
Heuristic Search: A* and beyondHeuristic Search: A* and beyond

Course: CS40002Course: CS40002
Instructor: Dr. Instructor: Dr. Pallab DasguptaPallab Dasgupta

Department of Computer Science & EngineeringDepartment of Computer Science & Engineering
Indian Institute of Technology Indian Institute of Technology KharagpurKharagpur

2CSE, IIT CSE, IIT KharagpurKharagpur

Algorithm A*Algorithm A*

1.1. Initialize:Initialize: Set OPEN = {s}, CLOSED = { }, Set OPEN = {s}, CLOSED = { },
g(s) = 0, f(s) = h(s)g(s) = 0, f(s) = h(s)

2.2. Fail:Fail: If OPEN = { }, Terminate & failIf OPEN = { }, Terminate & fail
3.3. Select:Select: Select the minimum cost state, n, Select the minimum cost state, n,

from OPEN. Save n in CLOSEDfrom OPEN. Save n in CLOSED
4.4. Terminate:Terminate: If n If n ∈∈ G, terminate with success, G, terminate with success,

and return f(n)and return f(n)

3CSE, IIT CSE, IIT KharagpurKharagpur

Algorithm A*Algorithm A*
5.5. Expand:Expand: For each successor, m, of nFor each successor, m, of n

If m If m ∉∉[OPEN [OPEN ∪∪ CLOSED]CLOSED]
Set g(m) = g(n) + C(n,m) Set g(m) = g(n) + C(n,m)
Set f(m) = g(m) + h(m) Set f(m) = g(m) + h(m)
Insert m in OPENInsert m in OPEN

If m If m ∈∈ [OPEN [OPEN ∪∪ CLOSED]CLOSED]
Set g(m) = min { g(m), g(n) + C(n,m) } Set g(m) = min { g(m), g(n) + C(n,m) }
Set f(m) = g(m) + h(m)Set f(m) = g(m) + h(m)

If f(m) has decreased and m If f(m) has decreased and m ∈∈ CLOSED, CLOSED,
move m to OPEN move m to OPEN

6.6. Loop:Loop: Go To Step 2. Go To Step 2.

4CSE, IIT CSE, IIT KharagpurKharagpur

Results on A*Results on A*

A heuristic is called admissible if it A heuristic is called admissible if it
always underalways under--estimates, that is, we estimates, that is, we
always have h(n) always have h(n) ≤≤ f*(n), where f*(n) f*(n), where f*(n)
denotes the minimum distance to a denotes the minimum distance to a
goal state from state ngoal state from state n

For finite state spaces, A* always For finite state spaces, A* always
terminatesterminates

5CSE, IIT CSE, IIT KharagpurKharagpur

Results on A*Results on A*

At any time time before A* At any time time before A*
terminates, there exists in OPEN a terminates, there exists in OPEN a
state n that is on an optimal path state n that is on an optimal path
from s to a goal state, with from s to a goal state, with
f(n) f(n) ≤≤ f*(s)f*(s)

If there is a path from s to a goal If there is a path from s to a goal
state, A* terminates (even when the state, A* terminates (even when the
state space is infinite)state space is infinite)

6CSE, IIT CSE, IIT KharagpurKharagpur

Results on A*Results on A*
Algorithm A* is admissible, that is, if Algorithm A* is admissible, that is, if
there is a path from s to a goal state, A* there is a path from s to a goal state, A*
terminates by finding an optimal pathterminates by finding an optimal path

If AIf A11 and Aand A22 are two versions of A* such are two versions of A* such
that Athat A22 is more informed than Ais more informed than A11, then A, then A11
expands at least as many states as does Aexpands at least as many states as does A22..

If we are given two or more admissible If we are given two or more admissible
heuristics, we can take their max to get heuristics, we can take their max to get
a stronger admissible heuristic.a stronger admissible heuristic.

7CSE, IIT CSE, IIT KharagpurKharagpur

Monotone HeuristicsMonotone Heuristics
An admissible heuristic function, h(), is An admissible heuristic function, h(), is
monotonic if for every successor m of n:monotonic if for every successor m of n:

h(n) h(n) –– h(m) h(m) ≤≤ c(n,m)c(n,m)

If the monotone restriction is satisfied, If the monotone restriction is satisfied,
then A* has already found an optimal path then A* has already found an optimal path
to the state it selects for expansion.to the state it selects for expansion.

If the monotone restriction is satisfied, the If the monotone restriction is satisfied, the
ff--values of the states expanded by A* is values of the states expanded by A* is
nonnon--decreasing.decreasing.

8CSE, IIT CSE, IIT KharagpurKharagpur

PathmaxPathmax

Converts a nonConverts a non--monotonic heuristic to a monotonic heuristic to a
monotonic one:monotonic one:

During generation of the successor, m During generation of the successor, m
of n we set:of n we set:

h’(m) = max { h(m), h(n) h’(m) = max { h(m), h(n) –– c(n,m) }c(n,m) }
and use h’(m) as the heuristic at m.and use h’(m) as the heuristic at m.

