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Abstract

Most popular Online Social Networks (OSNs) in today’s
world, such as Facebook, Orkut and Twitter impose re-
strictions on the number of friends / connections that a
member can have in the network. This is primarily due
to two reasons - to limit spam and to reduce the strain on
the system due to member-to-all-friends communication.
We study the effects of such restrictions on node-degree,
on the topological properties of the OSN networks, tak-
ing the restriction imposed by Twitter as a case-study.
To the best of our knowledge, this is the first study of
its nature, on any OSN. Towards this end, we use a net-
work growth model based on preferential attachment to
develop an analytical framework that can be used to as-
sess the effects of various forms of restrictions on OSNs,
as well as to design new restrictions of varying rigidity.

1 Introduction

Online Social Networks (OSNs) are among the most
popular sites on the Web in the present times, and the
well-known OSNs, such as Facebook, Twitter, Orkut,
Flickr and so on, each have over 50 million users
(or members, the terms will be used interchangeably)
presently. With the rapidly increasing member count,
the successful OSNs have been facing a number of chal-
lenges over the past couple of years [20]; one of them is
spam and other malicious activities by certain members.

Spammers typically use the member-search features
provided by the OSN to contact (establish friendship
links with) a large number of members and then use
the methods of communication provided to send spam,
thus annoying the legitimate users of the OSN. If not
controlled, the amount of spam may rise to a level that
prompts large numbers of legitimate users to leave the
OSN.

Several popular OSNs have adopted a common tech-
nique to counter spam and improve the experience of

legitimate users: they have imposed restrictions on the
number of friends / connections that a user can have in
the network. For example, the number of friends that a
user can have is restricted to 1000 in Orkut and 5000 in
Facebook. Flickr restricts the number of non-reciprocal
contacts of members to 3000. Twitter has placed a more
intelligent limit [4] on the number of people that a mem-
ber may ‘follow’, as explained in section 2. These limit-
based restrictions act as a first line of defence in control-
ling spam.

Apart from preventing the spammers from contact-
ing other members indiscriminately, such limit-based re-
strictions also serve another important purpose. Popular
OSNs have been suffering from scaling issues, due to
the steady increase in their membership, which causes
these sites to often have high latency [20]. Most of
these OSNs, like Facebook and Twitter, offer features
for real-time one-to-many communication, i.e. a user is
allowed to post messages that would be communicated
to all friends of that user in real-time. Hence, if users
are allowed to have an excessive number of friends, the
large number of message communications required may
adversely affect the performance of the system.

However, the restrictions on the number of friends, as
imposed by several OSNs, affect not only the spammers
but also the legitimate users of the networking service.
Thus such restrictions are criticised by a fraction of the
legitimate users of the OSNs, as an encroachment on the
freedom of users to have more friends [9]. Moreover,
a systematic understanding of the relation between the
restrictions and the desired performance improvement is
also missing.

Hence, for the design of effective limits, an analysis
of the dynamics of the creation of links in the social net-
work (by legitimate users and spammers) and an under-
standing of the effects of different forms of restrictions
on these dynamics is required. An analytical framework
modeling the node / link creation and the restrictions, and
predicting the emergent degree distributions can be an
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efficient method to gain this understanding; this is what
this paper does. This paper proposes a general frame-
work to model the effects of restrictions on node-degree,
on the topological properties of OSNs. The restriction
imposed by Twitter [1] is taken as a case-study where
empirical data collected by crawling the Twitter network
show the effect of this restriction as a spike and a decay
in the out-degree distribution.

Several studies have been conducted on the growth
dynamics in OSNs and the topological characteristics
of the network that emerge as a result of these dynam-
ics [15, 17]. However, the changes in the topological
characteristics of OSNs, due to imposed restrictions on
node-degree, have not been formally studied or mod-
eled till date, to the best of our knowledge. The effect
of ‘hard’ cut-offs on node-degree have been studied in
peer-to-peer networks where the number of connections
that a peer can accept is limited by the finite bandwidth
of the peer node [11, 18]. Unlike peer-to-peer networks,
the Twitter social network is directed, and the imposed
cut-off is only on the out-degree of nodes. Moreover,
this cut-off is a ‘soft’ one and can be overcome by nodes
which have ‘sufficient’ in-degree. Hence a completely
different set of mathematical tools need to be developed
to explain the emerging degree distribution from such dy-
namics.

