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Inference rules

m Universal elimination:

¢ V x Likes( x, lceCream ) with the substitution
{x / Einstein} gives us Likes( Einstein, lceCream )

+ The substitution has to be done by a ground term

m Existential elimination:

¢ From 3 x Likes( x, lceCream ) we may infer
Likes( Man, IceCream ) as long as Man does not
appear elsewhere in the Knowledge base

m Existential introduction:
¢ From Likes( Monalisa, IceCream ) we can infer
1 x Likes( x, lceCream )
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Reasoning in first-order logic

m The law says that it is a crime for a Gaul
to sell potion formulas to hostile nations.

m The country Rome, an enemy of Gaul,
has acquired some potion formulas, and
all of its formulas were sold to it by Druid
Traitorix.

m Traitorix is a Gaul.
m |s Traitorix a criminal?

CSE, IIT Kharagpur



Generalized Modus Ponens

m For atomic sentences p;, p;’, and q, where
there is a substitution 6 such that

SUBST(0, p;) = SUBST(0, p,), for all I

PP i P (PLAP Ao AP, = G)

SUBST(6,q)
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Unification
UNIFY(p,q) = 6 where SUBST(0,p) = SUBST(0,9)

Examples:

UNIFY( Knows(Erdos, x),Knows(Erdos, Godel))
= {x / Godel}

UNIFY( Knows(Erdos, x), Knows(y,Godel))
= {x/Godel, y/Erdos}
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Unification
UNIFY(p,q) = 6 where SUBST(0,p) = SUBST(0,9)

Examples:

UNIFY( Knows(Erdos, x), Knows(y, Father(y)))
= { y/Erdos, x/Father(Erdos) }

UNIFY( Knows(Erdos, x), Knows(x, Godel)) = F

We require the most general unifier
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Reasoning with Horn Logic

m \We can convert Horn sentences to a
canonical form and then use generalized
Modus Ponens with unification.

¢ We skolemize existential formulas and
remove the universal ones

¢ This gives us a conjunction of clauses, that
are inserted in the KB

+ Modus Ponens help us in inferring new
clauses

m Forward and backward chaining
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Completeness issues

m Reasoning with Modus Ponens is incomplete
m Consider the example —

VX P(x) = Q(x) VX —P(x) = R(X)
VX Q(X) = S(x) VX R(X) = S(x)

= \We should be able to conclude S(A)

m The problem is that ¥x —P(x) = R(x) cannot
be converted to Horn form, and thus cannot
be used by Modus Ponens
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Godel’s Completeness Theorem

m For first-order logic, any sentence that is
entailed by another set of sentences can be
proved from that set

+ Godel did not suggest a proof procedure

+ In 1965 Robinson published his resolution
algorithm

m Entailment in first-order logic is semi-decidable,
that is, we can show that sentences follow from
premises if they do, but we cannot always show if
they do not.
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The validity problem of first-order logic

m [Church] The validity problem of the first-
order predicate calculus is partially solvable.

m Consider the following formula:

[ P(£(2), 9,(@))

AYXTYIP(X,Y) = A PO (%), ()]

— 3z p(z,2)
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Resolution

m Generalized Resolution Rule:

For atoms p;, q;, r;, s;, where Unify(p;, i) = 6,
we have:

PiNePio NPy = LVl

SIN NS s =G V... ...V (4
SUBST(,

Pr NP g APjgeas NPy NS5 AN LS 5

= LNy VGV Gig VeV o)
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Our earlier example

P(w) = Q(w)

Q(y) = S(y)

yiw—"

P(w) = S(w) True = P(x) v R(x)

{w [ x}

True = S(x) v R(x) R(z) = S(z)
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Conversion to Normal Form

m A formula is said to be in clause form if it is of
the form:

VX VX, ... VX [CoAC, AL A G

m All first-order logic formulas can be converted
to clause form

m \We shall demonstrate the conversion on the
formula:

vx {p(x) = 3z { =Vy [a(x,y) = p(f(x,))]
A VY [a(xy) = p(x)] }}
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Conversion to Normal Form

m Step1: Take the existential closure and
eliminate redundant quantifiers. This
iIntroduces 3x, and eliminates 3z, so:

