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Design a Scalable Pattern Classifier based on Cellular Automata
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Objective 1
Design and implement a Scalable Pattern Classifier based on CA

Objective 2

Evaluate the Classifier on datasets of different topologies and
experiment to test for Scalability

| \

Objective 3

Experiment on real world datasets and Study the characteristics of
the Classifier (Feature Selection)
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Classification Problem

Classification Problem can be viewed as partitioning the feature
space into partitions labeled by classes

Machine Learning

ML methods provide technique to determine the boundaries of the
partitions in the features space and hence help in learning the
classes

MACA Property

MACA, a special class of Cellular Automata partitions the feature
space into basins
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MACA
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@ Given MACA of size n=5, the feature space is of the size 2"
(25)=32.

@ An MACA is characterized by T Matrix, which captures the
basin distribution.
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Attractors
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PEF Bits
the attractors are characterized by
Pseudo-Exhaustive Field (PEF)bits
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@ Making the classifier Scalable



MACA based Classifier
°

Basic Idea

\—> 11
10 } Class|
o1

00

Class|I

MEMORY

The features space is divided into basins by the MACA and the
basins will be assigned to the classes. J



MACA based Classifier
°

Basic Idea

\—> 11
10 } Class|
o1

00

Class|I

MEMORY

The features space is divided into basins by the MACA and the
basins will be assigned to the classes. J

We just need to remember which attactors belong to which class )
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MACA Classifier

How it Works

Find an /maca/ that classifies your data
and find the attractors corresponding to
the clases

When an incoming pattern comes,
g u]— Multiply it by the T matrix repeatedly

until you reach and attractor

00 —=Classll
MEMORY

Look up the attractor’s class )
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MACA Classifier

Learning an MACA

O We want an MACA that partitions the feature space correctly
for us

Correctly in the sense that all the patterns belonging to
different classes are in different basins

We use a GA formulation to search for our appropriate MACA

The T Matrix is encoded in a Pseudo-Chromosome and GA is
run over it

© 00 ©

The cost function for GA is calculated over the Training
samples based on item 1
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Pseudo-chromosome
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Making the classifier Scalable

Lot of Matrix Multiplication

In determining which basin a pattern belongs to, you have to
repeatedly multiply the pattern with the T Matrix to get the
attractor (which characterizes the basin which the pattern belongs

to
<

We would like to have a scheme in which, by just looking at the
pattern we can determine the basin/attractor of the class
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Making the classifier Scalable

Isomorphism in T Matrix

Modifying the algorithm that generates the T Matrix from
pseudo-chromosome, we found that a pseudo-chromosome
represents an equivalent class of T Matrix which have same Basin
Dsitribution

~

The new scheme enabled us to find out the basin of the pattern by
just knowing the PEF bits PEF

In the new scheme we do away with the T matrix altogether, thus
saving space

Only the pseudo-chromosome (which contains the position of the
PEF bits) is required
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Making the classifier Scalable

Isomorphism
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Isomorphism
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O Experiments
@ Small Applications of Classifier



We have a Scalable classifier and we want to see it classify some
standard datasets

We artificially create four different topologies of binary
classification

© Linearly Separable Dataset

O Concave Datasets

© Spiral Datasets

© Annular Datasets

We also compare the performance of the classifier against a Linear
Kernel SVM (implementation by Tim Joachims)
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Datasets used

training Test training st
(a) Linear classification problem (b) Concave Classification Problem
e
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training test training test
(a) Spiral classification problem (b) Annular Classification Problem
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Results on the Datsets

Dataset | Scalable MACA classifier | SVMLight
accuracy on Accuracy
Training Data | Test Data results
Linear 99.24% 99.61% 99.71%
Concave 92.77% 91.99% 95.44%
Spiral 83.88% 77.45% 82.46%
Annular 73.8% 75.94% 75.95%

Table: Accuracy test results across different Classification problems
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Scalability Test

The datasets used previously were small in dimension of feature
and small in number of Training Examples




Experiments

Scalability Test

The datasets used previously were small in dimension of feature
and small in number of Training Examples

We scaled up both to obtain satisfactory results )
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Scalability Results

Dataset | Training Data Test Data Time taken
Accuracy | Examples | Accuracy | Examples | in seconds
16 99.24% 4311 99.61% 2313 2
32 98.42% 12000 97.66% 2000 3.0
64 96.22% 50000 96.33% 8000 28
100 100.00% 60000 98.54% 10000 32
100 100.00% 4000 99.69% 2000 3

Table: Scalability Test results
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Small Applications of Classifier

IRS Dataset

Given
@ a 4 band image taken by IRS satellite of Kolkata
@ Two classes- (Water body or Man-made construction) or
Otherwise

@ Take a Set of tagged pixels and learn the classifier and then
regenerate the whole image

Training Data Test Data
accuracy | samples | accuracy | samples
97.76% | 120000 | 97.26% | 20000

Table: Accuracy results on IRS Dataset
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Small Applications of Classifier

Reconstructed image
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Small Applications of Classifier

Observation made on the Classifier

Important PEF Bits
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Important Attribute

Hints at Feature Selection capabilities )
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© Feature Selection
o Experiment of Molecular Classification of Cancer



Feature Selection

Two ascertain that there is some sort of feature selection, we
perform two more experiments on artificial Datasets. The Dataset
had two classes-

© Variation along only one feature

@ Variation along both features



Feature Selection

Datsets

Train Daea St for variation siceg one feanres.

Test Datn St for variason siong both features

® @ .



Classifiers Learnt Corresponding to the Datsets
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Feature Selection Observed again )
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Feature Selection Observed again )

Something more than Feature Selection observed too!! )
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Experiment of Molecular Classification of Cancer

Gene expression Dataset

A generic approach to cancer classification based on gene
expression monitoring by DNA microarrays is described and applied
to human acute leukemias as a test case in work done by T. Golub.

@ 38 Train samples and 34 Test Samples
@ Two classes- ALL and AML

@ Each Sample has 7129 features each of whose range can be
captured with 19 bits

@ Need to classify the Test cases and identify the important
genes which the Cancer (Leukemia) Type (ALL or AML )
depends.
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Experiment of Molecular Classification of Cancer

Gene expression Dataset

A generic approach to cancer classification based on gene
expression monitoring by DNA microarrays is described and applied
to human acute leukemias as a test case in work done by T. Golub.

@ 38 Train samples and 34 Test Samples
@ Two classes- ALL and AML

@ Each Sample has 7129 features each of whose range can be
captured with 19 bits

@ Need to classify the Test cases and identify the important
genes which the Cancer (Leukemia) Type (ALL or AML )
depends.

Golub had medically identified the genes and reported them )
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Experiment of Molecular Classification of Cancer

Results

32 out of 34 test cases correctly identified -same accuracy as
reported in Golub’s work

Features selected were from the important genes reported by J
Golub!!
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Designed a Scalable Pattern Classifier using cellular Automata. )
Extensive experiments done with the proposed classifier )
Feature Selection Property observed )

Hints at possibility of Rule Generation from the training dataset )
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Future Work

Dynamics of the classifier to be understood. )

Multi-class Classifier based on Decision Tree approach )

Investigate Rule generation and inference mechanism based on the
classifier as this is of prime interest in data mining
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Thank You!!!