The rest of the paper is organized as follows. The re-
striction imposed by Twitter is detailed in section 2. Sec-
tion 3 describes the procedure used for crawling the Twit-
ter network and the characteristics of the empirical data
collected are discussed in section 4. A network growth
model based on preferential attachment [8] is modified
by incorporating a restriction similar to that in Twitter in
section 5 while the observations drawn using the model
are given in section 6. Discussions and conclusions of
the study are drawn in section 7.

2 The Twitter Follow-Limit

Twitter [1] allows members to communicate among each
other through the exchange of short messages called
‘tweets’ (each of 140 characters or less) and to form a so-
cial network, based on interest of a member in the tweets
of another. If a Twitter useru finds another userv’s pro-
file or tweets interesting,u can “follow” v, by which,
tweets posted byv will be made available tou. In Twit-
ter terminology, if useru follows userv, v is said to be a
“friend” of u andu is said to be a “follower” ofv. The
following relationship on Twitter is not mutual i.e.u fol-
lowsv does not necessarily implyv follows u.

In graph-theoretic terms, the Twitter social network is
a directed network where members are represented as
nodes, and nodesu andv are connected by a directed
edgeu → v if memberu follows memberv. In this

model, the number of friends of a memberu is analo-
gous to the out-degree of the nodeu, and the number of
followers ofu is analogous to the in-degree ofu.

Thus, in the Twitter network, the out-degree ofu (i.e.
the number of members whomu follows) can be thought
of as a measure ofu’s social activity or her interest to
collect information from other members. Similarly, the
in-degree ofu is a measure of the popularity ofu in the
Twitter social network: this is the number of other mem-
bers who are interested in the tweets posted byu.

According to analysis [19] carried out on Twitter in
October 2009, Twitter has experienced an exponential
growth in membership starting from the later part of the
year 2008, making it one of the most popular OSNs to-
day. This growing popularity of Twitter has attracted
the attention of spammers who attempt to manipulate
the features provided by Twitter to gain some advantage,
such as driving Twitter users to other websites that they
(i.e. the spammers) post as links in their tweets. One
technique commonly adopted by spammers to gain atten-
tion is to indiscriminately follow numerous other users,
in the hope of getting followed back; this technique is
termed as “Aggressive Following” or “Follow Spam” [5].

To limit follow spam and to reduce the strain on the
website [4], Twitter enforced a restriction on the number
of users that a user can follow (i.e. on the out-degree),
in August 2008 [5]. Every user is allowed to follow up
to 2000 others, but “once you’ve followed 2000 users,
there are limits to the number of additional users you can
follow: this limit is different for every user and is based
on your ratio of followers to following.”, as given in the
Twitter Support webpages [4].

However, Twitter does not specify the restriction fully
in public [5]. In the absence of official specification,
there have been several conjectures regarding the Twitter
follow-limit [6, 7]. We here mention two commonly ac-
cepted versions. Let the number of followers (in-degree)
of memberu be denoted byuin. Then the maximum
number of members whomu can herself follow (maxi-
mum possible out-degree), denoted byumax

out , is:

• version 1 (known as the ‘10% rule’):

umax
out = max{2000, 1.1 · uin}

• version 2:

umax
out =

{

2000 + 0.1 · uin if uin < 2000
1.1 · uin if uin ≥ 2000

Both versions imply that if a user wants to follow (out-
degree) more than 2000 people, she needs to have at
least a certain number of followers (in-degree) herself.
A closer look shows that version 1 is a much stringent
restriction as compared to version 2. For example, ifu
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is already following 2000 members and wants to follow
one more,u requires to have at least 1820 followers by
version 1, but just 10 followers by version 2. Ifu her-
self has more than 2000 followers, both versions behave
identically by limiting the number of people thatu can
follow to 110% of the number of followers ofu.

3 Methodology for Data Collection

We collected empirical data of the Twitter network using
the Twitter API functions [2]. The Twitter social net-
work has now grown to an extent (more than 50 million
users) that makes collecting the entire network practi-
cally infeasible (contrary to what could be done [12] in
2007). Moreover, the collection of Twitter network data
is also constrained by the rate limits enforced by Twitter:
at most 150 API calls can be made in an hour [3]. Hence
recent studies on Twitter [19] have to resort to obtaining
only a sample of the Twitter network.

