

Trees and Spanning Trees

- A graph having no cycles is acyclic.
- A forest is an acyclic graph.
- A leaf is a vertex of degree 1.
- A spanning sub-graph of G is a sub-graph with vertex set V(G).
- A *spanning tree* is a spanning sub-graph that is a tree.

Distances

 If G has a *u*,*v*-path, then the distance from *u* to *v*, written d_G(*u*,*v*) or simply d(*u*,*v*), is the least length of a *u*,*v*-path.

– If G has no such path, then $d(u,v) = \infty$

Tree: Characterization

- An n-vertex graph G (with $n \ge 1$) is a tree iff:
 - G is connected and has no cycles
 - G is connected and has n-1 edges
 - G has n–1 edges and no cycles
 - For $u, v \in V(G)$, G has exactly one u, v-path

Some results ...

- Every tree with at least two vertices has at least two leaves.
 - Deleting a leaf from a tree with *n* vertices produces a tree with *n*-1 vertices.
- If T is a tree with k edges and G is a simple graph with δ(G) ≥ k, then T is a sub-graph of G.

Some results ...

If T and T' are two spanning trees of a connected graph G and e ∈ E(T) – E(T), then there is an edge e' ∈ E(T) – E(T) such that T – e + e' is a spanning tree of G.

Diameter and Radius

- The eccentricity of a vertex u, written ε(u), is the maximum of its distances to other vertices.
- In a graph G, the *diameter*, diamG, and the *radius*, radG, are the maximum and minimum of the vertex eccentricities respectively.
- The *center* of G is the subgraph induced by the vertices of minimum eccentricity.

• There are n^{n-2} trees with vertex set [n].

Prüfer Code / Sequence

Algorithm: Production of $f(T) = \{a_1, \dots, a_{n-2}\}$

Input: A tree T with vertex set $S \subseteq \aleph$.

Iteration: At the *i*th step, delete the least remaining leaf, and let a_i be the *neighbor* of this leaf.

