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Sample Analysis Task

 Logic Circuit Comparison
■ Do circuits compute identical function?

● Basic task of formal hardware verification
● Compare new design to “known good” design
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Solution by Combinatorial Search

 Satisfiability Formulation
■ Search for input assignment giving 

different outputs

 Branch & Bound
■ Assign input(s)
■ Propagate forced values
■ Backtrack when cannot succeed
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 Challenge

■ Must prove all assignments fail

■ Typically explore significant 
fraction of inputs

■ Exponential time complexity
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Another Approach

 Generate Complete Representation of Circuit Function
■ Compact, canonical form

■ Functions equal if and only if representations identical
■ Never enumerate explicit function values
■ Exploit structure & regularity of circuit functions
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Truth Table Decision Tree

■ Vertex represents decision
■ Follow green (dashed) line for value 0
■ Follow red (solid) line for value 1
■ Function value determined by leaf value.
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Binary Decision Diagram

 DAG representation of Boolean functions 

 Operations on Boolean functions can be implemented as 
graph algorithms on BDDs

 Tasks in many problem domains can be expressed entirely 
in terms of BDDs 

 BDDs have been useful in solving problems that would not 
be possible by more traditional techniques.
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Binary Decision Diagram (BDD)

 Each non-terminal vertex v is labeled by a variable var(v) and 
has arcs directed toward two children 
■ lo(v) (dotted line) corresponding to the case where the 

variable is assigned 0
■ hi(v) (solid line) where the variable is assigned 1

 Each terminal vertex is labeled as 0 or 1

 For a given assignment to the variables, the value of the 
function is determined by tracing the path form root to a 
terminal vertex, following the branches appropriately
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BDDs and Shannon’s Expansion

 Shannon’s Expansion: f = xfx + x′fx′

 BDD represents recursive application of Shannon’s expansion

fx′ fx

x

f
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■ Assign arbitrary total ordering to variables
● e.g.  x1 < x2 < x3

■ Variables must appear in ascending order along all 
paths

OK Not OK

Properties
 No conflicting variable assignments along path
 Simplifies manipulation 

Ordered Binary Decision Diagram (OBDD)
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Merge equivalent leaves

0 0 0

Eliminate all but one terminal 
vertex with a given label and redirect 

all arcs into the eliminated vertices
to the remaining

Reduction Rule #1
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If non-terminal vertices u and v have
var(u) = var(v), lo(u) = lo(v) and
hi(u) = hi(v), eliminate one of them
and redirect all incoming arcs
to the other 

Reduction Rule #2
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Eliminate Redundant Tests
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If non-terminal vertex v has
lo(v) = hi(v), eliminate v and 

redirect all incoming 
arcs to lo(v)

Reduction Rule #3
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Initial Graph Reduced Graph

 Canonical representation of Boolean function

 For the same variable ordering, two functions equivalent if and only if 
graphs isomorphic

● Can be tested in linear time

(x1+x2)·x3

Reduced OBDD (ROBDD)
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Constants
Unique unsatisfiable function

Unique tautology1

0

Variable

Treat variable
as function

Odd Parity

Linear
representation

Typical Function
 (x1 ∨ x2 ) ∧ x4

 No vertex labeled x3

 independent of x3

 Many subgraphs shared 

Some Example Functions
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 Functions
■ All outputs of 4-bit adder
■ Functions of data inputs
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 Shared Representation
■ Graph with multiple roots
■ 31 nodes for 4-bit adder
■ 571 nodes for 64-bit adder

■ Linear Growth

Circuit Functions
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Good Ordering Bad Ordering

Linear Growth
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Effect of Variable Ordering on ROBDD Size
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Selecting a good Variable Ordering

 Intractable Problem
■ Even when problem represented as OBDD

 A good variable ordering should use
■ Local computability
■ Ordering based on power to control output

 Application-Based Heuristics
■ Exploit characteristics of application

● Ordering for functions of combinational circuit
● Traverse circuit graph depth-first from outputs to 

inputs
● Assign variables to primary inputs in order 

encountered
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Dynamic Variable Ordering

 Rudell, ICCAD ‘93

 Concept
■ Variable ordering changes as computation progresses

● Typical application involves long series of BDD 
operations

■ Proceeds in background, invisible to user

 Implementation
■ When approach memory limit, attempt to reduce

● Garbage collect unneeded nodes
● Attempt to find better order for variables

■ Simple, greedy reordering heuristics
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Choices

