
Time Complexity

CS60001: Foundations of Computing Science

Pallab Dasgupta
Professor, Dept. of Computer Sc. & Engg.,

Indian Institute of Technology Kharagpur

Indian Institute of Technology Kharagpur Pallab Dasgupta

Measuring Complexity

 Definition

■ Let M be a deterministic Turing machine that halts on all inputs. The

running time or time complexity of M is the function f: NN, where f(n) is

the running time of M, we say that M runs in time f(n) and that M is an f(n)

time Turing machine. Customarily we use n to represent the length of the

input

 Complexity Analysis

■ Worst-case Analysis

● Longest running time of all inputs of a particular length

■ Average-case Analysis

● Average of all the running times of inputs of a particular length

2

Indian Institute of Technology Kharagpur Pallab Dasgupta

Big-O and Small-o Notations

 Asymptotic Upper Bound (O)

■ Let f and g be functions f, g: NR+. Say that f(n) = O(g(n)) if positive

integers c and n0 exist such that for every integer n ≥ n0

f(n) ≤ c.g(n)

■ When f(n) = O(g(n)) we say that g(n) is an upper bound for f(n), or more

precisely, that g(n) is an asymptotic upper bound for f(n), to emphasize

that we are suppressing constant factors

 Asymptotic Strict-Upper Bound (o)

■ Let f and g be functions f, g: NR+. Say that f(n) = o(g(n)) if

lim = 0

■ In other words, f(n) = o(g(n)) means that, for any real number c > 0, a

number n0 exist, where f(n) < c.g(n) for all n ≥ n0

3

f(n)

g(n)n

8

Indian Institute of Technology Kharagpur Pallab Dasgupta

Analyzing Algorithms

 Let t: NR+ be a function. Define the time complexity class, TIME(t(n)), to be

the collection of all languages that are decidable by an O(t(n)) time Turing

machine

 Example

■ Analyze the TM algorithm for the language A = {0k1k | k ≥ 0}

■ There can be different TM constructions (M1, M2, M3) deciding the language

[see Sipser’s Book, pp. 207-209]

■ The total-time taken by them is different

● M1 decides A in time O(n2), therefore A∈ TIME(n2)

● M2 decides A in time O(nlogn), therefore A∈ TIME(n.logn)

● M3 decides A in time O(n), therefore A∈ TIME(n)

4

Indian Institute of Technology Kharagpur Pallab Dasgupta

Complexity Relationships among Models

 Definition

■ Let NTM be a non-deterministic Turing machine that is a decider. The

running time of NTM is the function f: N  N, where f(n) is the maximum

number of steps that NTM uses on any branch of its computation on any

input n

 Theorems

■ Let t(n) be a function, where t(n) ≥ n. Then every t(n) time multi-tape Turing

machine has an equivalent O(t2(n)) time single-tape Turing machine

■ Let t(n) be a function, where t(n) ≥ n. Then every t(n) time non-deterministic

single-tape Turing machine has an equivalent 2O(t(n)) time deterministic

single-tape Turing machine

5

Indian Institute of Technology Kharagpur Pallab Dasgupta

The Class P (Polynomial Time)

 Definition

■ P is the class of languages that are decidable in polynomial time on a

deterministic single-tape Turing machine. In other words,

P = U TIME(nk)

 The role of P in theory:

■ P is invariant for all models of computation that are polynomially equivalent

to the deterministic single-tape Turing machine

■ P roughly corresponds to the class of problems that are realistically

solvable on a computer

 Examples of Problems in P

■ PATH = {<G, s, t> | G is a directed graph that has a directed path from s to t}

■ RELATIVE_PRIME = {<x, y> | x and y are relatively prime}

■ Every context-free language is a member of P

6

k

Indian Institute of Technology Kharagpur Pallab Dasgupta

The Class NP (Non-deterministic Polynomial Time)

 Definitions

■ A verifier for a language A is an algorithm V, where

A = {w | V accepts <w, c> for some string c}.

