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Prerequisite

EMS:  Event Message System

• EMS supports a built-in logging facility that logs all activities on storage 
appliance done by customer.

• The system writes out event indication descriptions using a generic text-based 
log format. 

EMS 

System
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Prerequisite

Case:



Case Filed

cannot find errors  with 

environment/storage commands but 

getting  messages say to replace the 

module



Snapshot of a BURT



Post Case Info

Customer-Support 
Engg. Communication
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Dataset

• Daily Event message system (EMS) log  

• Customer support database 

• Customer support portal provides the platform to report 
cases, failures, communicate with support engineers 

• Bug database 

• Internally oriented 

• Each case is associated with a bug



Dataset

• Daily Event message system (EMS) log 

Module 1 Module 2 Module 3 Module 4

EMS log EMS log EMS log



Dataset: A Typical EMS Log

Field Log Entry Example Description

Event  Time Apr 01 2014 09:11:12 Day, date, timestamp

System name cc-nas1 Name of the node in 
cluster that generated 
the event

Event Message kern.uptime.filer Contains Subsystem 
name and event type

Severity info Severity of the event 

Raw EMS Data

Extracted Information



Data filtering 

Select the bugs with sufficient 
number of cases

Select the bugs with high priority 
levels

Eliminate the cases with missing data

11 12

13



Final EMS Dataset

Dataset-info Number  

Total No of Bugs 48

Total No of Cases 4827

No of Customers 2691

No of unique 
system

4305

No of Module 331

Types of Message ~8k

Timeline January 2011 to 
June        2016

Case Filed Date

For each filed case we have 
collected around 18 weeks prior 
data , and 1 weeks log after 
case filed date.

Apr    01      09:11:12   
INFO kern_uptime_filer_1
…

Raw EMS Data

Extracted Information



How to resolve?

Resolution period:

Let’s assume customer filed case at To. It resolved on Tc 

Resolution period = (Tc  - To) 

The support engineers use predefined rules to resolve the 
problem.



Motivation
Reliable and fast customer support service is pre-
requisite to the storage industry

There are some complain for which the resolution period 
is very high. 

Resolution period 
pretty high

50%

(CLUSTER NETWORK DEGRADED) ERROR
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Objective 1 (Anomaly detection)

• Leverage on the event logs generated by the 
subsystems/modules

• Development of anomaly detection framework 

Anomaly 
Detector

Days

Event log

Failure

ADELE: Anomaly Detection from Event log Empiricism, accepted in INFOCOM’18



Objective 2 (Troubleshooting) 

• Building a troubleshooter which can localize faulty 
components within a very short time. 

• Providing a ranked list of modules to the support 
engineers

• Reducing the complexity of the diagnostic process

GBTM: Graph Based Troubleshooting Method for Handing Customer Cases Using Storage system Log , accepted in PAKDD’18
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Challenges  (Anomaly detection) 
• Detection of abnormality from log becomes challenging 

in the noisy environment

• where the log gets colluded with the messages from 
system misconfiguration

• Do event log messages carry signals of anomaly? 

• Do the anomaly signals eventually lead to failure? 

• File-system fragmentation may cause performance 
slowdown

• How many false alerts?



Challenges (Troubleshooting)

• Most of the real systems are complex as various constituent system 
components exhibit functional dependencies

• Each component has its own failure modes. For example, a storage 
system failure can be caused by disks, physical interconnects, 
shelves, RAID controllers etc.

• It is extremely hard for support engineer to have a updated domain 
knowledge in this evolving system.

