
11

Distributed File SystemsDistributed File Systems

22

Distributed Files Systems (DFS)Distributed Files Systems (DFS)

•• Allows multiAllows multi--computer systems to share filescomputer systems to share files
–– Even when no other IPC or RPC is neededEven when no other IPC or RPC is needed

•• Sharing devicesSharing devices
–– Special case of sharing filesSpecial case of sharing files

•• E.g.,E.g.,
–– NFS (Sun’s Network File System)NFS (Sun’s Network File System)
–– Windows NT, 2000, XPWindows NT, 2000, XP
–– Andrew File System (AFS) & others …Andrew File System (AFS) & others …

33

Distributed File SystemsDistributed File Systems

•• One of most common uses of distributed One of most common uses of distributed
computingcomputing

•• Goal:Goal: provide common view of centralized file provide common view of centralized file
system, but distributed implementation.system, but distributed implementation.
–– Ability to open & update Ability to open & update anyany file on any machine on file on any machine on

networknetwork
–– All of synchronization issues and capabilities of shared All of synchronization issues and capabilities of shared

local fileslocal files

44

Distributed File System RequirementsDistributed File System Requirements

•• First needs were: First needs were: access transparencyaccess transparency and and
location transparencylocation transparency. .

•• Performance, scalability, concurrency control, fault Performance, scalability, concurrency control, fault
tolerance and security requirements emerged and tolerance and security requirements emerged and
were met in the later phases of DFS development.were met in the later phases of DFS development.

55

TransparencyTransparency

• Access transparency: Client programs should be
unaware of the the distribution of files.

• Location transparency: Client program should see a
uniform namespace. Files should be able to be
relocated without changing their path name.

• Mobility transparency: Neither client programs nor
system admin program tables in the client nodes
should be changed when files are moved either
automatically or by the system admin.

66

TransparencyTransparency

•• Performance transparencyPerformance transparency: Client programs should : Client programs should
continue to perform well on load within a specified continue to perform well on load within a specified
range.range.

•• Scaling transparencyScaling transparency: increase in size of storage and : increase in size of storage and
network size should be transparent.network size should be transparent.

77

Other RequirementsOther Requirements

•• Concurrent file updates is protected (record locking).Concurrent file updates is protected (record locking).

•• File replication to allow performance. File replication to allow performance.

•• Hardware and operating system heterogeneity.Hardware and operating system heterogeneity.

•• Fault toleranceFault tolerance

•• Consistency : Unix uses onConsistency : Unix uses on--copy update semantics. copy update semantics.
This may be difficult to achieve in DFSThis may be difficult to achieve in DFS

•• Security and EfficiencySecurity and Efficiency

88

Naming of Distributed FilesNaming of Distributed Files
•• NamingNaming –– mapping between logical and physical objectsmapping between logical and physical objects

•• A A transparenttransparent DFS hides the location where in the network DFS hides the location where in the network
the file is stored.the file is stored.

•• Location transparencyLocation transparency –– file name does not reveal the file’s file name does not reveal the file’s
physical storage location.physical storage location.

•• Location independenceLocation independence –– file name does not need to be file name does not need to be
changed when the file’s physical storage location changes. changed when the file’s physical storage location changes.
–– Better file abstraction.Better file abstraction.
–– Separates the naming hierarchy from the storageSeparates the naming hierarchy from the storage--devices devices

hierarchyhierarchy

99

DFS DFS –– Three Naming SchemesThree Naming Schemes

1.1. MountMount remote directories to local directories, remote directories to local directories,
giving the appearance of a coherent local giving the appearance of a coherent local
directory treedirectory tree

•• MountedMounted remote directories can be accessed remote directories can be accessed
transparently.transparently.

•• Unix/Linux with NFS; Windows with mapped drivesUnix/Linux with NFS; Windows with mapped drives
2.2. Files named by combination of Files named by combination of host namehost name and and

local namelocal name;;
•• Guarantees a unique system wide nameGuarantees a unique system wide name
•• Windows Windows Network PlacesNetwork Places, Apollo Domain, Apollo Domain

3.3. Total integration of component file systems.Total integration of component file systems.
•• A single global name structure spans all the files in the A single global name structure spans all the files in the

system.system.