9CSE, IIT CSE, IIT KharagpurKharagpur

Inadmissible heuristicsInadmissible heuristics

Advantages:Advantages:
In many cases, inadmissible heuristics In many cases, inadmissible heuristics
can cause better pruning and can cause better pruning and
significantly reduce the search timesignificantly reduce the search time

Drawbacks:Drawbacks:
A* may terminate with a subA* may terminate with a sub--optimal optimal
solutionsolution

10CSE, IIT CSE, IIT KharagpurKharagpur

Iterative Deepening A* (IDA*)Iterative Deepening A* (IDA*)

1.1. Set C = f(s)Set C = f(s)
2.2. Perform DFBB with cutPerform DFBB with cut--off Coff C

Expand a state, n, only if its fExpand a state, n, only if its f--value is value is
less than or equal to Cless than or equal to C
If a goal is selected for expansion then If a goal is selected for expansion then
return C and terminatereturn C and terminate

3.3. Update C to the minimum fUpdate C to the minimum f--value which value which
exceeded C among states which were exceeded C among states which were
examined and Go To Step 2.examined and Go To Step 2.

11CSE, IIT CSE, IIT KharagpurKharagpur

Iterative Deepening A*: Iterative Deepening A*: boundsbounds

In the worst case, only one new state is In the worst case, only one new state is
expanded in each iterationexpanded in each iteration

If A* expands N states, then IDA* can If A* expands N states, then IDA* can
expand:expand:

1 + 2 + 3 + … + N = O(N1 + 2 + 3 + … + N = O(N22))
IDA* is asymptotically optimalIDA* is asymptotically optimal

12CSE, IIT CSE, IIT KharagpurKharagpur

Memory bounded A*: MA*Memory bounded A*: MA*
Whenever |OPEN Whenever |OPEN ∪∪ CLOSED| approaches M, CLOSED| approaches M,
some of the least promising states are some of the least promising states are
removedremoved

To guarantee that the algorithm terminates, we To guarantee that the algorithm terminates, we
need to back up the cost of the most need to back up the cost of the most
promising leaf of the promising leaf of the subtree subtree being deleted at being deleted at
the root of that the root of that subtreesubtree

Many variants of this algorithm have been Many variants of this algorithm have been
studied. Recursive Beststudied. Recursive Best--First Search (RBFS) is First Search (RBFS) is
a linear space version of this algorithma linear space version of this algorithm

13CSE, IIT CSE, IIT KharagpurKharagpur

MultiMulti--Objective A*: MOA*Objective A*: MOA*
Adaptation of A* for solving multiAdaptation of A* for solving multi--criteria criteria
optimization problemsoptimization problems

Traditional approaches combine the objectives Traditional approaches combine the objectives
into a single oneinto a single one
In multiIn multi--objective state space search, the objective state space search, the
dimensions are retaineddimensions are retained

Main concepts:Main concepts:
Vector valued state space Vector valued state space
Vector valued cost and heuristic functionsVector valued cost and heuristic functions
NonNon--dominated solutionsdominated solutions

14CSE, IIT CSE, IIT KharagpurKharagpur

Iterative Refinement SearchIterative Refinement Search

We iteratively try to improve the solutionWe iteratively try to improve the solution
Consider all states laid out on the Consider all states laid out on the
surface of a landscapesurface of a landscape
The notion of local and global optimaThe notion of local and global optima

Two main approachesTwo main approaches
Hill climbing / Gradient descentHill climbing / Gradient descent
Simulated annealingSimulated annealing

15CSE, IIT CSE, IIT KharagpurKharagpur

Hill Climbing / Gradient DescentHill Climbing / Gradient Descent

Makes moves which monotonically Makes moves which monotonically
improve the quality of solutionimprove the quality of solution
Can settle in a local optimaCan settle in a local optima

RandomRandom--restart hill climbingrestart hill climbing

16CSE, IIT CSE, IIT KharagpurKharagpur

Simulated AnnealingSimulated Annealing
Let T denote the temperature. Initially T is high. Let T denote the temperature. Initially T is high.
During iterative refinement, T is gradually During iterative refinement, T is gradually
reduced to zero.reduced to zero.

1.1. Initialize TInitialize T
2.2. If T=0 return current stateIf T=0 return current state
3.3. Set next = a randomly selected Set next = a randomly selected succsucc of currentof current
4.4. ∆∆E = Val[next] E = Val[next] –– Val[current]Val[current]
5.5. If If ∆∆E > 0 then Set current = nextE > 0 then Set current = next

6.6. Otherwise Set current = next with Otherwise Set current = next with probprob ee∆∆E/TE/T

7.7. Update T as per schedule and Go To Step 2.Update T as per schedule and Go To Step 2.

	Heuristic Search: A* and beyond
	Results on A*
	Results on A*
	Results on A*
	Monotone Heuristics
	Pathmax
	Inadmissible heuristics
	Iterative Deepening A* (IDA*)
	Iterative Deepening A*: bounds
	Memory bounded A*: MA*
	Multi-Objective A*: MOA*
	Iterative Refinement Search
	Hill Climbing / Gradient Descent
	Simulated Annealing