• In such a large evolving complex system the prior knowledge of 
dependency tree between modules is not available. 
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Attributes Description

Event Count Total number of events generated by the subsystem

Event Ratio Ratio of number of events generated by the subsystem 
to total number of messages

Mean Inter-arrival Time Mean time between successive events generated of the 
particular subsystem

Mean Inter-arrival Distance Mean number of other messages between successive 
events of the particular subsystem

Severity Spread Eight features corresponding to event counts of each 
severity type for the subsystem

Time-interval Spread Six features denoting event counts during six four-hour 
intervals of the day for the subsystem

Model development: Attribute Extraction 



Observation1:Periodicity 

Weekly periodicity can be observed for attributes from event log 

Number of messages 
generated from API 
module 

planned maintenance, scheduled 
backups, workload intensity
changes



Anomaly Clues 
• If one or more subsystem is going through an anomalous phase

• it gets reflected in some attributes of logs generated for those subsystems



Model development: Overview 

Extract 18 features from EMS log, for each module

Log transformation

Anomaly score



▪ EMS log of each day is abstracted into a matrix (Xd)   

Model development : Log Transformation

• We fit a normal distribution 
with the features of the last 
few weeks



Model development: Score Matrix

▪ EMS log of each day is abstracted into a matrix (Xd)   

▪ We transform the raw matrix (Xd) of dth day into score 
matrix (St) as follows



Score matrix 

Ridge regression

W Weight matrix 

Anomaly score

Event log of a day

Above threshold Below threshold 

Anomaly No Anomaly

Model development: Anomaly Detect

S(i,j) contributes differently  to overall anomaly of 
the system



True positive Vs False positive  
High anomaly detection rate with low false alert

Step label

Ramp label

Comparison with Baseline

ADELE: Anomaly Detection from Event log Empiricism, accepted in INFOCOM’18
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Graph Construction 

Vertex:
Each module is considered as vertex, we took all 331 possible 
modules. 

Edge:
Edge is decided based on timestamp difference, if the timestamp 
difference between two module is less than 300 second, one 
directed edge is formed between them.

Edge weight:
Edge weight is as follows, where k is no of occurrences of edges and ti
is timestamp difference.



Sample Example

Case Filed Date

Corresponding to each case, we collect 18 weeks 
of data - we construct a graph corresponding to 
each week -consequently, we get 18 graphs from 
a single case. The last two graphs we assume is 
arising out of anomalous state of the system.



Graph Encoding
Vertex encoding (vbits):

▪ log2 𝑣 bits to encode the number of vertices 𝑣 in the graph

▪ 𝑣 ∗ log2 𝑢 𝑏𝑖𝑡𝑠 𝑡𝑜 𝑒𝑛𝑐𝑜𝑑𝑒 𝑙𝑎𝑏𝑒𝑙𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑣 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 where u is 
total unique no of labels of vertices.

𝒗𝒃𝒊𝒕𝒔 = 𝐥𝐨𝐠𝟐 𝒗 + 𝒗 ∗ 𝐥𝐨𝐠𝟐 𝒖

Edge encoding (ebits):

ebits= 𝒆 ∗ 𝟏 + 𝐥𝐨𝐠𝟐 𝒖 + 𝑲 ∗ 𝐥𝐨𝐠𝟐 𝒎+ 𝐥𝐨𝐠𝟐 𝒎

e is total no. of edges, K is total no. of 1’s in the adjacency 
matrix,  m=max e(i,j)

Row encoding (rbits):

𝒓𝒃𝒊𝒕𝒔 = 𝐯 ∗ log𝟐 𝒃 σ𝒊=𝟏
𝒗 log𝟐

𝒗
𝒌

𝒊



Encoding example 

kern

wafl

disk

cmds

raid

cifs

kern_cmds

wafl_raid

disk_cifs

wafl_disk

Kern_wafl

𝐯𝐛𝐢𝐭𝐬 = log2 6 + 6 ∗ log2 11 = 23.33 𝑏𝑖𝑡𝑠

𝒓𝒃𝒊𝒕𝒔 = 21.49 𝑏𝑖𝑡𝑠

kern
cmds

wafl
raid
disk
cifs

No. of vertices: 6
Unique labels: 11
e=5; K=5; m=1

ebits = 𝒆 ∗ 𝟏 + 𝐥𝐨𝐠𝟐 𝒖 + 𝑲 ∗ 𝐥𝐨𝐠𝟐 𝒎
=5*(1+log2 11)+5*log2 1 = 22.25 𝑏𝑖𝑡𝑠

Total bits=67.07 bits 



Step 1: Finding Abnormal Substructure (PCCS)

Subgraph:

A substructure is a connected subgraph of the overall
graph. 