Dynamic Reordering By Sifting

■ Choose candidate variable
■ Try all positions in ordering

● Repeatedly swap with adjacent variable
■ Move to best position found
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Function Class Best Worst Ordering Sensitivity
ALU (Add/Sub) linear exponential High
Symmetric linear quadratic None
Multiplication exponential exponential Low

 General Experience
■ Many tasks have reasonable OBDD representations
■ Algorithms remain practical for up to 100,000 node OBDDs
■ Heuristic ordering methods generally satisfactory

Sample Function Classes
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BDD Operations

 Strategy
■ Represent data as set of OBDDs

● Identical variable orderings
■ Express solution method as sequence of symbolic operations
■ Implement each operation by OBDD manipulation

 Algorithmic Properties
■ Arguments are OBDDs with identical variable orderings.
■ Result is OBDD with same ordering.
■ “Closure Property”
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The APPLY Operation

 Given argument functions f and g, and a binary operator <op>, 
APPLY returns the function f <op> g

 Works by traversing the argument graphs depth first 

 Algebraic operations “commute” with the Shannon expansion 
for any variable x
■ f <op> g = x’ (f|x=0 <op> g|x=0 ) + x ((f|x=1 <op> g|x=1)
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The Apply Algorithm

 Consider a function f represented by a BDD with root vertex rf

 The restriction of f with respect to a variable x such that 
x ≤ var(rf) can be computed as :

f | x = b = rf ,         x < var(rf )

= lo(rf),    x = var (rf) and b = 0

= hi(rf),    x = var (rf) and b = 1

 The algorithm for APPLY utilizes the above restriction definition.



Dept. of Computer Science & Engineering, IIT Kharagpur 26

The Apply Algorithm

 Each evaluation step is identified by a vertex from each of the 
argument graphs

 Suppose functions f and g are represented by root vertices rf and rg

 If rf and rg are both terminal vertices, terminate and return an 
appropriately labeled terminal vertex e.g. (A4, B3) and (A5, B4)
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The Apply algorithm

 Let x be the splitting variable 

( x= min(var(rf) , var(rg))

 BDDs for (f|x=0 <op> g|x=0 ) and (f|x=1 <op> g|x=1 ) are computed by 
recursively evaluating the restrictions of f and g for value 0 and 
for value 1 
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Recursive Calls

Example

 Initial evaluation with vertices A1, B1 causes recursive 
evaluations with vertices A2, B2 and  A6, B5
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Apply operation

 Reaching a terminal with a dominant value (e.g 1 for OR, 0 for 
AND) terminates recursion and returns an appropriately labeled 
terminal (A5, B2 and A3, B4)

 Avoid multiple recursive calls on the same pair of arguments by 
a hash table (A3, B2 and A5, B2)
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Apply operation

 Each evaluation step returns a vertex in the generated graph

 Apply reduction before merging the result

 Complexity of operation : O(mf * mg) where mf and mg represent 
the number of vertices in the BDDs for f and g respectively
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Recursive Calls Without Reduction With Reduction

Example
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 Concept
■ Effect of setting function argument xi to constant k (0 or 1).
■ Also called Cofactor operation

k F 
xi –1

xi +1

xn 

x1

F [xi =k]
Fx equivalent to F [x = 1]
Fx equivalent to F [x = 0]

Restrict Operation
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Implementation

 Depth-first traversal

 Redirect any arc into vertex v having var(v) = x to 
point to hi(v) for x =1 and lo(v) for x = 0

 Complexity linear in argument graph size

Restriction Algorithm
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Argument F

Restriction Execution Example
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■ Express as combination of Apply and Restrict

■ Preserve closure property
●Result is an OBDD with the right variable 

ordering

■ Polynomial complexity
●Although can sometimes improve with special 

implementations

Derived Operations



Dept. of Computer Science & Engineering, IIT Kharagpur 36

xi –1

xi +1

xn 

x1

F ∃ ∃ xi F 

1 F 

0 F 

xi –1

xi +1

xn 

x1

xi –1

xi +1

xn 

x1

Variable Quantification

■ Eliminate dependency on some argument through 
quantification

■ Combine with AND for universal quantification.
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Digital Applications of BDDs

 Verification
■ Combinational equivalence  (UCB, Fujitsu, Synopsys, …)

■ FSM equivalence  (Bull, UCB, MCC,Colorado, Torino, …)

■ Symbolic Simulation (CMU, Utah)

■ Symbolic Model Checking (CMU, Bull, Motorola, …)

 Synthesis
■ Don’t care set representation  (UCB, Fujitsu, …)

■ State minimization  (UCB)

■ Sum-of-Products minimization (UCB, Synopsys, NTT)