We measure the time of a verifier only in terms of the length of w, so a

polynomial time verifier runs in polynomial time in the length of w.

■ A language A is polynomially verifiable if it has a polynomial time verifier.

■ NP is the class of languages that have polynomial time verifiers

 Examples of Problems in NP

■ HAM_PATH = {<G, s, t> | G is a directed graph

with a Hamiltonian path from s to t}

■ COMPOSITES = {x | x = pq, for integers p, q > 1}

■ CLIQUE = {<G, k> | G is an undirected graph with k-clique}

■ SUBSET-SUM = {<S, t> | S = {x1, x2, …, xk} and for some

{y1, y2, …, yl} {x1, x2, …, xk}, we have Σyi = t}

7

U
I

Indian Institute of Technology Kharagpur Pallab Dasgupta

The Class NP (contd…)

 Theorem

■ A language is in NP if and only if it is decided by some non-deterministic

polynomial time Turing machine

 Definition

■ Non-deterministic time complexity class is defined as,

NTIME(t(n)) = {L | L is a language decided by a O(t(n)) time

non-deterministic Turing machine}

 Corollary: NP = U NTIME(nk)

8

k

Indian Institute of Technology Kharagpur Pallab Dasgupta

The P Versus NP Question

 Referring (loosely) to polynomial time solvable as solvable “quickly”,

■ P = the class of languages for which membership can be decided quickly

■ NP = the class of languages for which membership can be verified quickly

 Unsolved Problem in Theoretical Computer Science

■ P = NP? OR P ≠ NP?

■ One of these two possibilities is correct 

 Best method known for solving languages in NP deterministically uses

exponential time. In other words, we can prove that

NP EXPTIME = U TIME(2n)

But, we do not know whether NP is contained in a smaller deterministic time

complexity class

9

P

NP
P = NP

k

k

U
I

Indian Institute of Technology Kharagpur Pallab Dasgupta

NP-Completeness

 Polynomial Time Reducibility

■ A function f: Σ*  Σ* is a polynomial time computable function if some

polynomial time Turing machine M exists that halts with just f(w) on its

tape, when started on any input w

■ Language A is polynomial time mapping reducible, or simply polynomial

time reducible, to language B, written A ≤p B, if a polynomial time

computable function f: Σ*  Σ* exists, where for every w,

w∈ A f(w)∈ B

The function f is called the polynomial time reduction of A to B

 Theorem

■ If A ≤p B and B ∈ P, then A ∈ P

■ 3SAT is polynomial time reducible to CLIQUE

10

Indian Institute of Technology Kharagpur Pallab Dasgupta

NP-Completeness (contd...)

 Definition

■ A language B is NP-complete if it satisfies two conditions:

● B is in NP, and

● Every A in NP is polynomial time reducible to B

 Theorems

■ If B is NP-complete and B∈ P, then P = NP

■ If B is NP-complete and B ≤p C for C in NP, then C is NP-complete

 COOK-LEVIN’s Theorem

■ SAT is NP-complete (other form: SAT∈ P if and only if P = NP)

■ Corollary: 3SAT is NP-complete

11

Indian Institute of Technology Kharagpur Pallab Dasgupta

Additional NP-Complete Problems

 Examples of NP-complete Problems

■ CLIQUE = {<G, k> | G is an undirected graph with k-clique}

■ VERTEX-COVER = {<G, k> | G is an undirected graph that

has a k-node vertex cover}

■ HAM_PATH = {<G, s, t> | G is a directed graph

with a Hamiltonian path from s to t}

■ UHAM_PATH = Hamiltonian path in undirected graph

■ SUBSET-SUM = {<S, t> | S = {x1, x2, …, xk} and for some

{y1, y2, …, yl} {x1, x2, …, xk}, we have Σyi = t}

12

U
I

