
Dept. of CSE, IIT KGP

Arrays- II
CS10001: Programming & Data Structures

Pallab Dasgupta
Dept. of Computer Sc. & 
Engg.,
Indian Institute of 
Technology Kharagpur



Dept. of CSE, IIT KGP

Reading Array Elements

/* Read in student midterm and final grades and store them in two arrays*/

#define MaxStudents 100

int midterm[MaxStudents], final[MaxStudents];

int NumStudents ;     /* actual no of students */

int i, done, Smidterm, Sfinal;

printf (“Input no of students :”);

scanf(“%d”, &NumStudents) ;

if (NumStudents > MaxStudents)

printf (“Too many students”) ;

else

for (i=0; i<NumStudents; i++)

scanf(“%d%d”, &midterm[i], &final[i]);



Dept. of CSE, IIT KGP

Reading Arrays - II
/* Read in student midterm and final grades and store them in 2 arrays */

#define MaxStudents 100

int midterm[MaxStudents], final[MaxStudents];

int NumStudents ;     /* actual no of students */

int i, done, Smidterm, Sfinal;

done=FALSE; NumStudents=0;

while (!done) {

scanf(“%d%d”, &Smidterm, &Sfinal);

if (Smidterm !=-1 || NumStudents>=MaxStudents)

done = TRUE;

else  {

midterm[NumStudents] = Smidterm;

final[NumStudents] = Sfinal;

NumStudents++;

}

}



Dept. of CSE, IIT KGP

Size of an array

• How do you keep track of the number of elements in 
the array ?

– 1. Use an integer to store the current size of the array.

#define MAX 100

int  size;

float cost[MAX] ; 
– 2. Use a special value to mark the last element in an array. If 

10 values are stored, keep the values in cost[0], ... , cost[9], 
have cost[10] = -1

– 3. Use the 0th array element to store the size (cost[0]), and 
store the values in cost[1], ... , cost[cost[0]]



Dept. of CSE, IIT KGP

Add an element to an array

1. cost[size] = newval; size++;

2. for (i=0; cost[i] != -1; i++) ;
cost[i] = newval;   

cost[i+1] = -1;

3. cost[0]++;   
cost[cost[0]] = newval;



Dept. of CSE, IIT KGP

Address vs. Value

• Each memory cell has an address associated with it.
• Each cell also stores some value.

• Don’t confuse the address referring to a memory 
location with the value stored in that location.

23 42  ... ...
101 102 103 104 105 ...



Dept. of CSE, IIT KGP

Values vs Locations

• Variables name memory locations, which hold values.

32
x

1024:

address name

value

New Type : Pointer



Dept. of CSE, IIT KGP

Pointers

• A pointer is just a C variable whose value is the 
address of another variable!

• After declaring a pointer:

int *ptr;
ptr doesn’t actually point to anything yet.  We can 
either:

– make it point to something that already exists, or
– allocate room in memory for something new that it will 

point to… (next time)



Dept. of CSE, IIT KGP

Pointer

32
x

1024:

int x;

int ∗ xp ;

1024
xp

xp = &x ;

address of x

pointer to int

∗xp = 0; /* Assign 0 to x */
∗xp = ∗xp + 1; /* Add 1 to x */

Pointers Abstractly

int x;
int * p;
p=&x;
...
(x == *p)    True 
(p == &x)   True



Dept. of CSE, IIT KGP

Pointers

• Declaring a pointer just allocates space to hold the 
pointer – it does not allocate something to be 
pointed to!

• Local variables in C are not initialized, they may 
contain anything.



