
Anomaly Detection and Troubleshooting of

Large Scale Systems from Event Logs

Presented By Niloy Ganguly

Bivas Mitra, Subhendu Khatuya
Also in collaboration with NetApp

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Prerequisite

Dataset

Objective

Challenges

Model Development

Anomaly detection framework

Building an automated troubleshooter

Results

Prerequisite

Dataset

Objective

Challenges

Model Development

Anomaly detection framework

Building an automated troubleshooter

Results

Prerequisite

EMS: Event Message System

• EMS supports a built-in logging facility that logs all activities on storage
appliance done by customer.

• The system writes out event indication descriptions using a generic text-based
log format.

EMS

System

ONTAP Components

StorageRAID

WAFL

Protocols
Network

Stack

Clients

NVRAM

Disks

Node/Data ONTAP

HA (CFO/SFO)

HA Partner

HA Interconnect

Prerequisite

Case:

Case Filed

cannot find errors with

environment/storage commands but

getting messages say to replace the

module

Snapshot of a BURT

Post Case Info

Customer-Support
Engg. Communication

Prerequisite

Dataset

Objective

Challenges

Model Development

Anomaly detection framework

Building an automated troubleshooter

Results

Dataset

• Daily Event message system (EMS) log

• Customer support database

• Customer support portal provides the platform to report
cases, failures, communicate with support engineers

• Bug database

• Internally oriented

• Each case is associated with a bug

Dataset

• Daily Event message system (EMS) log

Module 1 Module 2 Module 3 Module 4

EMS log EMS log EMS log

Dataset: A Typical EMS Log

Field Log Entry Example Description

Event Time Apr 01 2014 09:11:12 Day, date, timestamp

System name cc-nas1 Name of the node in
cluster that generated
the event

Event Message kern.uptime.filer Contains Subsystem
name and event type

Severity info Severity of the event

Raw EMS Data

Extracted Information

Data filtering

Select the bugs with sufficient
number of cases

Select the bugs with high priority
levels

Eliminate the cases with missing data

11 12

13

Final EMS Dataset

Dataset-info Number

Total No of Bugs 48

Total No of Cases 4827

No of Customers 2691

No of unique
system

4305

No of Module 331

Types of Message ~8k

Timeline January 2011 to
June 2016

Case Filed Date

For each filed case we have
collected around 18 weeks prior
data , and 1 weeks log after
case filed date.

Apr 01 09:11:12
INFO kern_uptime_filer_1
…

Raw EMS Data

Extracted Information

How to resolve?

Resolution period:

Let’s assume customer filed case at To. It resolved on Tc

Resolution period = (Tc - To)

The support engineers use predefined rules to resolve the
problem.

Motivation
Reliable and fast customer support service is pre-
requisite to the storage industry

There are some complain for which the resolution period
is very high.

Resolution period
pretty high

50%

(CLUSTER NETWORK DEGRADED) ERROR

Prerequisite

Dataset

Objective

Challenges

Model Development

Anomaly detection framework

Building an automated troubleshooter

Results

Objective 1 (Anomaly detection)

• Leverage on the event logs generated by the
subsystems/modules

• Development of anomaly detection framework

Anomaly
Detector

Days

Event log

Failure

ADELE: Anomaly Detection from Event log Empiricism, accepted in INFOCOM’18

Objective 2 (Troubleshooting)

• Building a troubleshooter which can localize faulty
components within a very short time.

• Providing a ranked list of modules to the support
engineers

• Reducing the complexity of the diagnostic process

GBTM: Graph Based Troubleshooting Method for Handing Customer Cases Using Storage system Log , accepted in PAKDD’18

Prerequisite

Dataset

Objective

Challenges

Model Development

Anomaly detection framework

Building an automated troubleshooter

Results

Challenges (Anomaly detection)
• Detection of abnormality from log becomes challenging

in the noisy environment

• where the log gets colluded with the messages from
system misconfiguration

• Do event log messages carry signals of anomaly?

• Do the anomaly signals eventually lead to failure?

• File-system fragmentation may cause performance
slowdown

• How many false alerts?

Challenges (Troubleshooting)

• Most of the real systems are complex as various constituent system
components exhibit functional dependencies

• Each component has its own failure modes. For example, a storage
system failure can be caused by disks, physical interconnects,
shelves, RAID controllers etc.

• It is extremely hard for support engineer to have a updated domain
knowledge in this evolving system.

