Graph Theory: Hamiltonian Cycles

Pallab Dasgupta,

Professor, Dept. of Computer Sc. and Engineering, IIT Kharagpur pallab@cse.iitkgp.ernet.in

Indian Institute of Technology Kharagpur

PALLAB DASGUPTA

Hamiltonian Cycle

- A *Hamiltonian cycle* is a spanning cycle in a graph
 - The circumference of a graph is the length of its longest cycle.
 - A *Hamiltonian path* is a spanning path.
 - A graph with a spanning cycle is a *Hamiltonian graph*.

Indian Institute of Technology Kharagpur

Necessary and Sufficient Conditions

- [Necessary:] If G has a Hamiltonian cycle, then for any set
 S ⊂ V, the graph G−S has at most |S| components.
- [Sufficient: *Dirac:*1952] If G is a simple graph with at least three vertices and $\delta(G) \ge n(G)/2$, then G is Hamiltonian.
- [Necessary and sufficient:] If G is a simple graph and *u,v* are distinct non-adjacent vertices of G with d(*u*) + d(*v*) ≥ n(G), then G is Hamiltonian if and only if G + *uv* is Hamiltonian.

Indian Institute of Technology Kharagpur

PALLAB DASGUPTA

The Hamiltonian closure of a graph G, denote C(G), is the supergraph of G on V(G) obtained by iteratively adding edges between pairs of non-adjacent vertices whose degree sum is at least *n*, until no such pair remains.

- The closure of G is well-defined
- A simple *n*-vertex graph is Hamiltonian if and only if its closure is Hamiltonian

Indian Institute of Technology Kharagpur

And more...

• If $\chi(G) \ge \alpha(G)$, then G has a Hamiltonian cycle (unless G = K₂)

Indian Institute of Technology Kharagpur

PALLAB DASGUPTA