
BISON
IST-2001-38923

Biology-Inspired techniques for
Self Organization in dynamic Networks

Readme for Dresden Immune Search Package (disearch)

Classification: Public
Contact Author: Niloy Ganguly
email: niloy@zhr.tu-dresden.de
Document Version: version 1.0 (February 24, 2005)

Project funded by the
European Commission under the
Information Society Technologies
Programme of the 5th Framework

(1998-2002)

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

Contents

1 Implementation details - disearch (Dresden immune search) package 3

1.1 Building up the p2p network . 4

1.2 Experiments . 6

1.3 Running the p2p network at each time step . 10

1.4 Input . 12

1.5 File arrangement . 13

1.6 Running and compiling the files . 14

2

Implementation for Advanced Services (version 1.0)

RANDOM WALK

RESTRICTED MOVEMENTSIMPLE MOVEMENT

EXPERIMENT EXPERIMENT
COVERAGE TIME−STEP

MOVEMENT AT ONE TIME STEP

OUTPUT OUTPUT

BUILD P2P

INPUT

ALGORITHMS

PROLIFERATION

MUTATION

Figure 1: General flow diagram of the program and the position of the different modules in the
flow.

1 Implementation details - disearch (Dresden immune search) pack-
age

This document details the implementation of the scheme. The scheme is implemented in the
Linux environment, although technically it should run in any other environment (with minor
modifications). The language used to implement is C.

The program consists of two major modules.

• Model building. Here we build up the desired p2p network. Model building involves
three major tasks, namely A. topology determination, B. data and query distribution, and
C. determining the sequence of updating.

• Experiments. The experiments coverage and time-step implement different types of search
algorithms1.

Fig. 1 shows the general flow diagram of the program and the position of the different modules
in the flow.

• In the beginning the p2p network is instantiated.

• The desired experimental setup (either coverage or time-step) is chosen.
1Kindly note, in this section ‘algorithm’ essentially refers to the message-forwarding algorithms like random-

walk, proliferation-mutation etc.

3

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

• The algorithms (random walk or proliferation-mutation) are executed.

• Note, the two experimental setups only differ in terms of the exit condition and output
requirements. However, they execute the same algorithms. So, the program design is
modularized in terms of one time step.

• The algorithms form two broad categories - the restricted version and the simple version.

The principal modules are now discussed one by one.

1.1 Building up the p2p network

Building the p2p network involves construction of the network topology, formation of the data
and query distributions, and determination of the sequence in which nodes operate. Therefore,
the module implements the following functions.

1. Forming the topology from a given connection list among peers.

2. Constructing content (data) for peers.

3. Building query list.

4. Setting update sequence.

1. Forming the topology

The most important task pertaining to topology formation is the assignment of neighbors of
each peer. While assigning the neighbors, it should be assured that the resulting network is
connected. A network is connected when there is at least a path connecting two randomly
chosen nodes. The neighborhood assignment is obtained from a provided list of connections
among peers. This list is generated by external topology generators such as BRITE [2] or Inet [1]
and also internal grid topology generators. The function is defined as below.

GenerateNeighborhood(list,p2p)
Input : List of connections among peers. It is a file

of the format described in Fig. 2
Output : Peers containing neighborhood information.

The file structure of the topology generator is discussed through Fig. 2. The lines starting with
‘#’ are lines which do not appear in the files but are added for the purpose of explanation.

2. Constructing contents of the peers

The second function takes care of building the data base of the peers. We have considered two
types of data representation, simple and more realistic. We have also assured that the distribu-
tion of tokens (keywords) in both of them follows Zipf’s law.

The simple data representation is accomplished by the following functions.

4

Implementation for Advanced Services (version 1.0)

1 102
<Line No.> <Total number of connections in the network>
2 4 19
4 19 means that there is a connection between peer
number 4 and peer number 19
3 3 200

.

.

.
102 120 19
103 12 197
Note GenerateNeighborhood reads in only unique relations, that is,
if there is information about connection between 4 19,
then GenerateNeighborhood automatically doesn’t read in 19 4.