We used the Twitter API to collect the information of
users by a breadth-first search (BFS) starting from a des-
ignated user in the network (also known as the snowball
sampling method). The duration of data gathering was
from October 23 to November 8, 2009. The BFS was
continued until 1 million unique users were discovered;
this seemed to us to be a reasonable sample size to be a
representative of the entire network. The profile infor-
mation collected for each user includes her number of
friends, number of followers, number of tweets posted
and other information such as the date of creation of the
account and her geographical location.

It has been demonstrated in [16] that a property of the
sample obtained by the partial BFS crawl method em-
ployed by us can be estimated to be similar to the corre-
sponding property of the entire network, if the property
of interest reaches a stable regime as the size of the sam-
ple grows during the measurement. We have verified that
the properties of interest in this paper, i.e. the in-degree
and out-degree distributions, of the first 25%, 50% and
75% of the network crawled by the BFS sampling tech-
nique are very similar to those of the total sample. Hence
it may be concluded that the properties of the degree dis-
tributions of the crawled sample, as discussed in the next
section, are likely to be similar to those of the entire Twit-
ter network.

We also conducted a set of separate, smaller crawls
of the Twitter network in the months of January and
February, 2010. These crawls were started from ran-
domly selected nodes (i.e. Twitter users), and each crawl
was configured to crawl up to 50,000 nodes. We found
that the in-degree and out-degree distributions of each of
these smaller samples preserve the major characteristics
of those of the largest sample.
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Figure 1: Scatter plot of number of followers and number
of friends of Twitter users (a) Data collected in Oct-Nov,
2009, along with the linesx = 1.1 · y andx = 2000
(b) (inset) Data collected in Jan-Feb, 2008 (reproduced
from [14])

4 Characterization of Twitter

This section discusses the statistics of the number of
followers (in-degree) and friends (out-degree) of users in
the Twitter social network, as obtained from the crawled
empirical data. The effect of the restriction imposed by
Twitter is clearly demonstrated through these statistics.

Scatter plot
Fig. 1 shows the scatter plot of the followers / friends
spread in the Twitter dataset obtained by our crawl in
October-November 2009. To exhibit the effect of the im-
posed restriction, the scatter plot obtained from the data
collected in January-February 2008 (which was before
the restriction was enforced) is reproduced from [14] in
fig. 1(b) (inset).

Several changes in the character of the Twitter social
network can be clearly identified from the scatter plots in
fig. 1. First, an idea of the recent exponential growth in
the size of the Twitter network can be obtained by com-
paring the maximum values on either axis in fig. 1(a) and
fig. 1(b) (inset): whereas the maximum follower-count
and friend-count was close to ten thousand in early 2008,
the corresponding values are over 1 million in late 2009.

Secondly, the scatter plot in 2008 (fig. 1 inset) is seen
to be symmetrical aboutx = y for the entire range of
x (number of friends), but the scatter plot in 2009 has a
sharp edge at the abscissa corresponding to 2000 friends.
This is a consequence of the restriction imposed by Twit-
ter on the number of friends - only a small fraction of
members (about 6.68% in our dataset) have more than
2000 friends. It is also evident from fig. 1 that the mem-
bers who have more than 2000 friends need to have a
sufficient number of followers, such that their number
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Figure 2: Distribution of number of followers (in-degree)
in Twitter and power-law fitpk ∼ k−1.0 below 2000

of friends remains less than 110% of their followers; the
data points corresponding to most of these users lie to the
left of thex = 1.1 ·y line, verifying the ‘10-percent rule’
explained earlier.

It is seen from fig. 1(a) that there exists a small frac-
tion of members (less than 0.4%) in the crawled dataset
who seem to violate the restriction, specially at higher
values ofy (= number of followers): these members
correspond to the data points lying to the right hand side
of the x = 1.1 · y line. On verifying these accounts
in our dataset, it is seen that several of these member
accounts have been created before the restriction was
imposed. For the others, it seems that Twitter allows
some relaxation of the restriction for popular members
who have a relatively large number of followers, on case
by case basis. The lack of official specification of the
restriction from Twitter disables us from gaining a better
understanding of this fraction of members.

Degree Distributions
The in-degree distribution (distribution of the number of
followers) of the empirical Twitter data is shown in fig. 2,
while fig. 3 shows the out-degree distribution (distribu-
tion of the number of friends). All distributions are plot-
ted using log-log scale. Both the in-degree distribution
and the out-degree distribution indicate that a very large
fraction of Twitter users have very low number of follow-
ers / friends. These correspond to the inactive members,
i.e. members who are not interested in creating follow-
links with others.