Dept. of CSE, IIT KGP

Pointer Usage Example

Memory and Pointers:0xffff ffff

0x0000 0000

0xcafe 0000

0xbeef 0000

0x0000 0004



Dept. of CSE, IIT KGP

Pointer Usage Example

Memory and Pointers:

int *p, v;

0xXXXXXXXX

0xffff ffff

0x0000 0000

0xcafe 0000

0xXXXXXXXX 0xbeef 0000

0x0000 0004

p:

v:



Dept. of CSE, IIT KGP

Pointer Usage Example

Memory and Pointers:

int *p, v;

p = &v;
0xXXXXXXXX

0xffff ffff

0x0000 0000

0xcafe 0000

0xcafe 0000 0xbeef 0000

0x0000 0004

p:

v:



Dept. of CSE, IIT KGP

Pointer Usage Example

Memory and Pointers:

int *p, v;

p = &v;

v = 0x17;0x0000 0017

0xffff ffff

0x0000 0000

0xcafe 0000

0xcafe 0000 0xbeef 0000

0x0000 0004

p:

v:



Dept. of CSE, IIT KGP

Pointer Usage Example

Memory and Pointers:

int *p, v;

p = &v;

v = 0x17;

*p = *p + 4;

V = *p + 4

0x0000 001b

0xffff ffff

0x0000 0000

0xcafe 0000

0xcafe 0000 0xbeef 0000

0x0000 0004

p:

v:



Dept. of CSE, IIT KGP

Arrays and pointers

• An array name is an address, or a pointer value.

• Pointers as well as arrays can be subscripted.

• A pointer variable can take different addresses as 
values.

• An array name is an address, or pointer, that is fixed.

It is a CONSTANT pointer to the first element.



Dept. of CSE, IIT KGP

Arrays

• Consequences:
–ar is a pointer
–ar[0] is the same as *ar
–ar[2] is the same as *(ar+2)
– We can use pointer arithmetic to access arrays more 

conveniently.

• Declared arrays are only allocated while the scope 
is valid

char *foo() {
   char string[32]; ...;
   return string;
} is incorrect



Dept. of CSE, IIT KGP

Arrays

• Array size n; want to access from 0 to n-1, so you 
should use counter AND utilize a constant for 
declaration & incr

– Wrong
int i, ar[10];
for(i = 0; i < 10; i++){ ... }

– Right 
#define ARRAY_SIZE 10
int i, a[ARRAY_SIZE];
for(i = 0; i < ARRAY_SIZE; i++){ ... }

• Why? SINGLE SOURCE OF TRUTH
– You’re utilizing indirection and avoiding maintaining two 

copies of the number 10



Dept. of CSE, IIT KGP

Arrays

• Pitfall: An array in C does not know its own length, 
& bounds not checked!

– Consequence: We can accidentally access off the end of 
an array.

– Consequence: We must pass the array and its size to a 
procedure which is going to traverse it.

• Segmentation faults and bus errors:
– These are VERY difficult to find; 

be careful!
– You’ll learn how to debug these in lab…



Dept. of CSE, IIT KGP

Arrays  In Functions

• An array parameter can be declared as an array or a 
pointer; an array argument can be passed as a pointer.

– Can be incremented

int strlen(char s[])
{
    

}

int strlen(char *s)
{

}



Dept. of CSE, IIT KGP

Arrays and pointers

int a[20], i, *p;
• The expression a[i] is equivalent to *(a+i)

• p[i] is equivalent to *(p+i)

• When an array is declared the compiler allocates a 
sufficient amount of contiguous space in memory. 
The base address of the array is the address of a[0].

• Suppose the system assigns 300 as the base 
address of a. a[0], a[1], ...,a[19] are allocated 300, 
304, ..., 376.



Dept. of CSE, IIT KGP

Arrays and pointers

#define N 20

int a[2N], i, *p, sum;

• p = a; is equivalent to p = *a[0];
• p is assigned 300.
• Pointer arithmetic provides an alternative to array indexing.
• p=a+1; is equivalent to p=&a[1]; (p is assigned 304)

for (p=a; p<&a[N]; ++p)
sum += *p ;

p=a;
for (i=0; i<N; ++i)

sum += p[i] ;
for (i=0; i<N; ++i)

sum += *(a+i) ;



Dept. of CSE, IIT KGP

Arrays and pointers

int a[N];

• a is a constant pointer.

• a=p; ++a; a+=2;  illegal



Dept. of CSE, IIT KGP

Pointer arithmetic and element size

double * p, *q ;
• The expression p+1 yields the correct machine address for the 

next variable of that type.
• Other valid pointer expressions:

– p+i
– ++p

– p+=i
– p-q /* No of array elements between p and q */



Dept. of CSE, IIT KGP

Arrays as parameters of functions

• An array passed as a parameter is not copied

• An array name is a constant whose value serves as a 
reference to the first (index 0) item in the array.