Figure 2: Structure of a topology file

InsertSimpleData(noOfbits,zipfExponent,p2p)
Input : The length of each token in terms of number of bits

The value of Zipf’s exponent
Output : Peers with data.

The realistic data formation is accomplished by the following module:

InsertComplexData(noOfKeywords,nodeKeyword,zipfExponentp2p)
Input : The number of unique keywords

The average number of keywords at each node
The value of Zipf’s exponent

Output : Peers with data.

3. Building query list

The number of queries depends upon the number of times a particular experiment is intended
to be repeated. Since the tokens of the query maintain Zipf’s distribution, it is necessary to
prepare the complete query list before the start of the experiment. Similar to the data distribu-
tion, here we also have to generate simple as well as realistic query lists. The query lists are
generated by the following function.

GenerateQueryList(numberOfsearch,type,zipfExponent,queryOutput)
Input : Number of times an experiment is repeated

Simple or realistic
The value of Zipf’s exponent

Output : The total query list.

4. Setting update sequence

5

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

As mentioned above, each single node operates once in one time step, with the order of node
updates following a random sequence. The initial random sequence is generated to start the
network by the following function. We start with an array which has the node numbers written
in order. The function Shuffle randomly selects n pairs of data and swaps them; n is the number
of nodes. Therefore,

Shuffle(RandomArray)
Input : RandomArray
Output: RandomArray shuffled.

Once the peer-to-peer model is set up, the experiments are then performed. The experimental
module is elaborated next.

1.2 Experiments

We perform two types of experiments - coverage and time-step. The basic structure of the two
experiments is similar, only with varying exit conditions. The structure is elaborated below.

Experiment
{
InitializeSearch
for (each time-step; until exit condition not fulfilled)

{
Run the p2p network for one time step
Collect related information
}

}

The experiments are repeated for a specified number of times; we collect the information aver-
aged over several runs. We next discuss the repetition number, exit conditions for each algo-
rithm, and output derived from each experiment.

Coverage experiment

The coverage experiment is repeated K times. Each experiment runs until all the peers are not
visited by the message packets. The output information consists of

1. Percentage of network covered.

2. Number of time steps.

3. Number of search items found.

4. Number of messages produced.

6

Implementation for Advanced Services (version 1.0)

5. Number of operations performed. /* No of messages produced and no. of operations
performed differ in any restricted version as we consider no of operations = no of mes-
sages produced + no of lookaheads performed to check whether a peer has already been
visited or not. */

An example showing the output is as follows.

Input File Name = ../input/Rand.inp
RPM
Percent - Turn Search Messages Operations
21 - 19 155396 77 111
32 - 21 231442 104 167
43 - 23 307027 131 235
53 - 24 381431 156 316
63 - 25 454515 182 418
73 - 26 526942 208 560
83 - 28 592819 236 760
91 - 29 657841 271 1128

100 - 41 716397 462 5579

The output information is the result derived from averaging the results of K runs.

The functions describing the coverage experiments are noted one by one. The ExptRepeatCov-
erage function performs repetition of ExptCoverage K times.

ExptRepeatCoverage(p2p,K,algorithm,message,
nodeOutput,queryOutput,exptOutput)

{
Input : The Network

Number of times search has to be repeated
Algorithm which has to be run
Number of messages to be used
Sequence of the nodes in which the search has to be initiated
The exact query in those nodes.

Output: The output is stored in the array exptOutput. /*The output
comprises of the fields described above.*/

for(i = 1 to K)
{
ExptCoverage(p2p,algorithm,message,node,query,exptResult)
exptOutput = Avg(exptOutput,exptResult)
}

}

The ExptRepeatCoverage calls the function ExptCoverage, where ExptCoverage is described below.

ExptCoverage(p2p,algorithm,message,node,query,exptResult)

7

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

{
Input : The Network

Algorithm which has to be run
Number of messages to be used
Initializing node
Query to be processed

Output : The output is stored in the array exptOutput
It has the same format as exptOutput.

