
Dept. of CSE, IIT KGP

Distributed Mutual ExclusionDistributed Mutual Exclusion
CS60002:CS60002: Distributed SystemsDistributed Systems

PallabPallab DasguptaDasgupta
Dept. of Computer Sc. & Dept. of Computer Sc. & EnggEngg.,.,
Indian Institute of Technology KharagpurIndian Institute of Technology Kharagpur

Dept. of CSE, IIT KGP

Mutual ExclusionMutual Exclusion

•• Very wellVery well--understood in shared memory understood in shared memory
systemssystems

•• Requirements:Requirements:
–– at most one process in critical section (safety)at most one process in critical section (safety)
–– if more than one requesting process, someone enters if more than one requesting process, someone enters

((livenessliveness))
–– a requesting process enters within a finite time (no a requesting process enters within a finite time (no

starvation)starvation)
–– requests are granted in order (fairness)requests are granted in order (fairness)

Dept. of CSE, IIT KGP

Types of Dist. Mutual Exclusion AlgorithmsTypes of Dist. Mutual Exclusion Algorithms

•• NonNon--token based / Permission basedtoken based / Permission based
–– Permission from all processes: e.g. Permission from all processes: e.g. LamportLamport, , RicartRicart--

AgarwalaAgarwala, , RaicourolRaicourol--CarvalhoCarvalho etc.etc.
–– Permission from a subset: ex. Permission from a subset: ex. MaekawaMaekawa

•• Token basedToken based
–– ex. Suzukiex. Suzuki--KasamiKasami

Dept. of CSE, IIT KGP

Some Complexity MeasuresSome Complexity Measures

•• No. of messages/critical section entryNo. of messages/critical section entry
•• Synchronization delaySynchronization delay
•• Response timeResponse time
•• ThroughputThroughput

Dept. of CSE, IIT KGP

Lamport’sLamport’s AlgorithmAlgorithm

•• Every node Every node ii has a request queue has a request queue qqii
–– keeps requests sorted by logical timestamps (total keeps requests sorted by logical timestamps (total

ordering enforced by including process id in the ordering enforced by including process id in the
timestamps) timestamps)

•• To request critical section:To request critical section:
–– send send timestampedtimestamped REQUEST(REQUEST(tsitsi, i, i) to all other nodes) to all other nodes
–– put (put (tsitsi, i, i) in its own queue) in its own queue

•• On receiving a request (On receiving a request (tsitsi, i, i):):
–– send send timestampedtimestamped REPLY to the requesting node i REPLY to the requesting node i
–– put request (put request (tsitsi, i, i) in the queue) in the queue

Dept. of CSE, IIT KGP

Lamport’sLamport’s Algorithm contd..Algorithm contd..

•• To enter critical section:To enter critical section:
–– Process Process ii enters critical section if:enters critical section if:

•• ((tsitsi, i, i) is at the top if its own queue, and) is at the top if its own queue, and
•• Process Process ii has received a message (any message) with has received a message (any message) with

timestamp larger than (timestamp larger than (tsitsi, i, i) from ALL other nodes.) from ALL other nodes.

•• To release critical section:To release critical section:
•• Process Process ii removes its request from its own queue and removes its request from its own queue and

sends a sends a timestampedtimestamped RELEASE message to all other RELEASE message to all other
nodesnodes

•• On receiving a RELEASE message from On receiving a RELEASE message from ii, , ii’s’s request is request is
removed from the local request queueremoved from the local request queue

Dept. of CSE, IIT KGP

Some notable pointsSome notable points

•• Purpose of REPLY messages from node Purpose of REPLY messages from node ii to to jj is to ensure is to ensure
that that jj knows of all requests of knows of all requests of ii prior to sending the prior to sending the
REPLY (and therefore, possibly any request of REPLY (and therefore, possibly any request of ii with with
timestamp lower than timestamp lower than jj’s’s request)request)

•• Requires FIFO channels. Requires FIFO channels.