Dept. of CSE, IIT KGP

Arrays as parameters of functions

– Since constants cannot be changed, assignments 
to array variables are illegal.

– Only the array name is passed as the value of a 
parameter, but the name can be used to change 
the array’s contents.

– Empty brackets [] are used to indicate that the 
parameter is an array. The no of elements 
allocated for the storage associated with the array 
parameter does not need to be part of the array 
parameter.



Dept. of CSE, IIT KGP

Pointer Arithmetic 

• Since a pointer is just a mem address, we can add to it 

to traverse an array.

•p+1 returns a ptr to the next array elt.

•(*p)+1 vs *p++ vs *(p+1) vs *(p)++ ?

– x = *p++ ⇒  x = *p ; p =  p + 1;

– x = (*p)++ ⇒  x = *p ; *p = *p + 1;

• What if we have an array of large structs (objects)?

– C takes care of it: In reality, p+1 doesn’t add 1 to the memory 

address, it adds the size of the array element.



Dept. of CSE, IIT KGP

 Pointer Arithmetic 

• We can use pointer arithmetic to “walk” through 
memory:

° C automatically adjusts the pointer by 
the right amount each time (i.e., 1 byte 
for a char, 4 bytes for an int, etc.)

void copy(int *from, int *to, int n) {
    int i;
    for (i=0; i<n; i++) {
        *to++ = *from++;
    }
}



Dept. of CSE, IIT KGP

int get(int array[], int n)
{
    return  (array[n]);

/* OR */
    return *(array + n);
}

Pointer Arithmetic 

• C knows the size of the thing a pointer points to – every 
addition or subtraction moves that many bytes.

• So the following are equivalent:



Dept. of CSE, IIT KGP

Pointer Arithmetic 

• Array size n; want to access from 0 to n-1 
– test for exit by comparing to address one element past the 

array

 int ar[10], *p, *q, sum = 0;
...
p = ar; q = &(ar[10]);
while (p != q)
 /* sum = sum + *p; p = p + 1; */

sum += *p++;

– Is this legal?

• C defines that one element past end of array must be 
a valid address, i.e., not cause an bus error or 
address error



Dept. of CSE, IIT KGP

Array operations

#define MAXS 100
int insert (int[], int, int, int) ;
int delete (int[], int, int) ;
int getelement (int[], int, int) ;
int readarray (int[], int) ;
main () {

int a[MAXS];
int size;
size = readarray (a, 10) ;
size = insert (a, size, 4, 7) ;
x = getelement (a, size, 3) ;
size = delete (a, size, 3) ;

}



Dept. of CSE, IIT KGP

Array operations

#define MAXS 100
int insert (int[], int, int, int) ;
int delete (int[], int, int) ;
int getelement (int[], int, int) ;
int readarray (int[], int) ;
main () {

int a[MAXS];
int size;
size = readarray (a, 10) ;
size = insert (a, size, 4, 7) ;
x = getelement (a, size, 3) ;
size = delete (a, size, 3) ;

}

int readarray (int x[], int size) {
      int i;
      for (i=0; i<size; i++)

scanf(“%d”, &x[i]) ;
      return size;
}

int getelement (int x[], int size, int pos){
     if (pos <size) return x[pos] ;
     return -1;
}

int insert (int x[], int size, int pos. int val){
     for (k=size; k>pos; k--)

x[k] = x[k-1] ;
     x[pos] = val ;
     return size+1;
}



Dept. of CSE, IIT KGP

void reverse (int x[], 

                  int size)  {

}

int findmax (int x[], int size) 
{

}



Dept. of CSE, IIT KGP

void reverse (int x[], int size)  {

     int i;

     for (i=0; i< (size/2); i++)

temp = x[size-i-1] ;

x[size-1-1] = x[i] ;

x[i] = temp;

}

int findmax (int x[], int size) {

     int i, max;

 max = x[0];

     for (i=1; i< size; i++)

if (x[i] > max)

      max = x[i] ;

 return max;

}



Dept. of CSE, IIT KGP

Two Dimensional Arrays

• We have seen that an array variable can store a list of 
values.

