INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Date:FN / ANTime:3 hrsFull marks:80No. of students:48Autumn End Semester,2006Dept:Comp.Sc & Engg.Sub No:CS40005 / CS60047B.Tech / M.Tech (Elective)Sub Name:Graph TheoryInstructions:All questions in Part-1 must be answered on the Question paper.
Answer any three from the questions in Part-2.

Part-1: Compulsory (3-questions)- Answer all questions in this part. Write in the boxes.

- 1. Answer the following questions (no justifications are required): [10 X 2 = 20 marks]
 - (a) G is a tournament with *n* vertices and *x* is a king of G. What is the maximum possible distance from *x* to other vertices of G? Ans:

(b) What is the minimum number of components for graphs having n vertices and k edges?

Ans:

(c) Count the number of spanning trees of the graph shown in Fig 1.

Ans:

(d) Count the number of ways in which the graph shown in Fig 1 can be colored with 6 colors. Hint: *Use chromatic recurrence.*

Ans:

(e) Suppose M_1 and M_2 are 1-factors of K_n and let $H = M_1 \Delta M_2$ be the symmetric difference between M_1 and M_2 . If $M_1 \neq M_2$ then what is the value of $\Delta(H)$?

Ans:

(f) G and H are simple graphs having two components each. What is the maximum number of components in the complement of G+H?

Ans:

(g) Suppose T is a tree and $\chi(T;3) = 24$. How many vertices does T have?

		Ans:						
	(h) For what values of <i>n</i> is the compliment of $K_n + K_n$ planar?							
		Ans:						
	(i)	A graph G having <i>n</i> vertices and <i>e</i> edges has a maximum matching of size k (that is, $\alpha'(G) = k$). Then what is the size of the minimum vertex cover of the line graph, L(G), of G?						
		Ans:						
	(j)	$\chi(G_1) = k_1$ and $\chi(G_2) = k_2$. What are the values of $\chi(G_1 + G_2)$ and $\chi(G_1 \vee G_2)$?						
		Ans:						
2.	Sta	te the following: [1 X 5 = 5 marks]						
	(a)	Kuratowski's Theorem:						
	(b)	Euler's Formula:						
	(c)	Cayley's Formula:						
	(d)	Four color theorem:						

(e) <u>Menger's Theorem</u>:

3. Indicate whether the following statements are True/ False. No justification is required.

[1 X 10 = 10 marks]

(a)	If G is non-planar, then $\chi(G) > 4$	
(b)	A planar graph has a cut vertex iff its dual has a cut vertex.	
(c)	The complement of the 3-dimensional hypercube Q_3 is non-planar.	
(d)	An undirected graph G has an strongly connected orientation only if G is 2-connected	
(e)	The complement of a color critical graph cannot be color critical.	
(f)	G is isomorphic to its line graph L(G) iff G is 2-regular.	
(g)	A graph which is both Hamiltonian and Eulerian and has a chromatic number 2 must be planar.	
(h)	15 people cannot shake hands in a way that each person shakes hand with 5 distinct people.	
(i)	Finding the minimum vertex cover of a bipartite graph is a NP-hard problem	
(j)	Two non-isomorphic graphs can have the same line graph.	

Roll Number:

Name:

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Instructions: All questions in Part-1 must be answered on the Question paper. Answer any three from the questions in Part-2.									
B.Tech / M.Tech (Elective) Sub Name: Graph Theo									
Autumn End Se	mester, 2	2006	Dept: Comp.	Sc & Engg.	Sub No: CS40005 / CS60047				
Date:Fl	I/AN	Time:	3 hrs	Full marks: 80	No. of students: 48				

Part-2: Answer any three. All parts of a Question must be answered in the same place

4. [Flows]

[8 + 7 = 15 marks]

- (a) A flow x is even if for every edge (*i*,*j*), the flow X_{ij} through the edge is an even number; it is odd if for every edge (*i*,*j*), X_{ij} is an odd number. Either prove that each of the following claims are true or give a counterexample for them.
 - (i) If all edge capacities are even, then the graph has an even maximum flow
 - (ii) If all edge capacities are odd, then the graph has an odd maximum flow
- (b) Use the augmenting path algorithm to establish a maximum flow from vertex-1 to vertex-7 in the graph shown in Fig 2. Show the residual network at the end of each augmentation and specify the minimum cut that the algorithm obtains on termination.
- 5. [Matching]

[8 + 7 = 15 marks]

- (a) Suppose X,Y are the partite sets of a bipartite graph G. Let *m* be the smallest degree in X and *M* be the largest degree in Y. Prove that if *m* ≥ *M*, then G has a matching which saturates X. Hint: Use Hall's condition.
- (b) Define the circulation problem. Formulate the bipartite prefect matching problem as a circulation problem. Hint: *Given a bipartite graph, G, show how we may construct another graph which has a feasible circulation iff G has a perfect matching.*

6. [Planarity]

[9 + 6 = 15 marks]

(a) Show that any planar graph G with $\delta(G) \ge 5$ must have at least 12 vertices.

- (b) Draw a non-planar graph G with at most 7 vertices that satisfies two properties, namely that G has a separating 2-set, S = {x, y}, and that each S-lobe of G is planar.
- 7. [Colorings]

[9 + 6 = 15 marks]

- (a) In the map coloring problem we are required to color the countries demarcated by borders so that neighboring countries (that is, ones sharing a common border) cannot have the same color.
 - (i) What is the worst case number of colors required to color a map?
 - (ii) In the map coloring problem we assumed that neighboring countries should share some positive length of border. Suppose we now call two countries to be neighbors even if their borders touch a single common point. Does this new definition affect the worst case number of colors required? Justify.
 - (iii) In the map coloring problem we assumed that a country consists of a single region. If we drop this restriction (thereby allowing a country to have many disjoint regions) and insist that all regions of a country must receive the same color, then does it affect the worst case number of colors required? Justify.
- (b) Draw a small graph and produce an ordering of its vertices for which Greedy coloring fails to use the minimum number of colors.
- 8. [Paths and Connectivity] [10 + 5 = 15 marks]
 - (a) A farmer wishes to transport a truckload of eggs from one city to another city through a given road network. The truck will incur a certain amount of breakage on each road segment: let w_{ij} denote the fraction of the eggs broken if the truck traverses the road segment (*i*,*j*). How should the truck be routed to minimize the total breakage? Formulate this problem as an instance of the standard shortest path problem (No algorithm required). Hint: Given an instance of the farmer's problem, show how we may create a graph such that the shortest path of the graph yields a solution to the farmer's problem. Clearly define the vertices, edges and edge costs of this graph.
 - (b) What is a common system of distinct representatives (CSDR)? State a necessary and sufficient condition for two families of sets, A = {A₁, ..., A_m} and B = {B₁, ..., B_m}, to have a CSDR. (No proof is required)