Initialize(p2p,message,node,query,algorithm)
While(all nodes not visited by message packets)

RunP2p(p2p,algorithm,exptResult)
}

The experiment time-step is described next.

8

Implementation for Advanced Services (version 1.0)

Time-step experiment

The experiment is repeated for (say) P generations, where one generation is defined as a se-
quence of Q searches. That is, essentially the search is repeated P × Q times. Each experiment
runs for a pre-defined number (N) of time steps. We obtain output for each generation; this is
of the following form.

1. Generation number.

2. Number of search items found.

3. Number of messages used.

An example showing the output is the following:

Input File Name = ../input/Rand1.inp
RPM
Gn. No. SearchItems MessageUsed

1 88.22 73.84
2 116.66 85.38
3 55.15 58.59
4 144.93 96.54
5 70.15 61.18
6 71.56 68.76
7 144.79 101.62
8 156.57 105.19
9 58.68 62.05

10 89.62 69.66

The ExptRepeatTimeStep function takes care of the repetition of ExptTimeStep for P × Q number
of times.

ExptRepeatTimeStep(p2p,P,Q,N,message,algorithm,nodeOutput,
queryOutput,exptOutput)

{
Input : The Network

Number of generations search has to be repeated
Number of searches comprising a generation
Number of time steps to be run
Number of messages to be used
Algorithm which has to be run
Sequence of the nodes in which search has to be initiated
Exact query in those nodes

Output : The output is stored in the 2-dimensional array exptOutput.
Each row of exptOutput consists of the three fields
- generation no., no. of search items, no. of messages used.

9

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

for(j = 1 to P)
{

for(i = 1 to Q)
{
ExptTimeStep(p2p,N,algorithm,node,query,exptResult)
exptOutput[i] = Avg(exptOutput[i],exptResult)
}

}
}

The ExptRepeatTimeStep calls the function ExptTimeStep, where ExptTimeStep is described below.

ExptTimeStep(p2p,N,algorithm,message,node,query,exptResult)
{
Input : The Network

Number of time steps to be run
Algorithm which has to be run
Number of messages to be used
Initializing node
Query to be processed

Output :The output is stored in the array exptResult.

Initialize(p2p,message,node,query,algorithm)
for(N number of time steps)

RunP2p(p2p,algorithm,exptResult)
}

We now elaborate the functions performed at each time step.

1.3 Running the p2p network at each time step

At each time step, all the nodes in the network check for incoming messages and perform ac-
tions upon them. The actions performed by them can be divided into three steps - (a) checking
similarity between message and data; (b) forwarding the message; and (c) topology evolution.
The sequence in which the nodes perform is random. The function RunP2p is noted below.

RunP2p(p2p,algorithm,exptResult)
{
Input : The Network

Algorithm which has to be run
Output : The output is stored in the array exptResult.

Shuffle(RandomArray)
for(each node)

10

Implementation for Advanced Services (version 1.0)

{
k = CheckSimilarity
N_new = DetemineNoMessage
FowardMessage
}

}

Each of the three functions are next explained one by one.

1. Similarity checking

The similarity measure differs for the two types of data distribution we have taken into consid-
eration. So CheckSimilaritySimple returns either 0 or 1, while CheckSimilarityReal returns the
actual number of keywords matched. We note the input/output of the functions below.

k = CheckSimilaritySimple(node.message, node.content, noOfSimilarBits)
Input : The first message in the node’s message queue

The node’s content
Output : No. of bits similar between node.message and node.content.

/*this output is required as an input for the next function*/
k - indicating similarity (0/1)

For the realistic data type, the function is:

k = CheckSimilarityRealistic(node.message,node.content)
Input : The first message in the node’s message queue

The node’s content
Output : k - Number of keywords found similar.