The in-degree distribution shows a power-law decay
pk ∼ k−1.0 for a significant range of the in-degree below
2000, as shown in fig. 2; but it deviates from power-law
for low values of in-degree as well as for very high values
of in-degree. This scale-free nature of the in-degree dis-
tribution, as observed in our dataset, agrees with results
obtained from earlier studies [12] on Twitter.
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Figure 3: (a) Distribution of number of friends (out-
degree) in Twitter and power-law fitpk ∼ k−1.0 below
2000 (b) (inset) The discontinuity in the cumulative out-
degree distribution around 2000

The out-degree distribution, fig. 3, clearly shows the
effect of the restriction on the number of friends: the
distribution shows a power-law decaypk ∼ k−1.0 for
out-degrees below 2000, but a sharp spike is observed at
around the degreek = 2000, corresponding to an un-
characteristically large fraction of members having near
about 2000 friends. This is due to the existence of a sig-
nificant fraction of members who are unable to increase
their number of friends beyond a certain limit near 2000,
because they do not have a sufficient number of follow-
ers. The same observation is reflected as a discontinuity
in the cumulative out-degree distribution - the fraction
of members having more thank friends drops abruptly
aroundk = 2000, signifying the relatively large fraction
of members having out-degree near 2000. The cumula-
tive out-degree distribution for the range [1900, 2100] of
out-degree is magnified in fig. 3(b) (inset) to show the
discontinuity. To the best of our knowledge, this change
in the out-degree distribution of Twitter as a result of the
imposed restriction is first being reported in the current
study.

Fig. 3(a) also shows an uncharacteristically large frac-
tion of members having 20 (or a few more than 20)
friends. This can be explained by the fact that when a
new member joins the Twitter network, Twitter recom-
mends a set of 20 existing members for the new mem-
ber to follow. It is likely that a substantial number of
new members choose to follow all of these 20 recom-
mended accounts; again, many of them become inactive
without creating any more follow-links (or, after creating
a few more follow-links), thus resulting in a relatively
large number of members having near about 20 friends.
A study of the members having 20 or 21 friends, in our
dataset, reveals that a large majority of these accounts
have posted less than 10 tweets in their entire lifespan,
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thus supporting the claim that they are inactive members.
From the out-degree distribution of the Twitter net-

work given above, it is evident that the topological prop-
erties of OSNs can change significantly due to imposed
restrictions on node-degree. The primary motivation of
the present work is to formulate an analytical framework
to study the effects of such restrictions on the degree-
distribution of a network, as presented in the next sec-
tion.

5 Framework for modeling restricted
growth dynamics of OSNs

In this section, we develop a framework to model the
restricted growth of OSNs in general and Twitter in par-
ticular. For this, we need to model the growth dynamics
of OSNs (i.e. dynamics of new members joining the net-
work, and creation of friendship-links among members),
and then study the effect of the imposed restrictions on
the topological properties that emerge due to the growth
dynamics.

We model the growth dynamics of OSNs by thepref-
erential attachmentgrowth model [8] in which new links
are attached preferentially to members who already have
a large number of links. The justifications for this choice
are as follows. Preferential attachment has been shown
to occur in several OSNs [15, 17]. Moreover, preferential
attachment is known to produce power-law degree dis-
tributions, as is seen in the samples of Twitter network
obtained both in our study (detailed in section 4) and in
earlier studies on Twitter [12].

In case of directed networks such as Twitter, the pref-
erential attachment model can be divided into two parts:
(i) preferential creation of links, where members create
new links in proportion to their out-degree, and (ii) pref-
erential reception of links, where members receive new
links in proportion to their in-degree. The intuitive expla-
nation for these aspects is that a member who already has
many out-links (friends) is socially more active, hence
she is more likely to create more out-links; similarly a
member who already has many in-links (followers) is a
popular member and hence is more likely to get new fol-
lowers.

We customize the growth model proposed by
Krapivsky et. al. [13] (henceforth referred to as the
KRR model) which was originally proposed to explain
the in-degree and out-degree distributions of the world-
wide web using preferential attachment. The process of
a web-page having a hyper-link to another is analogous
to the process of a user being a follower of another. Just
as a well-known web page is more likely to have new
web pages linking to it, a popular user with many fol-
lowers is more likely to be followed by new members.

