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Example

m Burglar alarm at home
+ Fairly reliable at detecting a burglary
+ Responds at times to minor earthquakes

m Two neighbors, on hearing alarm, calls police

+ John always calls when he hears the
alarm, but sometimes confuses the
telephone ringing with the alarm and calls
then, too.

+ Mary likes loud music and sometimes
misses the alarm altogether
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Belief Network Example
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The joint probability distribution

m A generic entry in the joint probability
distribution P(x,, ..., X)) is given by:

P(X,,...,X ) = f[P(xi | Parents(X.))
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The joint probability distribution

m Probability of the event that the alarm has

sounded but neither a burglary nor an
earthquake has occurred, and both Mary and

John call:

P(JAMAAA—-B A —=E)

=P |A) P(M|A) P(A|-B A —E)
P(=B) P(=E)

=0.9 X 0.7 X0.001 X 0.999 X 0.998
= 0.00062
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Conditional independence

P(X,,..., X,,)
— P(Xn Xn—l""’ X])P(Xn—l""’ Xl)
— P(Xn Xn_ls---a Xl)P(Xn—l | Xn—2""’ Xl)

...P(X2 |X1)P(X1)
— 1_“[ F)(Xi | Xi_gsees Xl)

m The belief network represents conditional
Independence:

P(X | X,...,X,)=P(X | Parents(X,))
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Incremental Network Construction

1. Choose the set of relevant variables X that
describe the domain

2. Choose an ordering for the variables (very
Important step)

3. While there are variables left:

a) Pick a variable X and add a node for it

b) Set Parents(X) to some minimal set of
existing nodes such that the conditional
independence property is satisfied

c) Define the conditional prob table for X
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Conditional Independence Relations

m [fevery undirected path from a node in X to a
node in Y Is d-separated by a given set of
evidence nodes E, then X and Y are
conditionally independent given E.

m A set of nodes E d-separates two sets of
nodes X and Y if every undirected path from a
node in X to a node in Y is blocked given E.
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Conditional Independence Relations

B A path is blocked given a set of nodes E if
there is a node Z on the path for which one of
three conditions holds:

1. Zis in E and Z has one arrow on the path
leading in and one arrow out

2. Zisin E and Z has both path arrows
leading out

3. Neither Z nor any descendant of Zis in E,
and both path arrows lead in to Z
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Cond Independence in belief networks

Whether there is petrol and whether the radio
plays are independent given evidence about
whether the ignition takes place

Petrol and Radio are independent if it is known
whether the battery works
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Cond Independence in belief networks

Petrol and Radio are independent given no
evidence at all.

But they are dependent given evidence about
whether the car starts.

If the car does not start, then the radio playing
IS increased evidence that we are out of petrol.
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Inferences using belief networks

m Diagnostic inferences (from effects to causes)

+ Given that JohnCalls, infer that
P(Burglary | JohnCalls) = 0.016

m Causal inferences (from causes to effects)

+ Given Burglary, infer that
P(JohnCalls | Burglary) = 0.86 and

P(MaryCalls | Burglary) = 0.67
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Inferences using belief networks

m Intercausal inferences (between causes of a common
effect)

+ Given Alarm, we have
P(Burglary | Alarm) = 0.376.

+ If we add evidence that Earthquake is true, then
P(Burglary | Alarm A Earthquake) goes down to
0.003

m Mixed inferences

¢ Setting the effect JohnCalls to true and the cause
Earthquake to false gives P(Alarm | JohnCalls A
— Earthquake) = 0.003
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The four patterns

(D (D ©)
Diagnostic || Causal | [InterCausal || Mixed
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Answering queries

m \We consider cases where the belief network
IS a poly-tree
¢ There is at most one undirected path
between any two nodes
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Answering queries
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Answering queries

U =U, ... U, are parents of node X
Y =Y, ... Y, are children of node X
« X is the query variable

* E is a set of evidence variables

* The aim is to compute P(X | E)
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Definitions

m E,* is the causal support for X

+ The evidence variables “above” X that are
connected to X through its parents

m E,~ is the evidential support for X

¢ The evidence variables “below” X that are
connected to X through its children

m E\ x refers to all the evidence connected to
node U, except via the path from X

m E,, " refers to all the evidence connected to
node Y, through its parents for X
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The computation of P(X|E)
P(X|E)=P(X[Ex.Ex)
_ P(Ex | X.Ex)P(X|Ex)
P(Ex [Ex)

* Since X d-separates Ey* from E, , we can
use conditional independence to simplify
the first term in the numerator

* \We can treat the denominator as a constant
P(X|E)=aP(Ey | X)P(X|EY)
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The computation of P(X | E,*)

We consider all possible configurations of the
parents of X and how likely they are given E,".

Let U be the vector of parents U,, ..., U_, and
let u be an assignment of values to them.

