Distributed Mutual Exclusion

CS60002: Distributed Systems

Pallab Dasgupta
Dept. of Computer Sc. & Engg.,
Indian Institute of Technology Kharagpur

ATV T,
o ik
- &
£ 3 [
=]
L1 »
- | a
a . |
_.-.--___ e . A1)

Mutual Exclusion

 Very well-understood in shared memory
systems

« Requirements:
— at most one process in critical section (safety)

— if more than one requesting process, someone enters
(liveness)

— arequesting process enters within a finite time (no
starvation)

— requests are granted in order (fairness)

Types of Dist. Mutual Exclusion Algorithms

e Non-token based / Permission based

— Permission from all processes: e.g. Lamport, Ricart-
Agarwala, Raicourol-Carvalho etc.

— Permission from a subset: ex. Maekawa

e Token based
— eX. Suzuki-Kasami

Some Complexity Measures

No. of messages/critical section entry
Synchronization delay

Response time

Throughput

Lamport’'s Algorithm

 Every node i has arequest queue g;

— keeps requests sorted by logical timestamps (total
ordering enforced by including process id in the
timestamps)

 To request critical section:
— send timestamped REQUEST(tsi, 1) to all other nodes
— put (tsi, 1) in its own queue

 On receiving a request (tsi, 1):
— send timestamped REPLY to the requesting node |
— put request (tsi, i) in the queue

Dept. of CSE, IIT KGPJ

Lamport’s Algorithm contd..

e To enter critical section:

— Process i enters critical section if:
e (tsi, 1) is at the top if its own queue, and

 Process i has received a message (any message) with
timestamp larger than (tsi, i) from ALL other nodes.

e To release critical section:

 Process i removes its request from its own queue and
sends a timestamped RELEASE message to all other
nodes

 On receiving a RELEASE message from i, i's request is
removed from the local request queue

Dept. of CSE, IIT KGPJ

Some notable points

 Purpose of REPLY messages from node i to) is to ensure
that) knows of all requests of i prior to sending the
REPLY (and therefore, possibly any request of i with
timestamp lower than j's request)

 Requires FIFO channels.
e 3(n —1) messages per critical section invocation
e Synchronization delay = max mesg transmission time

 Requests are granted in order of increasing timestamps

Dept. of CSE, IIT KGPJ

The Ricart-Agrawala Algorithm

e Improvement over Lamport’s

Main ldea:

— node j need not send a REPLY to node i if) has a request
with timestamp lower than the request of i (since i cannot
enter before j anyway in this case)

 Does not require FIFO

« 2(n—1) messages per critical section invocation

e Synchronization delay = max. message transmission time

 Requests granted in order of increasing timestamps

Dept. of CSE, IIT KGPJ

The Ricart-Agrawala Algorithm

« To request critical section:
— send timestamped REQUEST message (tsi, 1)

 On receiving request (tsi, i) at j:
— send REPLY to i if jis neither requesting nor executing
critical section or

— if jis requesting and i's request timestamp is smaller than
J's request timestamp. Otherwise, defer the request.

 To enter critical section:
— 1 enters critical section on receiving REPLY from all nodes

e To release critical section:
— send REPLY to all deferred requests

Dept. of CSE, IIT KGPJ

Roucairol-Carvalho Algorithm

 Improvement over Ricart-Agarwala

e Main idea

— Once i has received a REPLY from j, it does not need
to send a REQUEST to j again unless it sends a
REPLY to j (in response to a REQUEST from)

— Message complexity varies between 0 and 2(n — 1)
depending on the request pattern

— worst case message complexity still the same

Maekawa’'s Algorithm

 Permission obtained from only a subset of other processes,
called the Request Set (or Quorum)

« Separate Request Set, R, for each process i

 Requirements:
— for all i,j:RiﬂRj;é(I)
— foralli:i €R,
— forall i: |lR| =K, for some K
— any node i is contained in exactly D Request Sets, for some D

« K=D= \/N for Maekawa’'s

Dept. of CSE, IIT KGPJ

A Simple Version

« To request critical section:
— 1sends REQUEST message to all process in R,

« On receiving a REQUEST message:

— Send a REPLY message if no REPLY message has been
sent since the last RELEASE message is received.

— Update status to indicate that a REPLY has been sent.
— Otherwise, queue up the REQUEST

e To enter critical section:

— 1 enters critical section after receiving REPLY from all
nodes in R,

Dept. of CSE, IIT KGPJ

A Simple Version contd..