 Test

■ False path identification  (TI)
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Some Popular BDD packages

 CUDD (Colorado University Decision Diagram)

 TUD BDD package (TUDD)

 BUDDY

 CMU BDD

Informations about the above BDD packages and some
more details can be found at http://www.bdd-portal.org/
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Finite State System Analysis

 Systems Represented as Finite State Machines

■ Analysis Tasks
■ State reachability
■ State machine comparison
■ Temporal logic model checking

 Traditional Methods Impractical for Large Machines

■ Polynomial in number of states
■ Number of states exponential in number of state variables.
■ Example: single 32-bit register has 4,294,967,296 states!
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Symbolic FSM Representation

■ Represent set of transitions as function δ(Old, New)

● Yields 1 if can have transition from state Old to state New

■ Represent as Boolean function
● Use variables for encoding states
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Nondeterministic FSM Symbolic Representation

o1,o2 encoded
old state

n1, n2 encoded
new state
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o1

1

n2

0

n1

o2

Symbolic FSM Representation
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Rstate 0/1δ
old state

new state
0/1

Given Compute

Initial
R0

=

Q0

Reachability Analysis

• Compute set of states reachable from initial state (Q0 = 00) 

• Represent as Boolean function R(S)
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R0

00

Breadth-First Reachability Analysis

■ Ri – set of states that can be reached in i transitions
■ Reach fixed point when Rn = Rn+1

● Guaranteed since finite state
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■ Ri +1 – set of states that can be reached within i +1 transitions
● Either in Ri 

● or single transition away from some element of Ri

Ri

δ

Ri

∃

Ri +1

old

new

Iterative Computation
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Example: Computing R1 from R0
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 Powerful Operations
■ Creating, manipulating, testing
■ Each step polynomial complexity

● Graceful degradation
■ Maintain “closure” property

● Each operation produces form suitable for further 
operations

 Generally Stay Small Enough
■ Especially  for digital circuit applications
■ Given good choice of variable ordering

 Weak Competition

What’s good about OBDDs ?
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 Doesn’t Solve All Problems
■ Can’t do much with multipliers
■ Some problems just too big
■ Weak for search problems

 Must be Careful
■ Choose good variable ordering
■ Some operations too hard

What’s not good about OBDDs?
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Zero Suppressed BDD’s - ZBDD’s

 ZBDD’s were invented by Minato to efficiently represent sparse
sets.  They have turned out to be extremely useful in implicit 
methods for representing primes (which usually are a sparse 
subset of all cubes).

 Different reduction rules.
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Zero Suppressed BDD’s - ZBDD’s

 ZBDD Reduction Rule:: eliminate all nodes where the then
node points to 0.  Connect incoming edges to else node

 For ZBDD, equivalent nodes can be shared as in case of 
BDDs.

0 1

ZBDD:
0

1

0 1

0
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x0 + 2x1 + 4x2

 Evaluating a MTBDD for a given variable assignment is similar 
to that in case of BDD

 Very inefficient for representing functions yielding values over 
a large range

0 1
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2 3

x0

x1

4 5

x0

6 7

x0

x1

x2

MTBDD- Multiterminal BDD



Dept. of Computer Science & Engineering, IIT Kharagpur 51

EVBDD – Edge value BDD

 EVBDDs can be used when the number of 
possible function values are too high for 
MTBDDs.

 Evaluating a EVBDD involves tracing a path 
determined by the variable assignment, 
summing the weights and the terminal node 
value

g

x2

4

2

x1

x0

0 1
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*BMD( Binary Moment Diagrams )

 Features 
■ Used for Word level simulation/verification
■ Canonical
■ Based on linear decomposition of a function

 Functional Decomposition :
f  = (1-x) f~x + (x) fx

= f~x + x ( fx - f~x) 
= f~x + x ( f.x )                

where f.x is the linear moment w.r.t.  x
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Representing *BMDs

 Graph :
■ Example

x1 x2 f

0 0 8

0 1 -12

1 0 10

1 1 -6

f = (1-x1)(1-x2)(8)+(1-x1)(x2)(-12)

+(x1)(1-x2)(10) + (x1)(x2)(-6)

= 8 - 20(x2) + 2(x1) + 4(x1*x2)
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Weights combine multiplicatively along path from root to leaf Rules :
 weights of 2 branches relatively prime 
 weight 0 allowed only for terminal vertices 
 if one edge has weight 0, the other has weight 1

x

y y

8 -202 4

x

yy

1-5 2

2

2

BMD

* BMD

Edge Weights ( *BMDs )
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