VX 1p(x) = 3z { =¥y [q(x,y) = p(f(X4))]
A VY [Qy) = p(X)] 1}

Xy VX {p(x) = { =Vy [a(x,y) = p(f(x4))]
A VY [a(xy) = p(x)] }}
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Conversion to Normal Form

m Step 2: Rename any variable that is
quantified more than once. y has been
quantified twice, so:

3xy VX {p(x) = { =Vy [a(x,y) = p(f(xq))]
A VY [a(xy) = p(x)] }}

Xy VX {p(x) = { =¥y [a(Xy) = p(f(X1))]
A VZ[q(x,z) = p(X)] }}
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Conversion to Normal Form

m Step 3: Eliminate implication.

Xy VX {p(x) = { =¥y [a(Xy) = p(f(X1))]
A VZ[q(x,z) = p(X)] }}

Xy VX A{=p(X) v { =Vy [=a(x,y) v p(f(xy))]
A VZ [-9(X,Z) v p(X)] }}
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Conversion to Normal Form

m Step 4: Move — all the way inwards.

Xy VX A{=p(X) v { =Vy [=a(x,y) v p(f(x4))]
A VZ [-9(X,2) v p(X)] }}

x4 VX {=p(x) v {3y [a(x,y) A =p(f(x1))]
A VZ [=q(x,2) v p(X)] }}
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Conversion to Normal Form

m Step 5: Push the quantifiers to the right.

Xy VX {=p(X) v 13y [a(x,y) A =p(f(x1))]
A VZ [=q(X,2) v p(X)] }}

3xy VX {=p(x) v {[Fy a(x,y) A =p(f(x4))]
A [Vz —q(x,z) v p(X)] }}
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Conversion to Normal Form

m  Step 6: Eliminate existential quantifiers
(Skolemization).

¢ Pick out the leftmost 3y B(y) and replace it
by B(f(X1, X, ..., Xi)), Where:

a) X1, Xio,..., X;, are all the distinct free
variables of 3y B(y) that are universally
quantified to the left of 3y B(y), and

b) F is any n-ary function constant which
does not occur already
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Conversion to Normal Form

m  Skolemization:

x4 VX {=p(X) v [y a(x,y) A =p(F(x4))]
A [VZz =q(x,2) v p(X)] }}

Vx {=p(x) v {[a(x,g(x)) A =p(f(a))]
A [VZ —=q(x,2) v p(X)] }}
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Conversion to Normal Form

m  Step 7: Move all universal quantifiers to the
left

VX {=p(x) v {[a(x,9(x)) A —p(f(a))]
A [VZ =q(x,2) v p(X)] }}

vx vz {=p(x) v {[a(x,g(x)) A —p(f(a))]
A [=a(x,2) v p(X)] 1}
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Conversion to Normal Form

m  Step 8: Distribute A over v.

VX VZ {[-p(X) v q(X,9(x))]
A [=p(X) v —p(f(a))]
A [=p(X) v —=q(x,z) v p(x)] }

m Step 9: (Optional) Simplify

VX {[=p(x) v a(x,g(x))] A —p(f(a)) }
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Resolution Refutation Proofs

m |n refutation proofs, we add the negation of
the goal to the set of clauses and then
attempt to deduce False
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Example

= Harry, Ron and Draco are students of the
Hogwarts school for wizards

m Every student is either wicked or is a good
Quiditch player, or both

= No Quiditch player likes rain and all wicked
students like potions

m Draco dislikes whatever Harry likes and likes
whatever Harry dislikes

m Draco likes rain and potions

m |s there a student who is good in Quiditch but
not in potions?
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Resolution Refutation Proofs

Example:
¢ Jack owns a dog
+ Every dog owner is an animal lover
+ No animal lover kills an animal

+ Either Jack or Curiosity killed the cat, who
IS named Tuna

¢ Goal: Did curiosity kill the cat?

+ We will add —Kills(Curiosity, Tuna) and try
to deduce False
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