1010

MountingMounting Remote Directories (NFS)Remote Directories (NFS)

1111

MountingMounting Remote Directories Remote Directories

•• Note:Note:–– namesnames of files are not uniqueof files are not unique
•• As represented by As represented by path namespath names

•• E.g.,E.g.,
•• Server A sees : Server A sees : /users//users/steen/mboxsteen/mbox
•• Client A sees: Client A sees: /remote/vu//remote/vu/mboxmbox
•• Client B sees: Client B sees: /work/me//work/me/mboxmbox

•• Consequence:Consequence:–– Cannot pass file Cannot pass file
“names” around haphazardly“names” around haphazardly

1212

DFS DFS –– File Access PerformanceFile Access Performance

•• Reduce network traffic by retaining recently Reduce network traffic by retaining recently
accessed disk blocks in local accessed disk blocks in local cachecache

•• Repeated accesses to the same information can Repeated accesses to the same information can
be handled locally.be handled locally.
–– All accesses are performed on the cached copy.All accesses are performed on the cached copy.

•• If needed data not already cached, copy of data If needed data not already cached, copy of data
brought from the server to the local cache.brought from the server to the local cache.
–– Copies of parts of file may be scattered in different Copies of parts of file may be scattered in different

caches.caches.

•• CacheCache--consistencyconsistency problem problem –– keeping the cached keeping the cached
copies consistent with the master file.copies consistent with the master file.
–– Especially on write operationsEspecially on write operations

1313

DFS DFS –– File CachesFile Caches

•• In client memoryIn client memory
–– Performance speed up; faster accessPerformance speed up; faster access
–– Good when local usage is transientGood when local usage is transient
–– Enables diskless workstationsEnables diskless workstations

•• On client diskOn client disk
–– Good when local usage dominates (e.g., AFS)Good when local usage dominates (e.g., AFS)
–– Caches larger filesCaches larger files
–– Helps protect clients from server crashesHelps protect clients from server crashes

1414

DFS DFS ––Cache Update PoliciesCache Update Policies

•• When does the client update the master file?When does the client update the master file?
–– i.e. when is cached data written from the cache to the file?i.e. when is cached data written from the cache to the file?

•• WriteWrite--throughthrough –– write data through to disk ASAPwrite data through to disk ASAP
–– I.e., following I.e., following writewrite() or () or putput(), same as on local disks.(), same as on local disks.
–– Reliable, but poor performance.Reliable, but poor performance.

•• DelayedDelayed--writewrite –– cache and then written to the cache and then written to the
server laterserver later..
–– Write operations complete quickly; some data may be Write operations complete quickly; some data may be

overwritten in cache, saving needless network I/O.overwritten in cache, saving needless network I/O.
–– Poor reliability Poor reliability

•• unwritten data may be lost when client machine crashesunwritten data may be lost when client machine crashes
•• Inconsistent dataInconsistent data

–– Variation Variation –– scan cache at regular intervals and flush scan cache at regular intervals and flush dirtydirty blocks.blocks.

1515

DFS DFS –– File ConsistencyFile Consistency

•• Is locally cached copy of the data consistent with Is locally cached copy of the data consistent with
the master copy?the master copy?

•• ClientClient--initiated approachinitiated approach
–– Client initiates a validity check with server.Client initiates a validity check with server.
–– Server verifies local data with the master copyServer verifies local data with the master copy

•• E.g., time stamps, etc.E.g., time stamps, etc.

•• ServerServer--initiated approachinitiated approach
–– Server records (parts of) files cached in each client. Server records (parts of) files cached in each client.
–– When server detects a potential inconsistency, it reactsWhen server detects a potential inconsistency, it reacts

1616

DFS DFS –– Remote Service Remote Service vs.vs. CachingCaching

•• Remote ServiceRemote Service –– all file actions implemented by all file actions implemented by
server. server.
–– RPC functionsRPC functions
–– Use for small memory diskless machinesUse for small memory diskless machines
–– Particularly applicable if large amount of write activityParticularly applicable if large amount of write activity

•• Cached SystemCached System
–– Many “remote” accesses handled efficiently by the local Many “remote” accesses handled efficiently by the local

cachecache
•• Most served as fast as local ones. Most served as fast as local ones.