• Many applications require us to store a table of values.

75 82 90 65 76

68 75 80 70 72

88 74 85 76 80

50 65 68 40 70

Student 1

Student 2

Student 3

Student 4

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5



Dept. of CSE, IIT KGP

Contd.

• The table contains a total of 20 values, five in each line.
– The table can be regarded as a matrix consisting of four rows 

and five columns.

• C allows us to define such tables of items by using 
two-dimensional arrays.



Dept. of CSE, IIT KGP

Declaring 2-D Arrays

• General form:
   type   array_name [row_size][column_size];

• Examples:
   int  marks[4][5];

   float  sales[12][25];

   double  matrix[100][100];



Dept. of CSE, IIT KGP

Accessing Elements of a 2-D Array

• Similar to that for 1-D array, but use two indices.
– First indicates row, second indicates column.
– Both the indices should be expressions which evaluate to 

integer values.

• Examples:
   x[m][n] = 0;

   c[i][k] += a[i][j] * b[j][k];

   a = sqrt (a[j*3][k]); 



Dept. of CSE, IIT KGP

How is a 2-D array is stored in memory?

• Starting from a given memory location, the elements 
are stored row-wise in consecutive memory locations.

• x: starting address of the array in memory
• c: number of columns
• k: number of bytes allocated per array element

– a[i][j]   is allocated memory location at  

                   address  x + (i * c + j) * k

a[0]0] a[0][1] a[0]2] a[0][3] a[1][0] a[1][1] a[1][2] a[1][3] a[2][0] a[2][1] a[2][2] a[2][3] 

Row 0 Row 1 Row 2



Dept. of CSE, IIT KGP

How to read the elements of a 2-D array?

• By reading them one element at a time
    for  (i=0; i<nrow; i++)

        for  (j=0; j<ncol; j++)

            scanf  (“%f”, &a[i][j]);

• The ampersand (&) is necessary.
• The elements can be entered all in one line or in 

different lines.



Dept. of CSE, IIT KGP

How to print the elements of a 2-D array?

• By printing them one element at a time.
            for  (i=0; i<nrow; i++) 

                for  (j=0; j<ncol; j++)

                    printf  (“\n %f”, a[i][j]);
– The elements are printed one per line.

 for  (i=0; i<nrow; i++) 

                for  (j=0; j<ncol; j++)

                    printf  (“%f”, a[i][j]);
– The elements are all printed on the same line.



Dept. of CSE, IIT KGP

Contd.

           for  (i=0; i<nrow; i++)

           {

               printf  (“\n”);

               for  (j=0; j<ncol; j++)

                   printf (“%f   ”, a[i][j]);

            }
– The elements are printed nicely in matrix form.



Dept. of CSE, IIT KGP

Example: Matrix Addition

#include  <stdio.h>
int main() {
    int  a[100][100], b[100][100],
           c[100][100], p, q, m, n;

    scanf (“%d %d”, &m, &n); 

    for  (p=0; p<m; p++)
        for  (q=0; q<n; q++)
           scanf (“%d”, &a[p][q]);

    for  (p=0; p<m; p++)
        for  (q=0; q<n; q++)
           scanf (“%d”, &b[p][q]);

    for  (p=0; p<m; p++)
        for  (q=0; q<n; q++)
            c[p]q] = a[p][q] + b[p][q];

    for  (p=0; p<m; p++)  {
         printf  (“\n”);

  for  (q=0; q<n; q++)

       printf (“%f   ”, a[p][q]);

     }

}



Dept. of CSE, IIT KGP

Passing Arrays to Function

• Array element can be passed to functions as ordinary 
arguments.

• IsFactor (x[i], x[0]) 
• sin (x[5])



Dept. of CSE, IIT KGP

Passing Entire Array to a Function

• An array name can be used as an argument to a function.

– Permits the entire array to be passed to the function.

– The way it is passed differs from that for ordinary variables.

• Rules:

– The array name must appear by itself as argument, without 
brackets or subscripts.