• In such a large evolving complex system the prior knowledge of
dependency tree between modules is not available.

Prerequisite

Dataset

Objective

Challenges

Model Development

Anomaly detection framework

Building an automated troubleshooter

Results

Attributes Description

Event Count Total number of events generated by the subsystem

Event Ratio Ratio of number of events generated by the subsystem
to total number of messages

Mean Inter-arrival Time Mean time between successive events generated of the
particular subsystem

Mean Inter-arrival Distance Mean number of other messages between successive
events of the particular subsystem

Severity Spread Eight features corresponding to event counts of each
severity type for the subsystem

Time-interval Spread Six features denoting event counts during six four-hour
intervals of the day for the subsystem

Model development: Attribute Extraction

Observation1:Periodicity

Weekly periodicity can be observed for attributes from event log

Number of messages
generated from API
module

planned maintenance, scheduled
backups, workload intensity
changes

Anomaly Clues
• If one or more subsystem is going through an anomalous phase

• it gets reflected in some attributes of logs generated for those subsystems

Model development: Overview

Extract 18 features from EMS log, for each module

Log transformation

Anomaly score

▪ EMS log of each day is abstracted into a matrix (Xd)

Model development : Log Transformation

• We fit a normal distribution
with the features of the last
few weeks

Model development: Score Matrix

▪ EMS log of each day is abstracted into a matrix (Xd)

▪ We transform the raw matrix (Xd) of dth day into score
matrix (St) as follows

Score matrix

Ridge regression

W Weight matrix

Anomaly score

Event log of a day

Above threshold Below threshold

Anomaly No Anomaly

Model development: Anomaly Detect

S(i,j) contributes differently to overall anomaly of
the system

True positive Vs False positive
High anomaly detection rate with low false alert

Step label

Ramp label

Comparison with Baseline

ADELE: Anomaly Detection from Event log Empiricism, accepted in INFOCOM’18

Prerequisite

Dataset

Objective

Challenges

Model Development

Anomaly detection framework

Building an automated troubleshooter

Results

Graph Construction

Vertex:
Each module is considered as vertex, we took all 331 possible
modules.

Edge:
Edge is decided based on timestamp difference, if the timestamp
difference between two module is less than 300 second, one
directed edge is formed between them.

Edge weight:
Edge weight is as follows, where k is no of occurrences of edges and ti
is timestamp difference.

Sample Example

Case Filed Date

Corresponding to each case, we collect 18 weeks
of data - we construct a graph corresponding to
each week -consequently, we get 18 graphs from
a single case. The last two graphs we assume is
arising out of anomalous state of the system.

Graph Encoding
Vertex encoding (vbits):

▪ log2 𝑣 bits to encode the number of vertices 𝑣 in the graph

▪ 𝑣 ∗ log2 𝑢 𝑏𝑖𝑡𝑠 𝑡𝑜 𝑒𝑛𝑐𝑜𝑑𝑒 𝑙𝑎𝑏𝑒𝑙𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑣 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 where u is
total unique no of labels of vertices.

𝒗𝒃𝒊𝒕𝒔 = 𝐥𝐨𝐠𝟐 𝒗 + 𝒗 ∗ 𝐥𝐨𝐠𝟐 𝒖

Edge encoding (ebits):

ebits= 𝒆 ∗ 𝟏 + 𝐥𝐨𝐠𝟐 𝒖 + 𝑲 ∗ 𝐥𝐨𝐠𝟐 𝒎+ 𝐥𝐨𝐠𝟐 𝒎

e is total no. of edges, K is total no. of 1’s in the adjacency
matrix, m=max e(i,j)

Row encoding (rbits):

𝒓𝒃𝒊𝒕𝒔 = 𝐯 ∗ log𝟐 𝒃 σ𝒊=𝟏
𝒗 log𝟐

𝒗
𝒌

𝒊

Encoding example

kern

wafl

disk

cmds

raid

cifs

kern_cmds

wafl_raid

disk_cifs

wafl_disk

Kern_wafl

𝐯𝐛𝐢𝐭𝐬 = log2 6 + 6 ∗ log2 11 = 23.33 𝑏𝑖𝑡𝑠

𝒓𝒃𝒊𝒕𝒔 = 21.49 𝑏𝑖𝑡𝑠

kern
cmds

wafl
raid
disk
cifs

No. of vertices: 6
Unique labels: 11
e=5; K=5; m=1

ebits = 𝒆 ∗ 𝟏 + 𝐥𝐨𝐠𝟐 𝒖 + 𝑲 ∗ 𝐥𝐨𝐠𝟐 𝒎
=5*(1+log2 11)+5*log2 1 = 22.25 𝑏𝑖𝑡𝑠

Total bits=67.07 bits

Step 1: Finding Abnormal Substructure (PCCS)

Subgraph:

A substructure is a connected subgraph of the overall
graph.

