
1 Tool Description

In this section, we discuss briefly the implementation aspects of the system developed. The basic archi-
tecture of the BUSpec framework is shown in Fig 1.

Property Specification
FrameworkFramework

Specification

Parser

Model Generator Validation Platform

Golden Model

OVA SM
 Generator

Test Bench
Generator

Coverage
Monitor

Figure 1: The BUSpec Framework

In the input stage, the designer describes the bus functionality in BUSpec. The description is then parsed
by theparser. Theparser produces a linked list of all the transfers supported by the bus. Each node of
this list is another linked list containing information about the phases which constitute the transfer. The
detailed architecture of this structure is given in Fig 2. Now, according to the requirements specified by

centering

.

.

.

TN

TN−1

T1

T2

.

.

.

P1

P2

PN

PN−1

. . .P3 P5 PM−1 PM

Figure 2: Internal data structure

the user, theModel Generator produces system-level state machine or component state machines. An-
other input to the framework is the set of correctness properties of the system. The designer specifies
these properties at different levels of abstraction. TheValidation Framework takes the set of properties
and the models at a particular level of abstraction. It then extracts theKripke structure for the particular
level and checks for the correctness at that level against the properties already specified. If the properties
are not validated correctly, proper investigation needs to be performed to change either the BUSpec de-
scription and/or the correctness properties. If the properties are correctly validated, thegolden models are
generated. Now, depending on the designer/user requirements, OVA state machine and/or Blif description
and/or Test benches for the models are generated.

1

2 The BUSpec Language

Traditionally standard bus protocols such as PCI and AMBA are specified through a well-versed document
that primarily describes the types of transfers supported by the protocol, and one or more high level state
machines that describe the ways in which these transfers may be sequenced over time. Each transfer is
described through a set of timing diagrams. Each timing diagram in turn consists of several phases, such
as the bus acquisition phase, the bus usage phase and the bus hand-over phase. A phase may span across
several cycles (as in the case of the bus usage phase for burst mode transfers).
By studying several standard bus protocols we have formalized a language for the formal specification of
such protocols. This language makes use of the traditional structure of the protocols such as the phases,
transfers and high-level state diagrams. Specifically, the proposed BUSpec language enables the designer
to write a bus protocol in terms of the following:

1. Specification of the phases that constitute a given transfer type.

2. Specification of each transfer type as a state machine, where each state represents a phase of the
transfer.

3. Specification of the system-level transitions that indicates the possible sequences in which the trans-
fers can occur. These transitions are between phases of successive transfers.

2.1 Formal Syntax of BUSpec

In this section the formal syntax of BUSpec is described using Backus-Naur Form (BNF). We then demon-
strate the syntax with examples. The conventions used in the syntax are as follows:

� Keywords and punctuations are inbold text.

� Syntactic categories are named in non-bold text.

� A vertical bar (�) separates alternatives.

� Square brackets (� �) enclose optional items.

� Braces (� �) enclose items which can be repeated zero or more times.

The formal syntax of BUSpec is given as follows:
Systemdescription ::= StartFSM St mc desp EndFSM

St mc desp ::= Transdesp �Transdesp� [TrnfTrans]
Transdesp ::= StartTransfer Transfer EndTransfer

Transfer ::= Phase [PhaseTrans]
Phase ::= StartPhase Phasedesp �Phasedesp�

EndPhase
Phasedesp ::= Name ’�’ �Signaldesp� �Predicatedesp� ’�’
Signaldesp ::= signal ’�’ signal val;’�’

signalval ::= sig val desp �, sig val desp�
sig val desp ::= Name = val
PhaseTrans ::= StartPhTrans PhTrnsdesp �PhTrnsdesp�

EndPhTrans
PhTrnsdesp ::= Name ’�’ Name Name ’�’

TrnfTrans ::= StartSmTrans TrnfTransdesp
�TrnfTransdesp� EndSmTrans

TrnfTransdesp ::= Name ’�’ Name Name ’�’
Predicatedesp ::= Valid(Name)�past(Name)�

Equal(Name,Predicateexp)
Predicateexp ::= Predicatedesp� Predicatedesp Operator Name

Operator ::= +�-�*
Name ::= [a-zA-Z] �[a-zA-Z0-9]�

val ::= 0�1�2�3�4�5�6�7�8�9

2