–– Servers contacted only occasionallyServers contacted only occasionally
•• Reduces server load and network traffic.Reduces server load and network traffic.
•• Enhances potential for scalability.Enhances potential for scalability.

–– Reduces total network overheadReduces total network overhead

1717

DFS DFS –– File Server SemanticsFile Server Semantics

•• StatelessStateless ServiceService
–– Avoids Avoids statestate information in server by making information in server by making

each request selfeach request self--contained.contained.
–– Each request identifies the file and position in Each request identifies the file and position in

the file.the file.
–– No need to establish and terminate a No need to establish and terminate a

connection by open and close operations.connection by open and close operations.
–– Poor support for locking or synchronization Poor support for locking or synchronization

among concurrent accessesamong concurrent accesses
–– E.g. NFSE.g. NFS

1818

DFS DFS –– File Server SemanticsFile Server Semantics

•• StatefulStateful ServiceService
–– Client Client opensopens a file (as in Unix & Windows).a file (as in Unix & Windows).
–– Server fetches information about file from disk, Server fetches information about file from disk,

stores in server memory, stores in server memory,
•• Returns to client a Returns to client a connection identifierconnection identifier unique to unique to

client and open file. client and open file.
•• Identifier used for subsequent accesses until session Identifier used for subsequent accesses until session

ends. ends.
–– Server must reclaim space used by no longer Server must reclaim space used by no longer

active clients.active clients.
–– Increased performance; fewer disk accesses.Increased performance; fewer disk accesses.
–– Server retains knowledge about fileServer retains knowledge about file

•• E.g., read ahead next blocks for sequential accessE.g., read ahead next blocks for sequential access
•• E.g., file locking for managing writesE.g., file locking for managing writes

–– WindowsWindows

1919

DFS DFS –– Server Semantics ComparisonServer Semantics Comparison

•• Failure Recovery: Failure Recovery: SStatefultateful serverserver loses all volatile loses all volatile
state in a crash.state in a crash.
–– Restore state by recovery protocol based on a dialog with Restore state by recovery protocol based on a dialog with

clients.clients.
–– Server needs to be aware of crashed client processes Server needs to be aware of crashed client processes

•• orphan detection and elimination.orphan detection and elimination.

•• Failure Recovery: Failure Recovery: Stateless serverStateless server failure and failure and
recovery are almost unnoticeable. recovery are almost unnoticeable.
–– Newly restarted server responds to selfNewly restarted server responds to self--contained contained

requests without difficulty. requests without difficulty.

2020

DFS DFS –– Server Semantics ComparisonServer Semantics Comparison

•• Penalties for using the robust stateless service: Penalties for using the robust stateless service: ––
–– longer request messageslonger request messages
–– slower request processing slower request processing

•• Some environments require stateful service.Some environments require stateful service.
–– ServerServer--initiated cache validation cannot provide stateless initiated cache validation cannot provide stateless

service.service.
–– File locking (one writer, many readers).File locking (one writer, many readers).

2121

DFS DFS –– ReplicationReplication

•• ReplicasReplicas of the same file reside on failureof the same file reside on failure--
independent machines.independent machines.

•• Improves availability and can shorten service time.Improves availability and can shorten service time.

•• Naming scheme maps a replicated file name to a Naming scheme maps a replicated file name to a
particular replica.particular replica.
–– Existence of replicas should be invisible to higher levels. Existence of replicas should be invisible to higher levels.
–– Replicas must be distinguished from one another by Replicas must be distinguished from one another by

different lowerdifferent lower--level names.level names.

•• UpdatesUpdates
–– Replicas of a file denote the same logical entityReplicas of a file denote the same logical entity
–– Update to any replica Update to any replica mustmust be reflected on all other be reflected on all other

replicas.replicas.

2222

A Look at NFS A Look at NFS

2323

NFSNFS

•• Sun Network File System (NFS) has become Sun Network File System (NFS) has become de de
factofacto standard for distributed UNIX file access.standard for distributed UNIX file access.