 To release critical section:
— Send RELEASE message to all nodes in R,

— On receiving a RELEASE message, send REPLY to next
node in queue and delete the node from the queue.

— If queue is empty, update status to indicate no REPLY
message has been sent.

Features

« Message Complexity: 3*\/N

« Synchronization delay =
— 2*(max message transmission time)

 Major problem: DEADLOCK possible

 Need three more types of messages (FAILED, INQUIRE,
YIELD) to handle deadlock.

— Message complexity can be 5*sqrt(N)

e Building the request sets?

Dept. of CSE, IIT KGPJ

Token based Algorithms

Single token circulates, enter CS when token is present
Mutual exclusion obvious

Algorithms differ in how to find and get the token

Uses sequence numbers rather than timestamps to
differentiate between old and current requests

Suzuki Kasami Algorithm

 Broadcast a request for the token

 Process with the token sends it to the requestor if it does
not need it

e |Ssues:

— Current versus outdated requests
— Determining sites with pending requests
— Deciding which site to give the token to

Suzuki Kasami Algorithm

« The token:
— Queue (FIFO) Q of requesting processes

— LNJ[1..n] : sequence number of request that j executed most
recently

« The request message:

— REQUEST(i, k): request message from node i for its kth
critical section execution

e Other data structures

— RN;[1..n] for each node i, where RN j] is the largest
sequence number received so far by i in a REQUEST
message from j.

Dept. of CSE, IIT KGPJ

Suzuki Kasami Algorithm

« To request critical section:

— If i does not have token, increment RN;[i] and send
REQUEST(i, RN, i1]) to all nodes

— If i has token already, enter critical section if the token is

idle (no pending requests), else follow rule to release
critical section

 On receiving REQUEST(i, sn) at j:
— Set RN;[1] =max(RN;[1], sn)
— If j has the token and the token is idle, then send it to i if

RN;[1]=LN[i] + 1.If token is not idle, follow rule to release
critical section

Dept. of CSE, IIT KGPJ

Suzuki Kasami Algorithm

e To enter critical section:
— Enter CS if token is present

e To release critical section:
— SetLN[i]=RN[i]

— For every node j which is not in Q (in token), add node jto Q
fRN[j]=LN[j]+1

— If Q is non empty after the above, delete first node from Q
and send the token to that node

Notable features

 No. of messages:
— 0if node holds the token already, n otherwise

e Synchronization delay:

— 0 (node has the token) or max. message delay (token is
elsewhere)

e No starvation

Raymond’s Algorithm

« Forms adirected tree (logical) with the token-holder as
root

« Each node has variable “Holder” that points to its parent
on the path to the root.

— Root’s Holder variable points to itself

« Each node i has a FIFO request queue Q,

Raymond’s Algorithm

« To request critical section:

— Send REQUEST to parent on the tree, provided i does not

hold the token currently and Q, is empty. Then place
request in Q,

When a non-root node j receives a request from i
— place request in Q,

— send REQUEST to parent if no previous REQUEST sent

Raymond’s Algorithm

e When the root receives a REQUEST:
— send the token to the requesting node
— set Holder variable to point to that node

« When anode receives the token:
— delete first entry from the queue
— send token to that node
— set Holder variable to point to that node

— if queue is non-empty, send a REQUEST message to the
parent (node pointed at by Holder variable)

Raymond’s Algorithm

e To execute critical section:

— enter if token is received and own entry is at the top of the
gueue; delete the entry from the queue

e To release critical section

— if queue is non-empty, delete first entry from the queue,

send token to that node and make Holder variable point to
that node

— If queue is still non-empty, send a REQUEST message to
the parent (node pointed at by Holder variable)

Notable features

 Average message complexity: O(log n)

« Sync. delay = (T log n)/2, where T = max. message delay

	Distributed Mutual Exclusion��CS60002: Distributed Systems
	Mutual Exclusion
	Types of Dist. Mutual Exclusion Algorithms
	Some Complexity Measures
	Lamport’s Algorithm
	Lamport’s Algorithm contd..
	Some notable points
	The Ricart-Agrawala Algorithm
	The Ricart-Agrawala Algorithm
	Roucairol-Carvalho Algorithm
	Maekawa’s Algorithm
	A Simple Version
	A Simple Version contd..
	Features
	Token based Algorithms
	Suzuki Kasami Algorithm
	Suzuki Kasami Algorithm
	Suzuki Kasami Algorithm
	Suzuki Kasami Algorithm
	Notable features
	Raymond’s Algorithm
	Raymond’s Algorithm
	Raymond’s Algorithm
	
	Notable features