•• 3(3(nn –– 1) messages per critical section invocation1) messages per critical section invocation

•• Synchronization delay = max Synchronization delay = max mesgmesg transmission timetransmission time

•• Requests are granted in order of increasing timestampsRequests are granted in order of increasing timestamps

Dept. of CSE, IIT KGP

The The RicartRicart--AgrawalaAgrawala AlgorithmAlgorithm

•• Improvement over Improvement over Lamport’sLamport’s

•• Main Idea:Main Idea:
–– node node jj need not send a REPLY to node need not send a REPLY to node ii if if jj has a request has a request

with timestamp lower than the request of with timestamp lower than the request of ii (since (since ii cannot cannot
enter before enter before jj anyway in this case)anyway in this case)

•• Does not require FIFODoes not require FIFO

•• 2(n 2(n –– 1) messages per critical section invocation1) messages per critical section invocation

•• Synchronization delay = max. message transmission timeSynchronization delay = max. message transmission time

•• Requests granted in order of increasing timestampsRequests granted in order of increasing timestamps

Dept. of CSE, IIT KGP

The The RicartRicart--AgrawalaAgrawala AlgorithmAlgorithm

•• To request critical section:To request critical section:
–– send send timestampedtimestamped REQUEST message (REQUEST message (tsitsi, i, i))

•• On receiving request (On receiving request (tsitsi, i, i) at) at jj::
–– send REPLY to send REPLY to ii if if jj is neither requesting nor executing is neither requesting nor executing

critical section or critical section or
–– if if jj is requesting and is requesting and ii’s’s request timestamp is smaller than request timestamp is smaller than

jj’s’s request timestamp. Otherwise, defer the request.request timestamp. Otherwise, defer the request.

•• To enter critical section:To enter critical section:
–– ii enters critical section on receiving REPLY from all nodesenters critical section on receiving REPLY from all nodes

•• To release critical section:To release critical section:
–– send REPLY to all deferred requestssend REPLY to all deferred requests

Dept. of CSE, IIT KGP

RoucairolRoucairol--CarvalhoCarvalho AlgorithmAlgorithm

•• Improvement over Improvement over RicartRicart--AgarwalaAgarwala

•• Main ideaMain idea
–– Once Once ii has received a REPLY from has received a REPLY from jj, it does not need , it does not need

to send a REQUEST toto send a REQUEST to jj again unless it sends a again unless it sends a
REPLY to REPLY to jj (in response to a REQUEST from (in response to a REQUEST from jj))

–– Message complexity varies between 0 and 2(Message complexity varies between 0 and 2(nn –– 1) 1)
depending on the request patterndepending on the request pattern

–– worst case message complexity still the sameworst case message complexity still the same

Dept. of CSE, IIT KGP

Maekawa’sMaekawa’s AlgorithmAlgorithm

•• Permission obtained from only a subset of other processes, Permission obtained from only a subset of other processes,
called the called the Request SetRequest Set (or (or QuorumQuorum))

•• Separate Request Set, Separate Request Set, RRii, for each process , for each process ii

•• Requirements:Requirements:
–– for all for all i, ji, j: : RRii ∩ ∩ RRjj ≠ Φ≠ Φ
–– for all for all i: ii: i Є Є RRii

–– for all for all ii: |: |RRii| = | = KK, for some , for some KK
–– any node any node ii is contained in exactly is contained in exactly DD Request Sets, for some Request Sets, for some DD

•• for for Maekawa’sMaekawa’sNDK ==

Dept. of CSE, IIT KGP

A Simple VersionA Simple Version

•• To request critical section:To request critical section:
–– ii sends REQUEST message to all process in sends REQUEST message to all process in RRii

•• On receiving a REQUEST message:On receiving a REQUEST message:
–– Send a REPLY message if no REPLY message has been Send a REPLY message if no REPLY message has been

sent since the last RELEASE message is received. sent since the last RELEASE message is received.
–– Update status to indicate that a REPLY has been sent.Update status to indicate that a REPLY has been sent.
–– Otherwise, queue up the REQUESTOtherwise, queue up the REQUEST

•• To enter critical section:To enter critical section:
–– ii enters critical section after receiving REPLY from all enters critical section after receiving REPLY from all

nodes in nodes in RRii

Dept. of CSE, IIT KGP

A Simple Version contd..A Simple Version contd..

