Distributed File Systems

Distributed Files Systems (DFS)

e Allows multi-computer systems to share files
— Even when no other IPC or RPC is needed

e Sharing devices
— Special case of sharing files

e E.Q,
— NFS (Sun’s Network File System)
— Windows NT, 2000, XP
— Andrew File System (AFS) & others ...

2

Distributed File Systems

e One of most common uses of distributed
computing

e Goal: provide common view of centralized file
system, but distributed implementation.

— Ability to open & update any file on any machine on
network

— All of synchronization issues and capabilities of shared
local files

3

Distributed File System Requirements

* First needs were: access transparency and
location transparency.

e Performance, scalability, concurrency control, fault
tolerance and security requirements emerged and
were met in the later phases of DFS development.

Transparency

o Access transparency: Client programs should be
unaware of the the distribution of files.

e Location transparency: Client program should see a
uniform namespace. Files should be able to be
relocated without changing their path name.

* Mobility transparency: Neither client programs nor
system admin program tables in the client nodes
should be changed when files are moved either
automatically or by the system admin.

Transparency

e Performance transparency: Client programs should
continue to perform well on load within a specified
range.

e Scaling transparency: increase In size of storage and
network size should be transparent.

Other Requirements

e Concurrent file updates is protected (record locking).
 File replication to allow performance.
 Hardware and operating system heterogeneity.
e Fault tolerance

e Consistency : Unix uses on-copy update semantics.
This may be difficult to achieve in DFS

e Security and Efficiency

Naming of Distributed Files

 Naming — mapping between logical and physical objects

« A transparent DFS hides the location where in the network
the file Is stored.

* Location transparency — file name does not reveal the file's
physical storage location.

* Location independence — file name does not need to be
changed when the file’s physical storage location changes.
— Better file abstraction.

— Separates the naming hierarchy from the storage-devices
hierarchy

8

DFS — Three Naming Schemes

1. Mount remote directories to local directories,
giving the appearance of a coherent local
directory tree

« Mounted remote directories can be accessed
transparently.

e Unix/Linux with NFS; Windows with mapped drives
2. Files named by combination of host name and
local name;
 Guarantees a unigue system wide name
 Windows Network Places, Apollo Domain
3. Total integration of component file systems.

 Asingle global name structure spans all the files in the
system.

Mounting Remote Directories (NFS)

Client A

remote,/ \bm
O

i

\
mbox

Server

wers)\,
O

/ i \steen

AY
/ \
/
/
/
! \
!

! \4
/ \
] \
| \
\ I
N P

|

Exported directory
mounted by client

Client B

/
/
y mbox
! \
I N
I \
I \
I]
\]

|

Exported directory
mounted by client

Network

10

Mounting Remote Directories

* Note:— names of files are not unique
e As represented by path names

e E£.0.,
e Server A sees : /users/steen/mbox
e Client A sees: /remote/vu/mbox
e Client B sees: /work/me/mbox

e Consequence:— Cannot pass file
“names” around haphazardly

11

DFS - File Access Performance

* Reduce network traffic by retaining recently
accessed disk blocks in local cache

 Repeated accesses to the same information can
be handled locally.

— All accesses are performed on the cached copy.

* If needed data not already cached, copy of data
brought from the server to the local cache.

— Copies of parts of file may be scattered in different
caches.

« Cache-consistency problem — keeping the cached
copies consistent with the master file.

— Especially on write operations

12

DFS - File Caches

e |n client memory
— Performance speed up; faster access
— Good when local usage is transient
— Enables diskless workstations

e On client disk
— Good when local usage dominates (e.g., AFS)
— Caches larger files
— Helps protect clients from server crashes

13

DFS —Cache Update Policies

 When does the client update the master file?
— I.e. when is cached data written from the cache to the file?

e Write-through — write data through to disk ASAP

— l.e., following write() or put(), same as on local disks.
— Reliable, but poor performance.

e Delayed-write — cache and then written to the
server later.

— Write operations complete quickly; some data may be
overwritten in cache, saving needless network 1/O.

— Poor reliability
« unwritten data may be lost when client machine crashes
* Inconsistent data

— Variation — scan cache at regular intervals and flush dirty blocks.

14

DFS - File Consistency

 |s locally cached copy of the data consistent with
the master copy?

e Client-initiated approach
— Client initiates a validity check with server.

— Server verifies local data with the master copy
 E.g., time stamps, etc.

e Server-initiated approach

— Server records (parts of) files cached in each client.
— When server detects a potential inconsistency, it reacts

15

DFS — Remote Service vs. Caching

« Remote Service — all file actions implemented by
server.
— RPC functions
— Use for small memory diskless machines
— Particularly applicable if large amount of write activity

e Cached System

— Many “remote” accesses handled efficiently by the local
cache

* Most served as fast as local ones.

— Servers contacted only occasionally
 Reduces server load and network traffic.
* Enhances potential for scalability.

— Reduces total network overhead

16

DFS - File Server Semantics

e Stateless Service

— Avoids state information in server by making
each request self-contained.