Best Substructure:

we consider the best substructure to be one that minimizes
the following value:

Where G is the entire graph, S is the substructure, DL(G|S) is the
description length of G after compressing it using S, and DL(S) is the
description length of the substructure

Intuition:

Anomalous substructure occurs very infrequently.

Abnormal Substructure finding steps

▪ First, we compute anomaly score by the transformation cost
(using insertion and deletion of vertex and edges) to match the
entity with the best substructure.

▪ We finally shortlist only those abnormal substructure where
anomaly score exceeds a certain threshold (0.95).

▪ Hence the problem creating candidate set (PCCS) is the union of
the modules present in the shortlisted anomalous structure

Step2: Community Detection

Intuition: If there is failure in one module of a community,
other modules present in the group might be affected due
to dependency between modules

• We choose Louvain community detection algorithm

Step 3: Set Expansion
• We calculate normalized overlapping index between

PCCS and each community

• If overlapping index exceeds some threshold (0.75) for
a particular cluster, we expand PCCS by incorporating
modules of that specific cluster

Normal Period :: NEPCS
Abnormal Period :: AEPCS

Final PCS Construction

• For a case, suppose we discover that module appears
n1 times in abnormal set AEPCS out of total nabn

samples and it also appears in NEPCS n2 times out of
total nnorm normal samples.

Then causality score (CS) of the module is as follows

Normal Period

Abn. Period

Top ranked modules considred as
final problem creating set (PCS)

An Example

Validation

• Direct (Ground Truth available)

• Support engineers extracted the trouble creating modules
from domain knowledge and conversation with customer for
only 20.50% of cases, where evaluation becomes
straightforward

• Indirect
• Similar cases will have approximately similar problem

creating modules set.

Grouping Similar Cases

(Sym-Text Based)

…...
..

SYMPTOM TEXT

C1 C2 C3 Cn

>Th.
(0.80)

SIMILAR

NOT SIMILAR

….....

Y

N

Cos. Similarity

Similar Cases (EMS-Log Based)

…...

C1
C2 C3 Cn

kern_uptime_filer_1
unowned_disk_reminder
callhome_performance_data

kern_uptime_filer_1
ems_engine_suppressed
cifs_op_subop_unsupported

…...

SIMILARY

N
NOT SIMILAR

>Th.
(0.65)

The similar cases belongs to
both the group taken as final
similar case set

Prerequisite

Dataset

Objective

Challenges

Model Development

Anomaly detection framework

Building an automated troubleshooter

Results

Overlapping Score (Indirect Validation)

Average Overlap: 0.807

The PCS of
similar cases
are ~ 80%
similar

Indirect validation

Mathematically, for two arbitrary sets S1 and S2
Overlapping score (S1, S2)=

False Positive Rate

Average FPR: 9.15%

Intuitively, the problem causing modules should appear only in the abnormal
state. If a module appears in both NEPCS and AEPCS set we treat that module
as a false positive.

Comparison with Baseline

Ranking Modules

We provide a ranked list of modules to the support engineers which can
significantly narrow down the troubleshooting process for around 95% cases

GBTM: Graph Based Troubleshooting Method for Handing Customer Cases Using Storage system Log , accepted in PAKDD’18

Conclusion

▪ Logs are challenging to analyze manually because they are noisy

▪ In large scale system, constituent system components exhibit functional
dependencies.

▪ We proposed ADELE, a machine learning model to detect anomalies
with high anomaly detection rate and low false alert.

▪ We proposed GBTM, troubleshooting tool which abstracts the raw log by
a graph structure and infers a probable set of malfunctioning modules
with the help of community structure.

Thank you!

Follow the work of Complex Network Research Group (CNeRG), IIT KGP at:
Web: http://www.cnergres.iitkgp.ac.in/
Facebook: https://web.facebook.com/iitkgpcnerg
Twitter: https://www.twitter.com/cnerg

https://web.facebook.com/iitkgpcnerg