•• To release critical section:To release critical section:
–– Send RELEASE message to all nodes in Send RELEASE message to all nodes in RRii

–– On receiving a RELEASE message, send REPLY to next On receiving a RELEASE message, send REPLY to next
node in queue and delete the node from the queue. node in queue and delete the node from the queue.

–– If queue is empty, update status to indicate no REPLY If queue is empty, update status to indicate no REPLY
message has been sent.message has been sent.

Dept. of CSE, IIT KGP

FeaturesFeatures

•• Message Complexity:Message Complexity:

•• Synchronization delay =Synchronization delay =
–– 2*(max message transmission time)2*(max message transmission time)

•• Major problem: DEADLOCK possibleMajor problem: DEADLOCK possible

•• Need three more types of messages (FAILED, INQUIRE, Need three more types of messages (FAILED, INQUIRE,
YIELD) to handle deadlock. YIELD) to handle deadlock.
–– Message complexity can be 5*Message complexity can be 5*sqrt(Nsqrt(N))

•• Building the request sets?Building the request sets?

N*3

Dept. of CSE, IIT KGP

Token based AlgorithmsToken based Algorithms

•• Single token circulates, enter CS when token is presentSingle token circulates, enter CS when token is present

•• Mutual exclusion obviousMutual exclusion obvious

•• Algorithms differ in how to find and get the tokenAlgorithms differ in how to find and get the token

•• Uses sequence numbers rather than timestamps to Uses sequence numbers rather than timestamps to
differentiate between old and current requestsdifferentiate between old and current requests

Dept. of CSE, IIT KGP

Suzuki Suzuki KasamiKasami AlgorithmAlgorithm

•• Broadcast a request for the tokenBroadcast a request for the token

•• Process with the token sends it to the requestor if it does Process with the token sends it to the requestor if it does
not need itnot need it

•• Issues:Issues:

–– Current versus outdated requestsCurrent versus outdated requests
–– Determining sites with pending requestsDetermining sites with pending requests
–– Deciding which site to give the token toDeciding which site to give the token to

Dept. of CSE, IIT KGP

Suzuki Suzuki KasamiKasami AlgorithmAlgorithm

•• The token:The token:
–– Queue (FIFO) Q of requesting processesQueue (FIFO) Q of requesting processes
–– LN[1..n] : sequence number of request that LN[1..n] : sequence number of request that jj executed most executed most

recentlyrecently

•• The request message:The request message:
–– REQUEST(REQUEST(i, ki, k): request message from node): request message from node ii for its for its kkthth

critical section executioncritical section execution

•• Other data structuresOther data structures
–– RNRNii[1..n] for each node [1..n] for each node ii, where , where RNRNii[[j j] is the largest] is the largest

sequence number received so far by sequence number received so far by ii in a REQUEST in a REQUEST
message from message from jj..

Dept. of CSE, IIT KGP

Suzuki Suzuki KasamiKasami AlgorithmAlgorithm

•• To request critical section:To request critical section:
–– If If ii does not have token, increment does not have token, increment RNRNii[[i i] and send] and send

REQUEST(REQUEST(ii, , RNRNii[[i i]) to all nodes]) to all nodes
–– If If ii has token already, enter critical section if the token is has token already, enter critical section if the token is

idle (no pending requests), else follow rule to release idle (no pending requests), else follow rule to release
critical sectioncritical section

•• On receiving REQUEST(On receiving REQUEST(i, i, snsn) at) at jj::
–– Set Set RNRNjj[[ii] =] = max(RNmax(RNjj[[ii],], snsn))
–– If If jj has the token and the token is idle, then send it to has the token and the token is idle, then send it to ii if if

RNRNjj[[ii] = LN[] = LN[ii] + 1. If token is not idle, follow rule to release] + 1. If token is not idle, follow rule to release
critical sectioncritical section

Dept. of CSE, IIT KGP

Suzuki Suzuki KasamiKasami AlgorithmAlgorithm

•• To enter critical section:To enter critical section:
–– Enter CS if token is presentEnter CS if token is present

