Graph Theory: Some Counting Problems

Pallab Dasgupta,

Professor, Dept. of Computer Sc. and Engineering, IIT Kharagpur pallab@cse.iitkgp.ernet.in

Indian Institute of Technology Kharagpur

Degree

- The degree of a vertex v in a graph G, written as d_G(v) or simply d(v), is the number of non-loop edges containing v plus twice the number of loops containing v.
 - The maximum degree is $\Delta(G)$
 - The minimum degree is $\delta(G)$
 - A graph is *regular* if $\Delta(G) = \delta(G)$
 - A graph is *k*-regular if $\Delta(G) = \delta(G) = k$
 - A vertex of degree *k* is *k*-valent.

Order and Size

• The *order* of a graph G, written as *n*(*G*), is the number of vertices in G.

• The *size* of a graph G, written as *e*(*G*), is the number of edges in G.

Indian Institute of Technology Kharagpur

Countings and Bijections

• If G is a graph, then $\sum_{v \in V(G)} d(v) = 2e(G)$

- Every graph has an even number of vertices of odd degree.
 - No graph of odd order is regular with odd degree

• A k-regular graph with *n* vertices has *nk*/2 edges.

Indian Institute of Technology Kharagpur

Countings and Bijections

- Suppose *J*,*H*,*G* are graphs with J ⊆ H ⊆ G, and suppose H contains *q* copies of J. If G contains *m* copies of J, and the *ith* copy of J appears in *k_i* copies of H in G, then G contains Σ_{i=1,m} *k_i*/*q* copies of H.
- For n≥1, there are $2^{\binom{n-1}{2}}$ simple graphs with vertex set $\{v_1, ..., v_n\}$ such that every vertex degree is even.

Indian Institute of Technology Kharagpur

If a set consisting of more than *kn* objects is partitioned into *n* classes, then some class receives more than *k* objects.

 Every simple graph with at least two vertices has two vertices of equal degree.

If G is a simple *n*-vertex graph with δ(G) ≥ (n–1)/2, then G is connected

Indian Institute of Technology Kharagpur

Turan Graph

The *Turan graph T_{n,r}* is the complete r-partite graph with *n* vertices that has *b* parts of size *a*+1 and *r*-*b* parts of size *a*, where *a* = *n*/*r* and *b* = *n*-*ra*.

• Turan showed that $T_{n,r}$ is the unique largest simple *n*-vertex graph with no r+1-clique.

Mantel's Theorem & Turan's Theorem

• [Mantel 1907] The maximum number of edges in an *n*-vertex triangle-free graph is: $\lfloor n^2/4 \rfloor$

• [Turan 1941] Among the *n*-vertex simple graphs with no r+1-clique, $T_{n,r}$ has the maximum number of edges.

Indian Institute of Technology Kharagpur