Best Substructure:

we consider the best substructure to be one that minimizes 
the following value: 

Where G is the entire graph, S is the substructure, DL(G|S) is the 
description length of G after compressing it using S, and DL(S) is the 
description length of the substructure 

Intuition:  

Anomalous substructure occurs very infrequently.



Abnormal Substructure finding steps

▪ First, we compute anomaly score by the transformation cost
(using insertion and deletion of vertex and edges) to match the
entity with the best substructure.

▪ We finally shortlist only those abnormal substructure where
anomaly score exceeds a certain threshold (0.95).

▪ Hence the problem creating candidate set (PCCS) is the union of 
the modules present in the shortlisted anomalous structure 



Step2: Community Detection

Intuition: If there is failure in one module of a community,
other modules present in the group might be affected due
to dependency between modules

• We choose Louvain community detection algorithm



Step 3: Set Expansion
• We calculate normalized overlapping index between 

PCCS and each community

• If overlapping index exceeds some threshold (0.75) for 
a particular cluster, we expand PCCS by incorporating 
modules of that specific cluster

Normal Period :: NEPCS
Abnormal Period :: AEPCS



Final PCS Construction

• For a case, suppose we discover that module  appears 
n1 times in abnormal set AEPCS out of total nabn

samples and it also appears in NEPCS n2 times out of 
total nnorm normal samples.

Then causality score (CS) of the module is as follows 

Normal Period

Abn. Period

Top ranked modules considred as 
final problem creating set (PCS)



An Example



Validation 

• Direct (Ground Truth available) 

• Support engineers extracted the trouble creating modules 
from domain knowledge and conversation with customer for 
only 20.50% of cases, where evaluation becomes 
straightforward 

• Indirect
• Similar cases will have approximately similar problem 

creating modules set. 



Grouping Similar Cases 

(Sym-Text Based)

…...
..

SYMPTOM TEXT

C1 C2 C3 Cn

>Th. 
(0.80)

SIMILAR

NOT SIMILAR

….....

Y

N

Cos. Similarity



Similar Cases (EMS-Log Based)

…...

C1
C2 C3 Cn

kern_uptime_filer_1
unowned_disk_reminder
callhome_performance_data

kern_uptime_filer_1
ems_engine_suppressed
cifs_op_subop_unsupported

…...

SIMILARY

N
NOT SIMILAR

>Th. 
(0.65)

The similar cases belongs to 
both the group taken as final 
similar case set
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Overlapping Score (Indirect Validation)

Average Overlap: 0.807

The PCS of 
similar cases 
are ~ 80% 
similar

Indirect validation

Mathematically, for two arbitrary sets S1 and S2
Overlapping score (S1, S2)= 



False Positive Rate

Average FPR: 9.15%

Intuitively, the problem causing modules should appear only in the abnormal 
state. If a module appears in both NEPCS and AEPCS set we treat that module 
as a false positive. 



Comparison with Baseline



Ranking Modules

We provide a ranked list of modules to the support engineers which can
significantly narrow down the troubleshooting process for around 95% cases

GBTM: Graph Based Troubleshooting Method for Handing Customer Cases Using Storage system Log , accepted in PAKDD’18



Conclusion

▪ Logs are challenging to analyze manually because they are noisy

▪ In large scale system, constituent system components exhibit functional 
dependencies.

▪ We proposed ADELE, a machine learning model to detect anomalies 
with high anomaly detection rate and  low false alert.

▪ We proposed GBTM, troubleshooting tool which abstracts the raw log by 
a graph structure and infers a probable set of malfunctioning modules 
with the help of community structure. 



Thank you!

Follow the work of Complex Network Research Group (CNeRG), IIT KGP at:
Web: http://www.cnergres.iitkgp.ac.in/
Facebook: https://web.facebook.com/iitkgpcnerg
Twitter: https://www.twitter.com/cnerg

https://web.facebook.com/iitkgpcnerg

