Graph Theory: Proof Techniques

Pallab Dasgupta,

Professor, Dept. of Computer Sc. and Engineering, IIT Kharagpur pallab@cse.iitkgp.ernet.in

Indian Institute of Technology Kharagpur

Induction

- If *u* and *v* are distinct vertices in G, then every *u*,*v*-*walk* in G contains a *u*,*v*-*path*.
- Every closed odd walk contains an odd cycle.

Indian Institute of Technology Kharagpur

Contra-positive

We use: $(\neg B \Rightarrow \neg A) \equiv (A \Rightarrow B)$

 A graph is connected iff for every partition of its vertices into two non-empty sets, there is an edge with endpoints in both sets

• An edge of a graph is a cut-edge iff it belongs to no cycle

Indian Institute of Technology Kharagpur

Contradiction

We prove $A \Rightarrow B$ by showing that "A true and B false" is impossible

 Suppose G has a vertex set {v₁, ..., v_n}, with n≥3. If at least two of the sub-graphs from G-v₁, ..., G-v_n are connected, then G is connected

• A graph is bipartite iff it has no odd cycle

Indian Institute of Technology Kharagpur

Extremality

- If G is a simple graph in which every vertex degree is at least k, then G contains a path of length at least k.
 - If $k \ge 2$, then G also contains a cycle of length at least k+1.
- If G is a nontrivial graph and has no cycle, then G has a vertex of degree 1.

Every nontrivial graph has at least two vertices that are not cut vertices.

Indian Institute of Technology Kharagpur

The Reconstruction Conjecture

A graph G is *reconstructible* if we can reconstruct G from the list
{ G−v_i: v_i ∈ V(G) }

• The famous *unsolved* reconstruction conjecture says that every graph with at least three vertices is reconstructible.