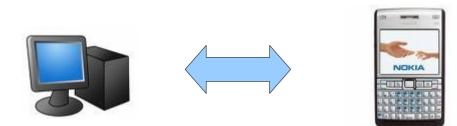
Structured

Unstructured

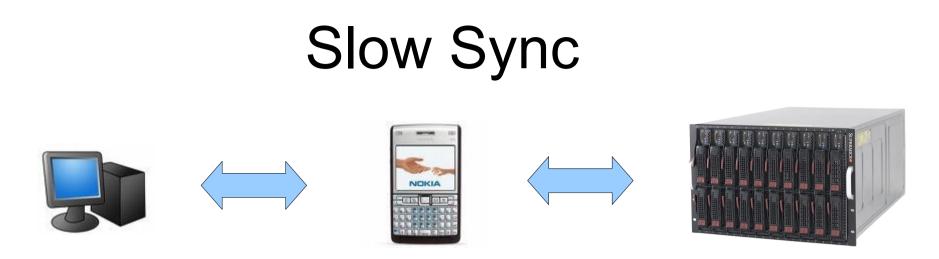
Sync Complexity

- Communication Complexity
 - Alice and Bob wonder if they have the same string
 - Can they decide without communicating all n bits?
 - No!
- Assumptions help us optimize
 - Assumption#1: Change log
 - What if Alice and Bob knew what has changed since they had the same string?
 - Assumption#2: Blind faith in digital hashes
 - May miss differences

Types of sync


- File sync
 - Bit buckets. No semantics.
 - Master/Slave only.
 - No conflict resolution
- Application sync
 - Application events
 - e.g., "Meeting postponed", "task declined"
 - Conflict resolution
 - Bi-directional sync

Change log	cvs merge	SyncML HotSync ActiveSync
Hash- based	rsync, OTA-DM	(None)
	File	Application


Sync using Change Logs

- Universal applicability
 - Used in File Sync (e.g., cvs merge)
 - Used in Application Sync (e.g., Palm HotSync)
- Both Mobile and Server maintain change logs
 - Log may detail actual create/update/delete entries
 - Or just a timestamped list of modified items
 - Or just a "changed-since-last-sync" marker
- Two types of sync operations
 - Fast Sync (always sync to the same server)
 - Slow Sync (sync to multiple servers)

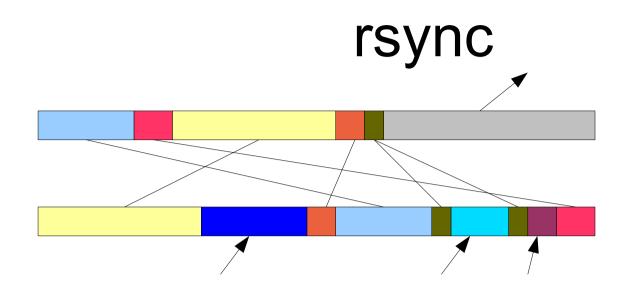
Fast Sync

- What has changed since we last met?
 - Same item+field changed in both copies => Conflict
 - Jointly decide how the other party gets the edit
- Optimizations
 - Mobile is resource constrained. Server is not.
 - Mobile sends all changed items to server.
 - Server collates and sends edits back to Mobile.

- Works when Fast Sync does not
 - Mobile is synced to >1 Servers (no "changed" flags)
 - Change log overflowed, or is not trustworthy
 - It has been too long since the last Slow Sync
- Simple, but inefficient
 - Mobile sends all records to Server
 - Server collates, and sends edits back to the client

Optimizations for Change Log Sync

- Use change logs, not just "changed" flags
 - Maintain complete log of changes
 - Log overflow => Next sync is a Slow Sync
- Trickle Sync (aka Replication)
 - Soft-real-time bidirectional stream of change events
- Fall back to Slow Sync
 - Periodically when connected over WiFi or USB
- Resource constraints on Mobiles
 - Battery, RAM, Flash


PDA/Mobile Sync Products

- HotSync
 - Palm OS
- IntelliSync
 - Acquired by Nokia
 - "Anywhere" Server
- ActiveSync
 - Microsoft Mobile
 - Renamed(?) in Vista

- SyncML
 - OMA standard
 - Sync two DOM's
 - PIM, email, code, ...
 - Widely supported
- BlackBerry
 - Proprietary

Hash-based Sync

- No change log required
 - Will sync two snapshots without any history
 - Used for "merge", and not for bi-directional sync
 - Can be wrong
- Interesting problems
 - Substring identification
 - Cut-n-paste editing
 - "Replace all" edits
 - Lossless compression and other encodings

- File synchronization problem
 - Bob wishes to have Alice's copy
 - Should Alice just send the whole file to Bob?
 - No. rsync can help
 - Andrew Tridgell, Paul Mackerras, "The rsync algorithm", http://rsync.samba.org/tech_report/tech_report.html

rsync

- Bob
 - Partitions string into fixed blocks of size S
 - Sends weak rolling hash and strong hash for each
- Alice
 - Trusts hashes to locate those blocks
 - Sends stream of "insert block" & "insert data"
- Bob
 - Follows commands to construct Alice's copy

Code/Firmware update

Wireless Network

V 3.3 – x + y

- A special case of sync (or data compression)
 - Mobile to Server: "I have V 3.3 x + y"
 - Server to Mobile: "Apply these deltas ..."
- Constraints

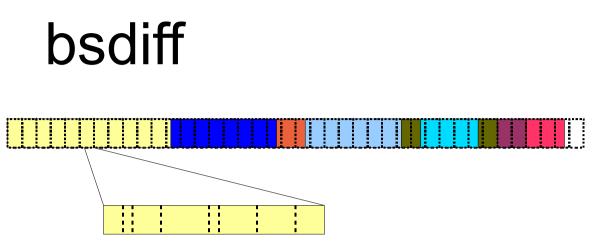
V 3.1 V 3.2

V 3.3

V 3.4

- Server: Scale to support millions of Mobiles
- Network: Bandwidth
- Mobile: Battery, RAM, Flash

Three Problems in Code Sync


1) Small patches

- bsdiff · Compute small delta from V3.3 to V3.4
 - · Plenty of resources, since patches will be reused
 - 2) Data compression
 - · Plenty of resources for compression
 - · Limited resources for decompression
 - 3) Application of patches
 - · Limited "disk" space
 - · Rollback on failure

Prefix Sort

"ACAIA"	0: ACAIA	4: A
	1: CAIA	0: ACAIA
	2: AIA	2: AIA
	3: IA	1: CAIA
	4: A	3: IA

- Several linear time algorithms
 - e.g., Juha K¨arkk¨ainen and Peter Sanders, "Simple Linear Work Suffix Array Construction", ICALP 2003
- Can be used to find substring in O(m+log n)

- Problem
 - Generate small patch from V3.3 to V3.4 binaries
 - "Replace all" changes to data & branch addresses
- Solution
 - Allow 50% mismatches in 8-byte segments
 - Control file (add/insert)
 - Difference file (fix small mismatches)
 - New content file
 - Colin Percival, Naive differences of executable code, http://www.daemonology.net/bsdiff/, 2003

Recap

- File and Application Sync
- Sync using Change log

Fast vs. Slow

Hash-based Sync

- Rsync Please read!

- Code Sync
 - Prefix sort Please read!

- bsdiff Please read!