•• NFS runs over LANNFS runs over LAN
–– even WAN (slowly)even WAN (slowly)

•• Any system may be both a client and serverAny system may be both a client and server

•• Basic idea: Basic idea:
–– Remote directory is Remote directory is mountedmounted onto local directoryonto local directory
–– Remote directory may contain mounted directories withinRemote directory may contain mounted directories within

2424

NFS NFS –– overviewoverview

2525

NFS NFS –– vv--nodesnodes

•• vv--node contains a reference to a file handle if the file is node contains a reference to a file handle if the file is
remote or an iremote or an i--node if the file is localnode if the file is local

•• File system identifierFile system identifier
–– Unique number generated for each file system (in UNIX Unique number generated for each file system (in UNIX

stored in super block)stored in super block)

•• ii--node and inode and i--node generation numbernode generation number

v-node
i-nodeFile handle

File System identifier i-node
i-node generation

number

2626

NFS NFS –– transparencytransparency

•• Access transparencyAccess transparency
–– After mount API same as for UNIXAfter mount API same as for UNIX

•• Location transparencyLocation transparency
–– File names does not reveal anything about their File names does not reveal anything about their

locations (other than the mount points)locations (other than the mount points)

2727

NFS NFS –– pathname translation (1)pathname translation (1)

2828

NFS NFS –– pathname translation (2)pathname translation (2)
•• Is done iteratively by clientIs done iteratively by client
•• /usr/local/dir1/myfile/usr/local/dir1/myfile

–– Lookup(/ ILookup(/ I--node, usr) node, usr) /usr I/usr I--nodenode
–– Lookup(/usr ILookup(/usr I--node, local) node, local) /usr/local file handle/usr/local file handle

•• Server 1 is contactedServer 1 is contacted
–– Lookup(/usr/local file handle, dir1) Lookup(/usr/local file handle, dir1) /usr/local/dir1 file /usr/local/dir1 file

handlehandle
•• Server 2 is contactedServer 2 is contacted

–– Lookup(/usr/local/dir1 file handle, Lookup(/usr/local/dir1 file handle, myfilemyfile))
/usr/local/dir1/myfile file handle/usr/local/dir1/myfile file handle

•• Server 2 is contactedServer 2 is contacted

•• Server 1 cannot lookup dir1 for client because dir1 is Server 1 cannot lookup dir1 for client because dir1 is
something else on server 1 than on clientsomething else on server 1 than on client

•• Lookups are cachedLookups are cached

2929

NFS NFS –– server cachingserver caching

•• ReadsReads
–– Uses the local file system cache (for example Uses the local file system cache (for example

UNIX readUNIX read--ahead)ahead)

•• WritesWrites
–– WriteWrite--through (synchronously, no cache)through (synchronously, no cache)
–– Commit on close (standard behaviour in v3)Commit on close (standard behaviour in v3)

3030

NFS NFS –– client caching (reads)client caching (reads)

•• Clients are responsible for validating cache entries Clients are responsible for validating cache entries
(one of the reasons why the server is stateless)(one of the reasons why the server is stateless)

•• Timestamp system usedTimestamp system used
–– All timestamps are issued by serverAll timestamps are issued by server

•• A cache entry is valid if one of the following are true:A cache entry is valid if one of the following are true:
–– Cache entry is less than Cache entry is less than tt seconds oldseconds old
–– Modified time at server is the same as modified time on Modified time at server is the same as modified time on

clientclient

•• tt is 3is 3--30 s for files, 3030 s for files, 30--60 s for directories60 s for directories

3131

NFS NFS –– client caching (writes)client caching (writes)

•• Delayed writes:Delayed writes:
–– Modified files are marked dirty and flushed to Modified files are marked dirty and flushed to

server on close (or sync)server on close (or sync)

•• BioBio--daemons (daemons (bblock lock iinputnput--ooutput):utput):
–– ReadRead--ahead requests are done asynchronouslyahead requests are done asynchronously
–– A write request is submitted when a block is A write request is submitted when a block is

filledfilled

3232

NFS OperationsNFS Operations

•• LookupLookup
–– Fundamental NFS operationFundamental NFS operation
–– Takes pathname, returns Takes pathname, returns file handlefile handle