— Each request identifies the file and position in
the file.

— No need to establish and terminate a
connection by open and close operations.

— Poor support for locking or synchronization
among concurrent accesses

— E.g. NFS

17

DFS - File Server Semantics

o Stateful Service
— Client opens a file (as in Unix & Windows).

— Server fetches information about file from disk,
stores in server memory,

 Returns to client a connection identifier unique to
client and open file.

 |dentifier used for subsequent accesses until session
ends.

— Server must reclaim space used by no longer
active clients.

— Increased performance; fewer disk accesses.

— Server retains knowledge about file
 E.g., read ahead next blocks for sequential access
* E.g., file locking for managing writes
— Windows

18

DFS — Server Semantics Comparison

» Failure Recovery: Stateful server loses all volatile
state in a crash.

— Restore state by recovery protocol based on a dialog with
clients.

— Server needs to be aware of crashed client processes
« orphan detection and elimination.

 Failure Recovery: Stateless server failure and
recovery are almost unnoticeable.

— Newly restarted server responds to self-contained
requests without difficulty.

19

DFS — Server Semantics Comparison

* Penalties for using the robust stateless service: —

— longer request messages
— slower request processing

e Some environments require stateful service.

— Server-initiated cache validation cannot provide stateless
service.

— File locking (one writer, many readers).

20

DFS — Replication

* Replicas of the same file reside on failure-
Independent machines.

e Improves availability and can shorten service time.

* Naming scheme maps a replicated file name to a
particular replica.
— Existence of replicas should be invisible to higher levels.

— Replicas must be distinguished from one another by
different lower-level names.

e Updates
— Replicas of a file denote the same logical entity

— Update to any replica must be reflected on all other
replicas.

21

A Look at NFS

22

NFS

e Sun Network File System (NFS) has become de
facto standard for distributed UNIX file access.

e NFS runs over LAN
— even WAN (slowly)

e Any system may be both a client and server

e Basic idea:
— Remote directory is mounted onto local directory
— Remote directory may contain mounted directories within

23

NFS — overview

Client Server

System calls interface

V15 imerface YFS imerface |
!
i] . i ¥
| CHlier types Limx 4.2 Nl ‘] MFS client MFS server Unix 4.2 file |
of fbe sytems SY SIS . L EyElems
' |

RPC/XDR RPC/XDR

I Network

24

NFS — v-nodes

* Vv-node contains a reference to a file handle if the file is
remote or an i-node if the file is local

* File system identifier

— Unigue number generated for each file system (in UNIX
stored in super block)

* |-node and i-node generation number

25

NFS — transparency

e Access transparency
— After mount APl same as for UNIX

« Location transparency

— File names does not reveal anything about their
locations (other than the mount points)

26

NFS — pathname translation (1)

Clieak: Sepverl: Serverd:
usr Q dir
local ghared = dir'&\
" p-‘ K n
< - rl LY
) 1 ‘r' £ . .
S0 diel N ‘-
e et PR s
(a)
Client: Cliank:
ust usr
local __-'. I.'-_ lacal L
. dirl 2
dirl AN
E &
OO TIr T P rrrr e ¢ e
................ A
(b - ¢ %
. IL_],

i

Figure 5. DNF3 joins independent file systems (a), by mounts (b), and cascading mounts {(e).

27

NFS — pathname translation (2)

e |s done iteratively by client

 [usr/local/dirl/myfile
— Lookup(/ I-node, usr) = /usr I-node

— Lookup(/usr I-node, local) = /usr/local file handle
« Server 1 is contacted

— Lookup(/usr/local file handle, dirl) - /usr/local/dirl file
handle

e Server 2 is contacted

— Lookup(/usr/local/dirl file handle, myfile) =
lusr/local/dirl/myfile file handle

e Server 2 is contacted

e Server 1 cannot lookup dirl for client because dirl is
something else on server 1 than on client

e Lookups are cached

28

NFS — server caching

e Reads

— Uses the local file system cache (for example
UNIX read-ahead)

e Writes
— Write-through (synchronously, no cache)
— Commit on close (standard behaviour in v3)

29

NFS - client caching (reads)

e Clients are responsible for validating cache entries
(one of the reasons why the server is stateless)

e Timestamp system used
— All timestamps are issued by server

e A cache entry is valid if one of the following are true:

— Cache entry is less than t seconds old

— Modified time at server is the same as modified time on
client

e tis 3-30 s for files, 30-60 s for directories

30

NFS — client caching (writes)

 Delayed writes:

— Modified files are marked dirty and flushed to
server on close (or sync)

e Bio-daemons (block input-output):
— Read-ahead requests are done asynchronously

— A write request is submitted when a block is
filled

31

NFS Operations

e Lookup
— Fundamental NFS operation
— Takes pathname, returns file handle

 File Handle

— Unique identifier of file within server
— Persistent; never reused
— Storable, but opaque to client
e 64 bytes in NFS v3; 128 bytes in NFS v4
e Most other operations take file handle as
argument