Conversely, just as a web page with many outgoing hy-
perlinks is more likely to create even more hyperlinks,
a socially active member who follows many members is
more likely to follow others.

We modify the KRR model by introducing restrictions
on the out-degree of nodes, similar to the follow-limit
imposed by Twitter. However, the modified model is
general enough to be used to model different types of
restrictions on node-degree that can be introduced in
OSNs, as explained below.

The modified KRR model
In this model, network growth occurs in two distinct
steps. At each discrete time step, one of the following
events occurs: (i) with probabilityp, a new node is in-
troduced and it forms a directed out-edge to an existing
node, or (ii) with probabilityq = 1 − p, a new directed
edge is created between two existing nodes.

Theattachment rateA(i, j), defined as the probability
that a newly-introduced node links to an existing(i, j)-
node (i.e. a node of in-degreei and out-degreej), is
assumed to be an increasing function ofi (preferential
creation) but independent ofj:

A(i, j) = Ai = i + λ (1)

This is analogous to the intuitive idea that when a new
memberu joins an OSN (Twitter), she is more likely to
form a connection to (follow) a popular memberv having
many followers, but the number of people followed byv
is not likely to influence the choice ofu.

Thecreation rateC(i1, j1|i2, j2), defined as the prob-
ability that an edge is created from a (i1,j1)-node to a
(i2,j2)-node, is assumed to be an increasing function of
j1 (preferential creation) andi2 (preferential reception),
but is independent ofi1 andj2:

C(i1, j1|i2, j2) = C(j1, i2) = (i2 + λ)(j1 + µ) (2)

This again follows the intuition that ifu is a socially ac-
tive member who follows many people already, she is
more likely to follow another memberv (especially ifv
is popular herself, having many followers); however,u’s
decision to followv is not likely to be influenced by the
number of followers ofu, nor by the number of people
whomv follows.

In the above equations,λ andµ are model parame-
ters that introduce randomness in the preferential attach-
ment rules. They must satisfy the constraints,λ > 0
andµ > −1, to ensure that the corresponding probabil-
ities are positive for all permissible values of in-degree
and out-degree,i ≥ 0 andj ≥ 1 (all nodes enter with
out-degree 1).

Let Nij(t) denote the average number of nodes in the
network, having in-degreei and out-degreej at timet.
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With the addition of a new node (with probabilityp) or
a new edge (with probabilityq = 1 − p) at timet, the
numberNij may change due to the following events:
(i) change in in-degree of(i − 1, j)-nodes and(i, j)-
nodes, and (ii) change in out-degree of(i, j − 1)-nodes
and(i, j)-nodes. These events are discussed individually
below.

The numberNij of (i, j)-nodes increases when a new
edge is created leading to a(i−1, j)-node (of which there
areNi−1,j in number); this can happen due to a new node
linking to a(i− 1, j)-node (with probabilityp) or due to
the creation of a new edge leading to a(i − 1, j)-node
(with probabilityq = 1 − p). When the attachment and
creation rates are given by equations 1 and 2 respectively,
this increase occurs with the rate(p+q)(i−1+λ)Ni−1,j ,
divided by the normalization factor

∑

ij(i + λ)Nij =
I + λN , whereN(t) is the total number of nodes in the
network at timet, andI(t) is the total in-degree in the
network at timet.

On the other hand, the numberNij of (i, j)-nodes gets
reduced when a new edge is created leading to a(i, j)-
node; this can happen due to a new node linking to a
(i, j)-node (with probabilityp) or due to the creation of
a new edge leading to a(i, j)-node (with probabilityq =
1 − p). Hence, this reduction inNij occurs with the rate
(p+q)(i+λ)Nij/(I+λN). Since(p+q) = 1, therefore
the rate of change inNij(t) due to change in in-degree
of nodes is as given in eqn. 3.

dNij

dt in
=

[

(i − 1 + λ)Ni−1, j − (i + λ)Nij

I + λN

]

(3)