•• File HandleFile Handle
–– Unique identifier of file within serverUnique identifier of file within server
–– Persistent; never reusedPersistent; never reused
–– Storable, but opaque to clientStorable, but opaque to client

•• 64 bytes in NFS v3; 128 bytes in NFS v464 bytes in NFS v3; 128 bytes in NFS v4

•• Most other operations take Most other operations take file handlefile handle as as
argumentargument

3333

Other NFS Operations (version 3)Other NFS Operations (version 3)

•• read, writeread, write
•• link, link, symlinksymlink
•• mknodmknod, , mkdirmkdir
•• rename, rename, rmdirrmdir
•• readdirreaddir, , readlinkreadlink
•• getattrgetattr, , setattrsetattr
•• create, removecreate, remove

•• Conspicuously Conspicuously
absentabsent
–– open, closeopen, close

3434

NFS v3 NFS v3 —— A A StatelessStateless ServiceService

•• Server retains no knowledge of clientServer retains no knowledge of client
•• Server crashes invisible to clientServer crashes invisible to client

•• All hard work done on client sideAll hard work done on client side
•• Every operation provides Every operation provides file handlefile handle
•• Server cachingServer caching

•• Performance onlyPerformance only
•• Based on recent usageBased on recent usage

•• Client cachingClient caching
•• Client checks validity of cached filesClient checks validity of cached files
•• Client responsible for writing out cachesClient responsible for writing out caches

3535

NFS v3 NFS v3 —— A A StatelessStateless ServiceService

•• No locking! No synchronization!No locking! No synchronization!

•• Unix file semanticsUnix file semantics not guaranteednot guaranteed
•• E.g., E.g., readread after after writewrite

•• Session semanticsSession semantics not even guaranteednot even guaranteed
•• E.g., E.g., openopen after after closeclose

3636

NFS ImplementationNFS Implementation

•• Remote procedure calls for all operationsRemote procedure calls for all operations
–– Implemented in Sun ONCImplemented in Sun ONC
–– XDR is interface definition languageXDR is interface definition language

•• Network communication is clientNetwork communication is client--initiatedinitiated
–– RPC based on UDP (nonRPC based on UDP (non--reliable protocol)reliable protocol)
–– Response to remote procedure call is Response to remote procedure call is de factode facto

acknowledgementacknowledgement

•• Lost requests are simply reLost requests are simply re--transmittedtransmitted
–– As many times as necessary to get a response!As many times as necessary to get a response!

3737

NFS Failure RecoveryNFS Failure Recovery

•• Server crashes are transparent to clientServer crashes are transparent to client
–– Each client request contains all informationEach client request contains all information
–– Server can reServer can re--fetch from disk if not in its cachesfetch from disk if not in its caches
–– Client retransmits request if interrupted by crashClient retransmits request if interrupted by crash

•• (i.e., no response)(i.e., no response)

•• Client crashes are transparent to serverClient crashes are transparent to server
–– Server maintains no record of which Server maintains no record of which client(sclient(s))

have cached files.have cached files.

3838

Summary NFSSummary NFS

•• Version 3 of NFSVersion 3 of NFS
•• StatelessStateless file systemfile system
•• High performance, simple protocolHigh performance, simple protocol

•• Many things have changed in NFS 4Many things have changed in NFS 4
•• First published in 2000First published in 2000
•• Clarifications published in 2003Clarifications published in 2003
•• Almost complete rewrite of NFSAlmost complete rewrite of NFS

3939

NFS Version 4NFS Version 4

•• StatefulStateful file servicefile service
•• Based on TCP Based on TCP –– reliable transport protocolreliable transport protocol
•• More ways to access serverMore ways to access server
•• Compound requestsCompound requests

•• I.e., multiple RPC calls in same packetI.e., multiple RPC calls in same packet

•• More emphasis on securityMore emphasis on security
•• Mount protocol integrated with rest of NFS Mount protocol integrated with rest of NFS

protocolprotocol

4040

NFS Version 4NFS Version 4

4141

NFS Version 4 NFS Version 4 (continued)(continued)

•• Additional RPC operationsAdditional RPC operations
–– Long list for managing files, caches, validating Long list for managing files, caches, validating

versions, etc.versions, etc.
–– Also security, permissions, etc.Also security, permissions, etc.