•• To release critical section:To release critical section:
–– Set LN[Set LN[i i] =] = RNRNii[[i i]]
–– For every node For every node jj which is not in Q (in token), add nodewhich is not in Q (in token), add node jj to Q to Q

if if RNRNii[[j j] = LN[] = LN[j j] + 1] + 1
–– If Q is non empty after the above, delete first node from Q If Q is non empty after the above, delete first node from Q

and send the token to that nodeand send the token to that node

Dept. of CSE, IIT KGP

Notable featuresNotable features

•• No. of messages: No. of messages:
–– 0 if node holds the token already, n otherwise0 if node holds the token already, n otherwise

•• Synchronization delay: Synchronization delay:
–– 0 (node has the token) or max. message delay (token is 0 (node has the token) or max. message delay (token is

elsewhere)elsewhere)

•• No starvationNo starvation

Dept. of CSE, IIT KGP

Raymond’s AlgorithmRaymond’s Algorithm

•• Forms a directed tree (logical) with the tokenForms a directed tree (logical) with the token--holder as holder as
root root

•• Each node has variable “Each node has variable “HolderHolder” that points to its parent ” that points to its parent
on the path to the root. on the path to the root.
–– Root’s Holder variable points to itselfRoot’s Holder variable points to itself

•• Each node Each node ii has a FIFO request queue has a FIFO request queue QQii

Dept. of CSE, IIT KGP

Raymond’s AlgorithmRaymond’s Algorithm

•• To request critical section:To request critical section:
–– Send REQUEST to parent on the tree, provided Send REQUEST to parent on the tree, provided ii does not does not

hold the token currently and hold the token currently and QQii is empty. Then place is empty. Then place
request in request in QQii

•• When a nonWhen a non--root node root node jj receives a request from receives a request from ii
–– place request in place request in QQjj

–– send REQUEST to parent if no previous REQUEST sentsend REQUEST to parent if no previous REQUEST sent

Dept. of CSE, IIT KGP

Raymond’s AlgorithmRaymond’s Algorithm

•• When the root receives a REQUEST:When the root receives a REQUEST:
–– send the token to the requesting nodesend the token to the requesting node
–– set set HolderHolder variable to point to that nodevariable to point to that node

•• When a node receives the token:When a node receives the token:
–– delete first entry from the queuedelete first entry from the queue
–– send token to that nodesend token to that node
–– set set HolderHolder variable to point to that nodevariable to point to that node
–– if queue is nonif queue is non--empty, send a REQUEST message to the empty, send a REQUEST message to the

parent (node pointed at by parent (node pointed at by HolderHolder variable)variable)

Dept. of CSE, IIT KGP

•• To execute critical section:To execute critical section:
–– enter if token is received and own entry is at the top of the enter if token is received and own entry is at the top of the

queue; delete the entry from the queuequeue; delete the entry from the queue

•• To release critical sectionTo release critical section
–– if queue is nonif queue is non--empty, delete first entry from the queue, empty, delete first entry from the queue,

send token to that node and make send token to that node and make HolderHolder variable point to variable point to
that nodethat node

–– If queue is still nonIf queue is still non--empty, send a REQUEST message to empty, send a REQUEST message to
the parent (node pointed at by the parent (node pointed at by HolderHolder variable)variable)

Raymond’s AlgorithmRaymond’s Algorithm

Dept. of CSE, IIT KGP

Notable featuresNotable features

•• Average message complexity: O(log n)Average message complexity: O(log n)

•• Sync. delay = (T log n)/2, where T = max. message delaySync. delay = (T log n)/2, where T = max. message delay

	Distributed Mutual Exclusion��CS60002: Distributed Systems
	Mutual Exclusion
	Types of Dist. Mutual Exclusion Algorithms
	Some Complexity Measures
	Lamport’s Algorithm
	Lamport’s Algorithm contd..
	Some notable points
	The Ricart-Agrawala Algorithm
	The Ricart-Agrawala Algorithm
	Roucairol-Carvalho Algorithm
	Maekawa’s Algorithm
	A Simple Version
	A Simple Version contd..
	Features
	Token based Algorithms
	Suzuki Kasami Algorithm
	Suzuki Kasami Algorithm
	Suzuki Kasami Algorithm
	Suzuki Kasami Algorithm
	Notable features
	Raymond’s Algorithm
	Raymond’s Algorithm
	Raymond’s Algorithm
	
	Notable features