– The corresponding formal argument is written in the same 
manner.

• Declared by writing the array name with a pair of empty 
brackets.



Dept. of CSE, IIT KGP

Whole array as Parameters

#define ASIZE 5
float average (int a[]) {

int i, total=0;
for (i=0; i<ASIZE; i++)

total = total + a[i];
return ((float) total / (float) ASIZE);

}

main ( )  {
int x[ASIZE] ; float x_avg; 

      x = {10, 20, 30, 40, 50}
x_avg = average (x) ;

}



Dept. of CSE, IIT KGP

Contd.

int main()
{
    int  n;
    float   list[100], avg;
    :
    avg  =  average (n, list);
    :
}

float  average  (a, x)
int  a;
float  x[];
{
    :
    sum = sum + x[i];
}

We don’t need to write 
the array size. It works 
with arrays of any size.



Dept. of CSE, IIT KGP

Arrays as Output Parameters

void VectorSum (int a[], int b[], int vsum[], int length) {

int i;

for (i=0; i<length; i=i+1)

vsum[i] = a[i] + b[i] ;

}

int main (void) {

int x[3] = {1,2,3}, y[3] = {4,5,6}, z[3];

VectorSum (x, y, z, 3) ;

PrintVector (z, 3) ;

}

void PrintVector (int a[], int length) {

int i;

for (i=0; i<length; i++) printf (“%d “, a[i]);

}



Dept. of CSE, IIT KGP

The Actual Mechanism

• When an array is passed to a function, the values of the 
array elements are not passed to the function.
– The array name is interpreted as the address of the first 

array element.
– The formal argument therefore becomes a pointer to the 

first array element.
– When an array element is accessed inside the function, 

the address is calculated using the formula stated 
before.

– Changes made inside the function are thus 
also reflected in the calling program.



Dept. of CSE, IIT KGP

Contd.

• Passing parameters in this way is called 

        call-by-reference.
• Normally parameters are passed in C using

        call-by-value.

• Basically what it means?
– If a function changes the values of array elements, then these 

changes will be made to the original array that is passed to the 
function.

– This does not apply when an individual element is passed on 
as argument.



Dept. of CSE, IIT KGP

Passing 2-D Arrays

• Similar to that for 1-D arrays.
– The array contents are not copied into the function.
– Rather, the address of the first element is passed.

• For calculating the address of an element in a 2-D 
array, we need:
– The starting address of the array in memory.
– Number of bytes per element.
– Number of columns in the array.

• The above three pieces of information must be known 
to the function.



Dept. of CSE, IIT KGP

Example Usage

#include  <stdio.h>

main()
{
    int  a[15][25],  b[15]25];
    :
    :
    add (a, b, 15, 25);
    :
}

void  add (x, y, rows, cols)
int  x[][25], y[][25];
int  rows, cols;
{
    :
}

We can also write

int  x[15][25], y[15][25];


	Arrays- II CS10001: Programming & Data Structures
	Reading Array Elements
	Reading Arrays - II
	Size of an array
	Add an element to an array
	Address vs. Value
	Values vs Locations
	Pointers
	Pointer
	Slide 10
	Pointer Usage Example
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Arrays and pointers
	Arrays
	Slide 18
	Slide 19
	Arrays  In Functions
	Slide 21
	Slide 22
	Slide 23
	Pointer arithmetic and element size
	Arrays as parameters of functions
	Slide 26
	Pointer Arithmetic 
	 Pointer Arithmetic 
	Slide 29
	Slide 30
	Array operations
	Slide 32
	Slide 33
	Slide 34
	Two Dimensional Arrays
	Contd.
	Declaring 2-D Arrays
	Accessing Elements of a 2-D Array
	How is a 2-D array is stored in memory?
	How to read the elements of a 2-D array?
	How to print the elements of a 2-D array?
	Slide 42
	Example: Matrix Addition
	Passing Arrays to Function
	Passing Entire Array to a Function
	Whole array as Parameters
	Slide 47
	Arrays as Output Parameters
	The Actual Mechanism
	Slide 50
	Passing 2-D Arrays
	Example Usage

