Learning

Course: CS40022 Instructor: Dr. Pallab Dasgupta

Department of Computer Science & Engineering Indian Institute of Technology Kharagpur

Paradigms of learning

Supervised Learning

- Both inputs and outputs are given
- The outputs are typically provided by a friendly *teacher*.

Reinforcement Learning

 The agent receives some evaluation of its actions (such as a fine for stealing bananas), but is not told the correct action (such as how to buy bananas).

Paradigms of learning

Unsupervised Learning

 The agent can learn relationships among its percepts, and the trend with time

Decision Trees

A decision tree takes as input an object or situation described by a set of properties, and outputs a yes/no "decision".

Decision: Whether to wait for a table at a restaurant.

- 1. Alternate: whether there is a suitable alternative restaurant
- 2. Lounge: whether the restaurant has a lounge for waiting customers
- 3. Fri/Sat: true on Fridays and Saturdays

Decision Trees

- 4. Hungry: whether we are hungry
- 5. *Patrons*: how many people are in it (None, Some, Full)
- 6. Price: the restaurant's rating $(\star, \star\star, \star\star)$
- 7. Raining: whether it is raining outside
- 8. Reservation: whether we made a reservation
- 9. Type: the kind of restaurant (Indian, Chinese, Thai, Fastfood)
- *10. WaitEstimate*: 0-10 mins, 10-30, 30-60, >60.

Sample Decision Tree

Decision Tree Learning Algorithm

Function DTreeL(samples, attributes, default) if *samples* is empty then return *default* else if all samples have the same classification then return the classification else if attributes is empty then return Majority-Value(samples) else best ← ChooseAttrib(attributes, samples) *tree* \leftarrow a new dtree with root test *best*

DTreeL Algorithm (contd..)

for each value v_i of *best* do $samples_i \leftarrow \{ members of samples \}$ with *best* = v_i } subtree \leftarrow DTreeL(samples_i, attributes – best. Majority-Value(samples)) add a branch to *tree* with label v_i and subtree subtree end

return tree

Neural Networks

 A neural network consists of a set of nodes (neurons/units) connected by links
Each link has a numeric weight

Each unit has:

- a set of input links from other units,
- ◆ a set of output links to other units,

a current activation level, and

 an activation function to compute the activation level in the next time step.

Basic definitions

Basic definitions

The total weighted input is the sum of the input activations times their respective weights:

In each step, we compute: $a_i \leftarrow g(in_i) = g(\sum_i W_{j,i}a_j)$

Learning in Single Layer Networks

W_{i.i}

 O_i

• If the output for a output unit is O, and the correct output should be T, then the error is given by: Err = T - O

•The weight adjustment rule is: $W_j \leftarrow W_j + \alpha \ge I_j \ge Err$ where α is a constant called the learning rate

l_i

Learning in Single Layer Networks

- This method is unable to learn all types of functions
 - can learn only linearly separable functions
- Used in competitive learning

Two-layer Feed-Forward Network

CSE, IIT Kharagpur

Back-Propagation Learning

• $Err_i = (T_i - O_i)$ is the error at the output node

The weight update rule for the link from unit j to output unit i is:

 $W_{j,i} \leftarrow W_{j,i} + \alpha \ge a_j \ge Err_i \ge g'(in_i)$ where g' is the derivative of the activation function g.

Back-Propagation Learning

Let $\Delta_i = \operatorname{Err}_i g'(in_i)$. Then we have:

$$W_{j,i} \leftarrow W_{j,i} + \alpha \times a_j \times \Delta_i$$

CSE, IIT Kharagpur

Error Back-Propagation

- For updating the connections between the inputs and the hidden units, we need to define a quantity analogous to the error term for the output nodes
 - ◆ Hidden node j is responsible for some fraction of the error ∆_i each of the output nodes to which it connects

Error Back-Propagation

 So, the Δ_i values are divided according to the strength of the connection between the hidden node and the output node, and propagated back to provide the Δ_j values for the hidden layer

$\Delta_{j} = g'(in_{j})\sum_{i} W_{j,i}\Delta_{i}$

Error Back-Propagation

The weight update rule for weights between the inputs and the hidden layer is:

$$\mathsf{W}_{\mathsf{k},\mathsf{j}} \leftarrow \mathsf{W}_{\mathsf{k},\mathsf{j}} + \alpha \times \mathsf{I}_{\mathsf{k}} \times \Delta_{\mathsf{j}}$$

The theory

The total error is given by:

$$\begin{split} \mathsf{E} &= \frac{1}{2} \sum_{i} \left(\mathsf{T}_{i} - \mathsf{O}_{i} \right)^{2} \quad = \quad \frac{1}{2} \sum_{i} \left(\mathsf{T}_{i} - \mathsf{g} \left(\sum_{j} \mathsf{W}_{j,i} \mathsf{a}_{j} \right) \right)^{2} \\ &= \frac{1}{2} \sum_{i} \left(\mathsf{T}_{i} - \mathsf{g} \left(\sum_{j} \mathsf{W}_{j,i} \left(\sum_{k} \mathsf{W}_{k,j} \mathsf{I}_{k} \right) \right) \right)^{2} \end{split}$$

The theory

Only one of the terms in the summation over i and j depends on a particular W_{j,i}, so all other terms are treated as constants with respect to W_{j,i}

$$\frac{\partial E}{\partial W_{j,i}} = -a_j (T_i - O_i) g' \left(\sum_j W_{j,i} a_j \right) = -a_j (T_i - O_i) g'(in_i) = -a_j \Delta_i$$

Similarly:
$$\frac{\partial E}{\partial W_{k,j}} = -I_k \Delta_j$$