2. Determining the number of packets to be forwarded

The number of message packets which will be forwarded to the neighborhood depends upon
the types of algorithms - random walk, or affinity-driven proliferation-mutation - we run.

int DetermineNoMessage(algorithm,similarity measures)
{
return N_new
}

Once the number Nnew of new packets is determined, the packets are forwarded through the
function described next.

11

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

3. Forwarding the message packets

Forwarding the message packets broadly falls under two categories - restricted movement, and
simple or unrestricted movement. The message forward function is noted.

ForwardMessage(node,N_new,category,p2p)
Input : The node which forwards the message

Number of messages to be forwarded
The type of forwarding scheme
(restricted, unrestricted, high-degree etc.)

Output : The forwarded message in p2p network.
{
If (category = 1)

MessageForwardRestricted(node,N_new,category,p2p)
If (category = 2)

MessageForwardUnrestricted(node,N_new,category,p2p)
}

This concludes our description of the implementation of immune-based search algorithm. We
now discuss the input function.

1.4 Input

The input consists of various parameters which we note one by one.

1. Topology file - The file which contains the information on the topology of the peer to peer
network. Fig. 2 shows the details of the file.

2. Number of nodes

3. Action Type

• <TimeStep> / <Coverage>; <How Many Times> <Generation Length>

4. Type of data/query distribution

• <Simple> / <Realistic>; <no. of bits> / <no of keywords>

5. <Proliferation constant> <Mutation constant>

6. <Algorithms to be performed>

We elaborate the input file configuration with the following example file. The lines starting
with ‘#’ are lines which are not in the input file, but are used here only for the purpose of
explanation.

12

Implementation for Advanced Services (version 1.0)

inet.txt
#a powerlaw graph as input.

10000
#no. of nodes

1 1000 0
#1 - indicates experiment coverage;
#1000 - indicates no.of times it is repeated;
#0 - is a dummy parameter, it is there to maintain equivalence
#with time-step experiment which requires two parameters.

1 2000
#data type - realistic and no of keywords used - 2000

0.5 0.0
#<proliferation constant>; <mutation constant>
For this version mutation constant = 0

1 0 1 0
<RPM executed> <PM not executed> <RW executed> <RRW not executed>

1.5 File arrangement

The files are arranged in several directories. We specify the directories and the files inside the
directories one by one.

• immuneSearch/hfile

– initial population.h - functions to build the topology.

– Information.h - functions to build the contents of the network and query set.

– Movement.h - functions to guide the movement at each generation.

– Experiment.h - functions defining the experiments.

– small function.h - miscellaneous functions.

– header.h - information regarding various variables.

• immuneSearch/bin

– immune.c - the main file to run the program.

– makefile.

• immuneSearch/graphs - files containing topology information of different graphs. e.g.
power 10000 - a powerlaw graph with 10000 nodes; rand10000 - an uniform random
graph with 10000 nodes; Grid.100,00 - a grid with 10000 nodes; Gnutella1095 - a graph
representing realistic Gnutella topology comprising of 1095 nodes.

13

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

• immuneSearch/input - files containing different possible input files. The results of the
sample input files are stored in immuneSearch/bin/RESULT

Besides these files, there is a file grid.c which generates the grid topology in the directory Topol-
ogyGenerator/GRID.

1.6 Running and compiling the files

Compiling the main file immune.c can be done just by running the make file. Similarly, the files
in topology generators - convert.c and grid.c - can be compiled with the following respective
commands.

gcc grid.c -lm -o grid.out

Running the main program is done from the directory immuneSearch/bin with the command

immunesearch.out inputfilename

The other executable file grid.out is run with the following commands, respectively:

grid.out outputfilename NumberOfNodes length breadth

References

[1] C Jin, Q Chen, and S Jamin. Inet: Internet Topology Generator. University of Michigan
Technical Report CSE-TR-433-00, 2002.

[2] A Medina, A Lakhina, I Matta, and J Byers. BRITE: An Approach to Universal Topology
Generation. In Proceedings of the International Workshop on Modeling, Analysis and Simulation
of Computer and Telecommunications Systems- MASCOTS, August 2001.

14