•• AlsoAlso
–– OpenOpen() and () and closeclose(). ().
–– With a server crash, some information may have to be With a server crash, some information may have to be

recoveredrecovered

4242

Andrew File System (AFS)Andrew File System (AFS)

•• Completely different kind of file systemCompletely different kind of file system

•• Developed at CMU to support all student Developed at CMU to support all student
computing.computing.

•• Consists of workstation clients and Consists of workstation clients and
dedicated file server machines.dedicated file server machines.

4343

Andrew File System (AFS)Andrew File System (AFS)

•• StatefulStateful

•• Single name spaceSingle name space
–– File has the same names everywhere in the world.File has the same names everywhere in the world.

•• Lots of local file cachingLots of local file caching
–– On workstation disksOn workstation disks
–– For long periods of timeFor long periods of time
–– Originally whole files, now 64K file chunks.Originally whole files, now 64K file chunks.

•• Good for distant operation because of local disk Good for distant operation because of local disk
cachingcaching

4444

AFSAFS

•• Need for scaling led to reduction of clientNeed for scaling led to reduction of client--server server
message traffic.message traffic.
–– Once a file is cached, all operations are performed locally.Once a file is cached, all operations are performed locally.
–– On close, if the file is modified, it is replaced on the On close, if the file is modified, it is replaced on the

server.server.

•• The client assumes that its cache is up to date! The client assumes that its cache is up to date!

•• Server knows about all cached copies of fileServer knows about all cached copies of file
–– CallbackCallback messages from the server saying otherwise. messages from the server saying otherwise.

4545

AFSAFS

•• On file On file openopen()()
–– If client has received a callback for file, it must If client has received a callback for file, it must

fetch new copyfetch new copy
–– Otherwise it uses its locallyOtherwise it uses its locally--cached copy.cached copy.

•• Server crashesServer crashes
–– Transparent to client if file is locally cachedTransparent to client if file is locally cached
–– Server must contact clients to find state of filesServer must contact clients to find state of files

4646

Distributed File SystemsDistributed File Systems

•• PerformancePerformance is always an issue is always an issue
–– Tradeoff between performance and the semantics of file Tradeoff between performance and the semantics of file

operations (especially for shared files).operations (especially for shared files).

•• CachingCaching of file blocks is crucial in any file system, of file blocks is crucial in any file system,
distributed or otherwise. distributed or otherwise.
–– As memories get larger, most read requests can be As memories get larger, most read requests can be

serviced out of file buffer cache (local memory).serviced out of file buffer cache (local memory).
–– Maintaining coherency of those caches is a crucial design Maintaining coherency of those caches is a crucial design

issue.issue.

•• Current research addressing disconnected file Current research addressing disconnected file
operation for mobile computers.operation for mobile computers.

	Distributed File Systems
	Distributed Files Systems (DFS)
	Distributed File Systems
	Distributed File System Requirements
	Transparency
	Transparency
	Other Requirements
	Naming of Distributed Files
	DFS – Three Naming Schemes
	Mounting Remote Directories (NFS)
	Mounting Remote Directories
	DFS – File Access Performance
	DFS – File Caches
	DFS –Cache Update Policies
	DFS – File Consistency
	DFS – Remote Service vs. Caching
	DFS – File Server Semantics
	DFS – File Server Semantics
	DFS – Server Semantics Comparison
	DFS – Server Semantics Comparison�
	DFS – Replication
	NFS
	NFS – overview
	NFS – v-nodes
	NFS – transparency
	NFS – pathname translation (1)
	NFS – pathname translation (2)
	NFS – server caching
	NFS – client caching (reads)
	NFS – client caching (writes)
	NFS Operations
	Other NFS Operations (version 3)
	NFS v3 — A Stateless Service
	NFS v3 — A Stateless Service
	NFS Implementation
	NFS Failure Recovery
	Summary NFS
	NFS Version 4
	NFS Version 4
	NFS Version 4 (continued)
	Andrew File System (AFS)
	Andrew File System (AFS)
	AFS
	AFS
	Distributed File Systems

