Graph Theory: Trees

Pallab Dasgupta,
Professor, Dept. of Computer Sc. and Engineering, IIT Kharagpur
pallab@cse.iitkgp.ernet.in
Trees and Spanning Trees

• A graph having no cycles is *acyclic*.

• A *forest* is an acyclic graph.

• A *leaf* is a vertex of degree 1.

• A *spanning sub-graph* of G is a sub-graph with vertex set V(G).

• A *spanning tree* is a spanning sub-graph that is a tree.
Distances

- If G has a u,v-path, then the distance from u to v, written $d_G(u,v)$ or simply $d(u,v)$, is the least length of a u,v-path.
 - If G has no such path, then $d(u,v) = \infty$
Tree: Characterization

• An n-vertex graph G (with n \(\geq 1 \)) is a tree iff:

 – G is connected and has no cycles

 – G is connected and has n–1 edges

 – G has n–1 edges and no cycles

 – For \(u, v \in V(G) \), G has exactly one \(u, v \)-path
Some results …

• Every tree with at least two vertices has at least two leaves.
 – Deleting a leaf from a tree with n vertices produces a tree with $n-1$ vertices.

• If T is a tree with k edges and G is a simple graph with $\delta(G) \geq k$, then T is a sub-graph of G.
Some results ...

- If T and T' are two spanning trees of a connected graph G and $e \in E(T) - E(T')$, then there is an edge $e' \in E(T') - E(T)$ such that $T - e + e'$ is a spanning tree of G.
Diameter and Radius

- The **eccentricity** of a vertex u, written $\varepsilon(u)$, is the maximum of its distances to other vertices.

- In a graph G, the **diameter**, diam_G, and the **radius**, rad_G, are the maximum and minimum of the vertex eccentricities respectively.

- The **center** of G is the subgraph induced by the vertices of minimum eccentricity.
Counting Trees

- There are n^{n-2} trees with vertex set $[n]$.
Prüfer Code / Sequence

Algorithm: \(\text{Production of } f(T) = \{a_1, \ldots, a_{n-2}\} \)

Input: A tree \(T \) with vertex set \(S \subseteq \mathbb{N} \).

Iteration: At the \(i^{th} \) step, delete the least remaining leaf, and let \(a_i \) be the neighbor of this leaf.