32

Other NFS Operations (version 3)

e read, write

 link, symlink

e mknod, mkdir e Conspicuously
« rename, rmdir absent

 readdir, readlink — open, close

e getattr, setattr
e Create, remove

33

NFS v3 — A Stateless Service

e Server retains no knowledge of client
« Server crashes invisible to client

 All hard work done on client side
e Every operation provides file handle

e Server caching

» Performance only
« Based on recent usage

e Client caching

» Client checks validity of cached files
» Client responsible for writing out caches

34

NFS v3 — A Stateless Service

* No locking! No synchronization!

e Unix file semantics not guaranteed
* E.g., read after write

e Session semantics not even guaranteed
* E.g., open after close

35

NFS Implementation

« Remote procedure calls for all operations
— Implemented in Sun ONC
— XDR is interface definition language

e Network communication is client-initiated
— RPC based on UDP (non-reliable protocol)

— Response to remote procedure call is de facto
acknowledgement

e Lost requests are simply re-transmitted
— As many times as necessary to get a response!

36

NFS Failure Recovery

e Server crashes are transparent to client
— Each client request contains all information
— Server can re-fetch from disk if not in its caches

— Client retransmits request if interrupted by crash
* (i.e., no response)

e Client crashes are transparent to server

— Server maintains no record of which client(s)
have cached files.

37

Summary NFS

e Version 3 of NFS

» Stateless file system
» High performance, simple protocol

 Many things have changed in NFS 4

 First published in 2000
 Clarifications published in 2003
» Almost complete rewrite of NFS

38

NFS Version 4

o Stateful file service
 Based on TCP - reliable transport protocol
 More ways to access server

e Compound requests
 |.e., multiple RPC calls in same packet

 More emphasis on security

e Mount protocol integrated with rest of NFS
protocol

39

NFS Version 4

7 Application

NFS Procedures
and Operations

. N External Data

6 Presentation Application Representation (XDR)
Remote Procedure Call
5 Session (RPC) Service
4 Transport Transport Network File System
(NFS)
3 Network Internet
2 Data Link
Network Interface
1 Physical
OSI Model TCPI/IP Model

40

NFS Version 4 (continued)

e Additional RPC operations

— Long list for managing files, caches, validating
versions, etc.

— Also security, permissions, etc.

e Also

— Open() and close().

— With a server crash, some information may have to be
recovered

41

Andrew File System (AFS)

 Completely different kind of file system

e Developed at CMU to support all student
computing.

e Consists of workstation clients and
dedicated file server machines.

42

Andrew File System (AFS)

e Stateful

e Single name space
— File has the same names everywhere in the world.

e Lots of local file caching
— On workstation disks
— For long periods of time
— Qriginally whole files, now 64K file chunks.

e (Good for distant operation because of local disk
caching

43

AFS

 Need for scaling led to reduction of client-server

message traffic.
— Once afile is cached, all operations are performed locally.

— On close, if the file is modified, it is replaced on the
server.

 The client assumes that its cache is up to date!

e Server knows about all cached copies of file
— Callback messages from the server saying otherwise.

44

AFS

e On file open()

— If client has received a callback for file, it must
fetch new copy

— Otherwise it uses its locally-cached copy.

e Server crashes
— Transparent to client if file is locally cached
— Server must contact clients to find state of files

45

Distributed File Systems

e Performance is always an issue

— Tradeoff between performance and the semantics of file
operations (especially for shared files).

e Caching of file blocks is crucial in any file system,
distributed or otherwise.

— As memories get larger, most read requests can be
serviced out of file buffer cache (local memaory).

— Maintaining coherency of those caches is a crucial design
Issue.

e Current research addressing disconnected file
operation for mobile computers.

46

	Distributed File Systems
	Distributed Files Systems (DFS)
	Distributed File Systems
	Distributed File System Requirements
	Transparency
	Transparency
	Other Requirements
	Naming of Distributed Files
	DFS – Three Naming Schemes
	Mounting Remote Directories (NFS)
	Mounting Remote Directories
	DFS – File Access Performance
	DFS – File Caches
	DFS –Cache Update Policies
	DFS – File Consistency
	DFS – Remote Service vs. Caching
	DFS – File Server Semantics
	DFS – File Server Semantics
	DFS – Server Semantics Comparison
	DFS – Server Semantics Comparison�
	DFS – Replication
	NFS
	NFS – overview
	NFS – v-nodes
	NFS – transparency
	NFS – pathname translation (1)
	NFS – pathname translation (2)
	NFS – server caching
	NFS – client caching (reads)
	NFS – client caching (writes)
	NFS Operations
	Other NFS Operations (version 3)
	NFS v3 — A Stateless Service
	NFS v3 — A Stateless Service
	NFS Implementation
	NFS Failure Recovery
	Summary NFS
	NFS Version 4
	NFS Version 4
	NFS Version 4 (continued)
	Andrew File System (AFS)
	Andrew File System (AFS)
	AFS
	AFS
	Distributed File Systems