Similarly, there is a gain inNij when a(i, j − 1)-node
forms a new out-edge (this event occurs with the rate
q(j − 1 + µ)Ni,j−1/(J + µN), whereJ(t) is the total
out-degree in the network at timet); and there is a loss
in Nij when a(i, j)-node forms a new out-edge (with
the rateq(j + µ)Ni,j/(J + µN)). These events can oc-
cur only due to creation of links among existing nodes,
hence the rates are multiplied by the probabilityq. Since
the change in out-degree of nodes is restricted due to im-
posed limits (as in Twitter), the rate of change inNij(t)
due to change in out-degree of nodes is as given in eqn. 4.
The termsβij capture the effects of the restriction; their
significance is explained below.

dNij

dt out
= q

[

(j − 1 + µ)Ni,j−1βij − (j + µ)Nijβi,j+1

J + µN

]

(4)
Thus the total rate of change in the numberNij of

(i, j)-nodes is given by eqn. 5.

dNij

dt
=

dNij

dt in
+

dNij

dt out
+ pδi0δj1 (5)

The last term in eqn. 5 accounts for the introduction
of new nodes with in-degree zero and out-degree

one, with a probabilityp at every time-step.δi0 is 1 for
i = 0 and 1 otherwise;δj1 is 1 forj = 1 and 0 otherwise.

Incorporating restrictions in the model
The βij terms in eqn. 4 capture the effect of the im-

posed restrictions on the growth dynamics. It is to be
noted that since Twitter in particular imposes the restric-
tion only on out-degree of nodes, theβij factors ap-
pear only in eqn. 4. This model can be easily modified
to study restrictions imposed on in-degree of nodes (or
total-degree, as is done in OSNs like Orkut and Face-
book) by including similarβij terms in eqn. 3.

The role of theβij terms in eqn. 4 is explained as fol-
lows. Due to the imposed restriction (e.g. the Twitter
follow-limit), only a fraction of the existing nodes can
create new out-links, andβij is defined such that it equals
1 only for this fraction of nodes. In other words,βij is
defined to be 1 if and only if members having in-degree
i are allowed (by the restriction) to have out-degreej.

Theβij terms can be defined according to the restric-
tion that needs to be studied, thus making this model suit-
able to study restrictions of different types. Let us take
the example of the Twitter follow-limit. To generalize
the model, letkc denote the out-degree at which the re-
striction starts and let the restriction be generalized to an
‘α-percent rule’ (kc = 2000 andα = 10 for the real-world
Twitter network).

To study version 1 of the Twitter follow-limit (see sec-
tion 2),βij is defined as:

βij =

{

1 if j ≤ max{ kc, (1 + 1

α
)i }, ∀i

0 otherwise

Similarly, in order to study version 2 of the Twitter
follow-limit (see section 2),βij can be defined as:

βij =







1 if i < kc andj ≤ kc + 1

α
i

1 if i ≥ kc andj ≤ (1 + 1

α
)i

0 otherwise

As a third example, a ‘hard’ cut-off at out-degreekc

can be studied using this model simply by definingβij

as

βij =

{

1 if j ≤ kc, ∀i
0 otherwise

Significance of the model parameters
The model described above has three growth parameters,
namely,p (the probability of introduction of a new node),
λ andµ (randomness factors in preferential attachment),
along with the two parametersα andkc that are specific
to the restriction imposed in Twitter. The significance of
α andkc is obvious from the description of the ‘soft’ cut-
off limit imposed in Twitter. The role of the three growth
parameters in modeling the dynamics observed in OSNs
in general are as follows.
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Figure 4: Agreement of simulation and theoretical model
for restricted growth of networks (Twitter restriction on
out-degree). Parameters:p = 0.01,λ = µ = 1.0, kc = 50,
α = 10 (a) out-degree distribution (b) (inset) in-degree
distribution

The parameterp controls the relative number of nodes
and edges, i.e. the density of the network. According
to the dynamics of the model, the average in-degree and
average out-degree are both1/p [13]. A study [10] on
Twitter in January 2010 reports that the growth (i.e. new
members joining) of Twitter has slowed down consider-
ably in the later half of 2009, but the average number of
friends and followers of users have increased. Such ef-
fects can be incorporated into the model by tuning the
value ofp (or even varying it over time).

The parametersλ andµ indicate how closely the dy-
namics of link-formation in an OSN follow the preferen-
tial attachment model (lower values indicate more close-
ness to preferential attachment). Though the dynamics of
several OSNs have been found to be in close agreement
with the preferential attachment model [15, 17], estimat-
ing these parameters for a real-world OSN is a challeng-
ing issue. Moreover, these parameters can change with
time in a real-world OSN, e.g. due to the recommenda-
tion of selected existing members to new members (as
done in Twitter).

