Searching Game Trees

Course: CS40002 Instructor: Dr. Pallab Dasgupta

Department of Computer Science & Engineering Indian Institute of Technology Kharagpur

Searching Game Trees

Consider an OR tree with two types of OR nodes, namely Min nodes and Max nodes
In Min nodes, select the min cost successor
In Max nodes, select the max cost successor

- Terminal nodes are winning or loosing states
 - It is often infeasible to search up to the terminal nodes
 - We use heuristic costs to compare nonterminal nodes

Shallow and Deep Pruning

Alpha-Beta Pruning

- Alpha Bound of J:
 - The max current val of all MAX ancestors of J
 - Exploration of a min node, J, is stopped when its value equals or falls below alpha.
 - In a min node, we update beta
- Beta Bound of J:
 - The min current val of all MIN ancestors of J
 - Exploration of a max node, J, is stopped when its value equals or exceeds beta
 - In a max node, we update alpha
- In both min and max nodes, we return when $\alpha \ge \beta$

Alpha-Beta Procedure: V(J; α , β)

- 1. If J is a terminal, return V(J) = h(J).
- 2. If J is a max node:

For each successor J_k of J in succession: Set $\alpha = \max \{ \alpha, V(J_k; \alpha, \beta) \}$ If $\alpha \ge \beta$ then return β , else continue Return α

3. If J is a min node: For each successor J_k of J in succession: Set $\beta = \min \{ \beta, V(J_k; \alpha, \beta) \}$ If $\alpha \ge \beta$ then return α , else continue Return β

Search: Additional Topics

Course: CS40002 Instructor: Dr. Pallab Dasgupta

Department of Computer Science & Engineering Indian Institute of Technology Kharagpur

Iterative Refinement Search

We iteratively try to improve the solution

- Consider all states laid out on the surface of a landscape
- The notion of local and global optima

Two main approaches
Hill climbing / Gradient descent
Simulated annealing

Hill Climbing / Gradient Descent

 Makes moves which monotonically improve the quality of solution
Can settle in a local optima

Random-restart hill climbing

Simulated Annealing

- Let T denote the temperature. Initially T is high. During iterative refinement, T is gradually reduced to zero.
- 1. Initialize T
- 2. If T=0 return current state
- **3.** Set next = a randomly selected succ of current
- 4. $\Delta E = Val[next] Val[current]$
- **5.** If $\Delta E > 0$ then Set current = next
- 6. Otherwise Set current = next with prob $e^{\Delta E/T}$
- 7. Update T as per schedule and Go To Step 2.

Memory bounded A*: MA*

- ♦ Whenever |OPEN ∪ CLOSED| approaches M, some of the least promising states are removed
- To guarantee that the algorithm terminates, we need to back up the cost of the most promising leaf of the subtree being deleted at the root of that subtree
- Many variants of this algorithm have been studied. Recursive Best-First Search (RBFS) is a linear space version of this algorithm

Multi-Objective A*: MOA*

- Adaptation of A* for solving multi-criteria optimization problems
 - Traditional approaches combine the objectives into a single one
 - In multi-objective state space search, the dimensions are retained

Main concepts:

- Vector valued state space
- Vector valued cost and heuristic functions
- Non-dominated solutions