P(X|Ex) =2 P(X|uE})P(u|E)
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The computation of P(X | E,*)
P(X|EX) =) P(X|uE})P(u|Ey)

U d-separates X from E*, so the first term
simplifies to P(X | u)

We can simplify the second term by noting
— Ey* d-separates each U, from the others,
— the probability of a conjunction of
iIndependent variables is equal to the
product of their individual probabillities

P(XIEx) =2 P(X|u) | [P |EX)
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The computation of P(X | E,*)
P(X|E%) ZP X |u) HPu 129

The last term can be simplified by partitioning
E," into Eyqx, ---» Eymx @nd noting that E
d-separates U, from all the other evidence in E,*

PIXIEx) =2 P(X[u) | [P |Eyx)

* P(X | u) is a lookup in the cond prob table of X
* P(u;| Ex) Is a recursive (smaller) sub-problem
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The computation of P(E, | X)

Let Z, be the parents of Y, other than X, and let
Z, be an assignment of values to the parents

— The evidence in each Y, box is conditionally
independent of the others given X

X | X HP(EYl\X | X
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The computation of P(E, | X)

P(E; | X) — HP(EYi\X ‘ X)

Averaging over Y; and z yields:

P(Ey | X)= l [ZZP(EYKX | XYz P(Yi,Z | X)

LY 4
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The computation of P(E, | X)
PEy | X)= l [ZZP(EYKX | XYz P(Y;,Z | X)

LY 4

Breaking E.,y into the two independent
components Ey, and Ey; "

P(E; ‘ X) — IIZZP(E;' ‘ xyi’zi)

P(Evix | X¥:,2) P(Y; Z; | X)
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The computation of P(E, | X)
P(E; ‘ X) — IIZZP(E\_A ‘ XaYiaZi)

P(EYix | X Yi,2) P(Y;, Z; | X)

Eyi is independent of X and z, given y;, and
Ev." is independent of X and y.

PEIX)=] [2 PE1v:)2 PEux 12 )PY.% | X)
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The computation of P(E, | X)
PELIX)=] [2 PE 1Y), PEvix |2 )P,z | X)
LY 4

Apply Bayes' rule to P(Ev,x" | z):

PE, | X)-
[T2PE Iy 2 bty 21
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The computation of P(E, | X)

PE; | X)-
[TPE Iy 2 e bty 2 1

* Rewriting the conjunction of Y; and z;:

PEX| X)=[TXPEy 1Y)

P(z, | Eyix P(Evix)s
2 ey PIXZPEIX
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The computation of P(E, | X)
PEL | X)=] [2_PEv1y:)
Ly

P(z, | Evix P(Evix)s
2 gy PwIXZPEIX

P(z | X) = P(z) because Z and X are
d-separated. Also P(Ey,\") is a constant

P(Ex | X) =
[T2_PEw 1Y) BP@ [Ev Pl | X2)
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The computation of P(E, | X)
P(Ex | X) =
[TDPE Y)Y BPE [Evx Py 1 X2,)

* The parents of Y; (the Z;) are independent of
each other.

* We also combine the f3;, into one single f3
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The computation of P(E, | X)

P(EX | X)=
BT PE YR 1 X2)[ ] P [Ezyy)

* P(Ey; | Y;) Is arecursive instance of P(Ey | X)
* P(y; | X, z;) is a cond prob table entry for Y,

* P(z; | Ezi\vi) Is a recursive sub-instance of the
: P()%”|\YIJ:') calculation
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Inference in multiply connected
belief networks

m Clustering methods

+ Transform the net into a probabilistically
equivalent (but topologically different) poly-
tree by merging offending nodes

m Conditioning methods

¢ Instantiate variables to definite values, and
then evaluate a poly-tree for each possible
Instantiation
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Inference in multiply connected
belief networks

m Stochastic simulation methods

+ Use the network to generate a large
number of concrete models of the domain
that are consistent with the network
distribution.

+ They give an approximation of the exact
evaluation.
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Default reasoning

m Some conclusions are made by default unless a
counter-evidence is obtained

+ Non-monotonic reasoning

m Points to ponder
+ Whats the semantic status of default rules?

+ What happens when the evidence matches the
premises of two default rules with conflicting
conclusions?

+ If a belief is retracted later, how can a system
keep track of which conclusions need to be
retracted as a consequence?
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Issues in Rule-based methods for
Uncertain Reasoning

m Locality

¢ In logical reasoning systems, if we have
A = B, then we can conclude B given
evidence A, without worrying about any
other rules. In probabillistic systems, we
need to consider all available evidence.
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Issues in Rule-based methods for
Uncertain Reasoning

m Detachment

¢ Once a logical proof is found for
proposition B, we can use it regardless of
how it was derived (it can be detached
from its justification). In probabilistic
reasoning, the source of the evidence is
important for subsequent reasoning.
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Issues in Rule-based methods for
Uncertain Reasoning

m Truth functionality

¢ In logic, the truth of complex sentences
can be computed from the truth of the
components. Probability combination does
not work this way, except under strong
iIndependence assumptions.

A famous example of a truth functional system
for uncertain reasoning is the certainty factors
model, developed for the Mycin medical
diagnostic program
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Dempster-Shafer Theory

m Designed to deal with the distinction between
uncertainty and ignorance.

m We use a belief function Bel(X) — probability
that the evidence supports the proposition

® WWhen we do not have any evidence about X,
we assign Bel(X) = 0 as well as Bel(—X) =0
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Dempster-Shafer Theory

For example, if we do not know whether a coin
Is fair, then:

Bel( Heads ) = Bel( —Heads ) =0

If we are given that the coin is fair with 90%
certainty, then:

Bel( Heads ) = 0.9 X 0.5 =045
Bel(—Heads ) = 0.9 X 0.5 =0.45

Note that we still have a gap of 0.1 that is not
accounted for by the evidence
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Fuzzy Logic

m Fuzzy set theory is a means of specifying
how well an object satisfies a vague
description

+ Truth is a value between 0 and 1

¢ Uncertainty stems from lack of evidence,
but given the dimensions of a man
concluding whether he is fat has no
uncertainty involved
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Fuzzy Logic

m The rules for evaluating the fuzzy truth, T, of
a complex sentence are

T(AAB)=min( T(A), T(B) )
T(A v B)=max( T(A), T(B) )
T(—-A)=1-T(A)
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