6 Results

This section discusses the results obtained using the the-
oretical model developed in the previous section. Since
experiments in the scale of the empirical data collected
from Twitter would be too time-consuming, hence the
results given are from experiments performed at a much
smaller scale (as indicated by the parameter values),
however this does not affect the generality of the results.

The parameterp is set to 0.01 throughout all exper-
iments unless otherwise stated, in order to have the
average in-degree / out-degree in the same order as that
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Figure 5: Effect of different forms of restrictions on out-
degree distribution (log-log plot). Clockwise from top-
left: (a) No restriction, power-law fit withγ = -2.02 (b) A
‘hard’ cut-off,γ = -1.2 (c) Twitter restriction version 1,γ
= -1.1 (d) Twitter restriction version 2,γ = -1.1. Param-
eters:p = 0.01,λ = µ = 1.0,kc = 100,α = 10

has been recently reported for Twitter [10].

Validation of theoretical model
We validate the theoretical model developed in section 5
by simulating the restricted emergence of the network.
The stochastic simulation is continued until the total
number of nodes in the network is 10000 and we
perform 100 individual realizations and plot the average
degree distributions. Eqn. 5 is solved iteratively until the
Nij values reach a steady state, and the in-degree (out-
degree) distribution is computed asN in

i (t) =
∑

j Nij(t)

(Nout
j (t) =

∑

i Nij(t)). Fig. 4 shows that the agree-
ment between the theory and the simulation results is
exact, which validates the correctness of the proposed
theoretical framework.

Different types of restrictions
Figs. 5(b,c,d) show the effect of the different forms of
restrictions discussed in section 5 on the out-degree dis-
tribution, along with the out-degree distribution in the ab-
sence of any restriction 5(a). It is evident that ‘hard’ cut-
offs block a much larger fraction of users as compared to
the ‘soft’ cut-off imposed by Twitter, thus justifying their
criticism from users of popular OSNs.

Power-law fits to the distributions are also shown in
fig. 5. The ‘hard’ cut-off reduces the absolute value of
the power-law exponent (γ) in the out-degree distribu-
tion from 2.02 (in absence of cut-off) to 1.2, i.e. the out-
degree distribution becomes flatter, as seen in fig. 5(b).
Similar reductions inγ have been reported for cut-offs in
peer-to-peer networks [11]. The ‘soft’ cut-offs imposed
by Twitter further reduce the absolute value ofγ to 1.1
in the region below the cut-off (fig. 5(c) and fig. 5(d)).
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ter restriction (version 1), as a fraction of total nodes
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A smaller absolute value ofγ indicates a more homoge-
neous structure of the network with respect to degrees.
This provides scalability to OSNs as messages produced
will get equitably distributed among various users, and
hence various servers, and would not be directed towards
a small group of users (servers).

Also, version 1 of the Twitter cut-off is verified to be
a stricter cut-off than version 2, as reflected by the much
higher spike in fig. 5(c) compared to that in fig. 5(d)
(signifying a larger fraction of nodes that get blocked).
It is to be noted that the out-degree distribution predicted
by our model for the Twitter restrictions has a power-law
coefficient (γ = -1.1) that is very similar to that of the
empirical Twitter data (γ = -1.0, as reported in section 4).

Effects of the network dynamics
We study the effects of the network dynamics by mea-
suring the fraction of nodes that can cross the restriction,
for various values of the parametersλ, µ andp (whose
significance are explained in section 5).

Fig. 6(a) plots the number of nodes which can cross
the Twitter cut-off (version 1), as a fraction of total nodes
in the network, for different values ofλ = µ in the range
1.0 to 120.0 (or a few in this range). Since empirical
estimates of these parameters are not available, we have
takenλ = µ in all cases, but this can be varied if nec-
essary. The fraction of nodes crossing the cut-off in-
creases rapidly withλ (= µ) for their lower values, but
stabilizes for higher values ofλ (= µ). This can be ex-
plained as follows. For very low values ofλ (= µ), the
dynamics is almost fully preferential, hence only the very
popular members (having high in-degrees) can cross this
limit. As λ (= µ) increases, the randomness in the dy-
namics increases and a larger fraction of nodes can attain
in-degrees that enable them to cross the cut-off. This
reaches a stability when the system becomes highly ran-
dom.

