Graph Theory: Graph Coloring

Pallab Dasgupta,

Professor, Dept. of Computer Sc. and Engineering, IIT Kharagpur pallab@cse.iitkgp.ernet.in

Indian Institute of Technology Kharagpur

PALLAB DASGUPTA

K-coloring

A *k*-coloring of G is a labeling $f:V(G) \rightarrow \{1,...,k\}$.

- The labels are colors
- The vertices with color *i* are a color class
- A k-coloring is proper if $x \leftrightarrow y$ implies $f(x) \neq f(y)$
- A graph G is k-colorable if it has a proper k-coloring
- The chromatic number $\chi(G)$ is the min k s.t. G is k-colorable
- If $\chi(G) = k$, then G is *k*-chromatic
- If $\chi(G) = k$, but $\chi(H) < k$ for every proper subgraph *H* of *G*, then *G* is **color-critical** or **k-critical**

Order of the largest clique

Let α(G) denote the *independence number* of G, and ω(G) denote the order of the largest complete subgraph of G.

- χ (G) may exceed ω (G). Consider G = C_{2r+1} \vee K_s

Indian Institute of Technology Kharagpur

PALLAB DASGUPTA

Cartesian Product

- The Cartesian product of graphs G and H, written as G□H, is the graph with vertex set V(G) X V(H) specified by putting (*u*,*v*) adjacent to (*u'*,*v'*) if and only if
 - (1) u = u' and vv' \in E(H), or
 - (2) v = v' and $uu' \in E(G)$
- A graph G is *m*-colorable if and only if G
 K_m has an independent set of size n(G).

```
Also: \chi(G \Box H) = \max\{\chi(G), \chi(H)\}
```

Algorithm Greedy-Coloring

The greedy coloring with respect to a vertex ordering v₁,..., v_n of V(G) is obtained by coloring vertices in the order v₁,..., v_n, assigning to v_i the smallest indexed color not already used on its lower-indexed neighbors.

Results

• $\chi(G) \leq \Delta(G) + 1$

• If G is an interval graph, then $\chi(G) = \omega(G)$

• If a graph G has degree sequence $d_1 \ge ... \ge d_n$, then $\chi(G) \le 1 + \max_i \min\{d_i, i-1\}$

More results

• If H is a *k*-critical graph, then $\delta(H) \ge k-1$

• If G is a graph, then $\chi(G) \le 1 + \max_{H \subseteq G} \delta(H)$

• Brooks Theorem:

If G is a connected graph other than a clique or an odd cycle, then $\chi(G) \leq \Delta(G)$.

Mycielski's Construction

- Builds from any given k-chromatic triangle-free graph G a
 k+1-chromatic triangle-free super-graph G'.
 - Given G with vertex set V = $\{v_1, ..., v_n\}$, add vertices

 $U = \{u_1, \dots, u_n\}$ and one more vertex w.

- Beginning with G'[V] = G, add edges to make u_i adjacent to all of $N_G(v_i)$, and then make N(w) = U. Note that U is an independent set in G'.

Critical Graphs

Suppose that G is a graph with χ(G) > k and that X,Y is a partition of V(G). If G[X] and G[Y] are k-colorable, then the edge cut [X,Y] has at least k edges.

• [Dirac] Every *k*-critical graph is *k*–1 edge-connected.

Suppose S is a set of vertices in a graph G. An S-component of G is an induced sub-graph of G whose vertex set consists of S and the vertices of a component of G - S.

If G is k-critical, then G has no cut set of vertices inducing a clique. In particular, if G has a cut set, S = { x, y }, then x and y are not adjacent and G has an S-component H, such that χ(H + xy) ≥ k.

The function $\chi(G; k)$ counts the mappings *f*: V(G) \rightarrow [k] that properly color G from the set [k] = {1,...,k}.

In this definition, the *k*-colors need not all be used, and permuting the colors used produces a different coloring.

• If G is a simple graph and $e \in E(G)$, then

 $\chi(G; k) = \chi(G - e; k) - \chi(G.e; k)$

Indian Institute of Technology Kharagpur

PALLAB DASGUPTA

The *line graph* of G, written L(G), is a simple graph whose vertices are the edges of G, with $ef \in E(L(G))$ when e and f share a vertex of G.

- An Eulerian circuit in G yields a spanning cycle in L(G). The converse need not hold
- A matching in G is an independent set in L(G); we have $\alpha'(G)$ = $\alpha(L(G))$

Edge Coloring

A *k*-edge-coloring of G is a labeling $f: E(G) \rightarrow [k]$

- The labels are colors
- The set of edges with one color is a color class.
- A *k*-edge-coloring is *proper* if edges sharing a vertex have different colors; equivalently, each color class is a matching
- A graph is *k-edge-colorable* if it has a proper *k*-edge-coloring
- The edge-chromatic-number $\chi'(G)$ of a loop-less graph G is the least *k* such that G is k-edge-colorable

Results

- $\chi'(G) \ge \Delta(G)$.
- If G is a loop-less graph, then $\chi'(G) \le 2\Delta(G) 1$.
- If G is bipartite, then $\chi'(G) = \Delta(G)$.

A regular graph G has a Δ (G)-edge coloring if and only if it decomposes into 1-factors. We say that G is *1-factorable*.

• Every simple graph with maximum degree Δ has a proper Δ +1-edge-coloring.