Fig. 6(b) plots the fraction of nodes which can cross
the Twitter cut-off (version 1) for different values ofp
in the range 0.01 to 0.1 (or a few in this range). We
use different values ofλ = µ in the range 1.0 to 30.0 to
investigate varying link-creation dynamics ranging from
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ter restriction (version 1), as a fraction of total nodes
(a) variation withα (b) variation withkc
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nodes which approach the cut-off (a) variation withα
(b) variation withkc

close matches to preferential attachment (λ = µ = 1.0) to
more random dynamics (λ = µ = 30.0). As the value of
p increases, there is lesser activity (and more growth) in
the network, hence a smaller fraction of nodes approach
the cut-off; this results in a sharp decay in the fraction of
nodes crossing the cut-off, for all cases ofλ = µ.

Choice of cut-off parameters
The proposed model can also be used to design func-
tions with varying levels of difficulty in overcoming the
restriction, as discussed below. Fig. 7 plots the number
of nodes which can overcome restrictions similar to the
Twitter cut-off (version 1),as a fraction of the total num-
ber of nodes. Different values of the restriction param-
etersα (fig. 7(a)) andkc (fig. 7(b)) are used to exper-
iment with restrictions of different rigidity. Again, we
use different values ofλ = µ in the range 1.0 to 30.0 to
investigate varying link-creation dynamics.

As seen from fig. 7(a), the fraction of nodes overcom-
ing the limit doesnot change appreciably withα for
any of the cases. However, for more random dynam-
ics (relatively higher values ofλ = µ), the fraction of
nodes overcoming the limit falls rapidly with increase in
kc (fig. 7(b)). Thus the importance ofkc in the restriction
function is to limit the fraction of members in the whole
network, that are able to cross an imposed cut-off.

The number of nodes which can overcome restrictions
similar to the Twitter cut-off (version 1),as a fraction of
the number of nodes which approach the cut-off, is plot-
ted in fig. 8. The number of nodes which approach the
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cut-off is measured as the sum of the nodes which get
blocked at the cut-off and those that cross the cut-off. In-
terestingly, this fraction of nodes is seen to be relatively
invariant withkc (fig. 8(b)); instead, it reduces with the
increase inα, specially in the rangeα < 10 (fig. 8(a)).
Hence the parameterα is more effective in deciding what
fraction of the members who approach the cut-off are
able to overcome it. Moreover, this fraction seems to
stabilize for the rangeα > 10; this may be a possible jus-
tification of the fact that Twitter uses the valueα = 10.

Interestingly, the fraction of nodes that are able to
overcome the Twitter limit (version 1), for the caseλ =
µ = 1.0, as predicted by our model (0.03 - 0.04), is in the
same order as the corresponding fraction obtained from
the empirical data collected from Twitter (0.0668).

Summarizing, the interpretation of the theoretical
model points to several interesting results such as (a) cut-
offs make the network homogeneous and eases the pres-
sure on hubs, (b) preferentiality hinders users from cross-
ing the restriction, (c) the fraction of users crossing the
restriction is almost independent of the parameterα,
while (d) the fraction of users stopped by the restriction
is independent of the parameterkc. As such, we feel that
this nature of analyses and the interesting observations
would be required by the popular OSNs in the recent fu-
ture, in order to design limits that reduce spam and strain
on the system, without affecting legitimate users of the
OSN.

7 Conclusion

We summarize the main contributions of the paper. The
effects of restrictions on node-degree, on the topologi-
cal properties of an OSN are studied, taking Twitter as
a case-study, and an analytical framework is developed
that can be used to study the effects of different forms of
such restrictions. We demonstrate how this framework
can be used to experiment with different forms of restric-
tions and growth dynamics and identify suitable values
for restriction parameters.

For the sake of simplicity, the model developed does
not consider some of the dynamics in the Twitter OSN,
such as the recommendation of friends to new users
(which may explain the large fraction of users found to
have 20 friends), and the convention of ‘following-back’
that is adopted by many Twitter users. Such factors can
be incorporated in future models of Twitter. Also a study
that formally relates the degree distributions emerging in
OSNs due to the imposed restrictions with the improve-
ment in performance needs to be undertaken. More im-
portantly, this first line of defence (restrictions) needs
to be effectively combined with other (anti-spam) tech-
niques to build up a robust spam-filtering system. We
plan to pursue these as future work.
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