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Chapter 1

Introduction

Researchers in artificial life conceive the universe as a computer implementing transforma-
tions of information. If the universe can be viewed as a computation, it should be possible to
build computing models of physical systems of the universe [53]. Many people in Artificial
life have been enamored of a mathematical formalism of computing model known as the
Cellular Automata. This modeling tool can be regarded as parallel processing computer.
In an abstract sense, it can be also viewed as a logical universe with its own local physics
and with emergent structures as artificial molecules. The researchers have explored the
possibility of building Cellular Automata model having the capacity for self-reproduction
and other essential functions of biomolecules leading to the possibility of life-like behavior.
As a result, Cellular Automata (C'A) came to be just as essential to the study of physical
systems as the microscope was to study microbes and the telescope to the exploration of
deep space.

The cellular automata (C'A) is sufficiently complex to develop an entire universe as so-
phisticated as the one in which we live. Our own universe might be thought of as one
mammoth Cellular Automaton. C' A allows a programmer to specify rules for local interac-
tion between ‘cells’ on a lattice-like grid and to study the emergent consequences of those
rules. Von Neumann [40] [52] first envisioned that proper specification of rules empower
C A to build models simulating bacterial growth, the growth of patterns on seashells, fluid
dynamics, and the voting patterns of individuals who made decisions based on their local
neighbors.

One of the most important milestones in the history of development of the simple homo-
geneous structure of cellular automata is due to Wolfram [54]. The suggested simplification
leads to a one/two dimensional structure of simple cells, each having only two states with
uniform three-neighborhood dependence. This simplified structure motivated a number
of researchers [9] to undertake the study of C A behavior with Linear/Additive next state
function amenable for matrix algebraic analysis. This new group of researchers explored
innovative applications of this simple, regular, modular, and cascadable structure of C A
machine.



However, some important theoretical constraints and design issues partially restrict the
capability of this modeling tool. The construction/synthesis/search of Cellular Automata(C'A)
having the ability to simulate a given modeling task is extremely difficult. Scientists have
emulated the evolution mechanism of the living organisms of the universe to solve this hard
problem. Evolution is mostly directed by the popular genetic algorithm whose underlying
philosophy is survival of the fittest. The fitter rules slowly overpower the less fit rules to
arrive at the C'A with the desired configuration. In order to implement genetic algorithm,
the rules of C'A are encoded in chromosome format. The scheme is termed by a variety of
name like EVCA, CAGA etc [36].

However, the scheme suffers from a few inherent problems, discussed next. First, in
order to find the fit rules, GA has to traverse a huge search space. For example, in an
n-cell C A, if each cell has a modest 256 different rule options, the search space becomes a
staggering 256™. Secondly, specific to a problem, we can analytically discard many of the
rules/ rule sequences. Alternatively, we may be able to specify the particular rule sequences
as candidate solutions of the problem. However, when we implement genetic algorithm, it
is difficult for the designer to accommodate such analysis into consideration. The genetic
algorithm has to consider all those discarded rule sequences as the candidate solution to
the problem.

In order to overcome the above problems, one of the major challenges in the research of
C A evolution is to develop schemes which can initiate evolution within a sub-class of C'A.
A subclass differ from a class of C'A in the sense that not only its state transition behavior
depends upon a subset of rules but it also depends upon the sequence in which the rules
are arranged. The conventional chromosome operations of GA cannot be applied for such
solution, since a different sequence of the bits of the same chromosome will take us out
of the search domain. The thesis handles this problem in the domain of Linear/Additive
Cellular Automata and shows that vector algebraic analysis embedded in genetic algorithm
can drastically reduce the search space.

The last decades of twentieth century have witnessed a colossal stride in the power of
computation and communication leading to Internet Technology. While pushing human
civilization to new heights, such a large stride has opened up new challenges to the human
society of cyber age. One of the major challenges we are facing is the exponential explosion
of data in every field of our daily life. The need of the hour is to have good knowledge
extraction methodology to extract meaningful and perceptible information from the large
volume of data that are apparently uncorrelated and random in nature.

In the above context, Pattern Recognition/Classification has become an extremely im-
portant class of problem of the internetworked society of the twenty first century. In this
class of problems, a machine identifies patterns of interest from its background. Several
type of machines, most notable among them is neural network, has been proposed and
widely used for solving Pattern Recognition/Classification problems. However, in order to
tackle the large volume of data-set and as well as to have fast decisions, high speed, low
cost hardwired implementation of Pattern Recognition & Classification algorithm/machine



is a necessity. The sparse network of cellular automata (C A) holds enormous importance
and potential in this domain.

The thesis reports a comprehensive approach in tackling the problems of Pattern Recog-
nition and Classification. The versatility of C A modeling tool is explored in this dissertation
to identify special subclasses of Linear/Additive C A which can perform Pattern Recogni-
tion/Classification task. A framework for efficient evolution of desired with required con-
figuration has been proposed.

1.1 Aim of the dissertation

The major focus of this dissertation is to explore the applications of the powerful mod-
eling tool of Cellular Automata in two important areas - Pattern Classification and Pattern
Recognition. This demands a framework of C'A evolution to meet the challenges of such
ubiquitous applications. In order to design efficient evolutionary algorithms, an analytical
foundation for characterization of Linear/Additive C'A is an essential prerequisite.

In the above background this thesis concentrates on building the theoretical framework
for complete analysis of C' A state transition behavior in terms of its cyclic/non-cyclic vector
subspaces. The solution to the reverse problem of C' A synthesis is also necessary to realize
the stated objective of this dissertation.

Once the theoretical foundation of C'A analysis and synthesis is laid down, the framework
for C A evolution is developed. The framework enables evolution of different types of C'A.
The evolution scheme enables us to direct search within Group C'A - that is, the sub-class
of C'A whose state transitions always form cycles. The scheme can be further extended to
direct search within a special type of Group C'A to drastically reduce the search space. A
special sub-class of Non-Group C'A which forms basins of attraction has been also evolved
with the framework. The evolution scheme can be directed in such a manner so that the
number of basins either dynamically changes over generations or it remains same throughout
the period of evolution.

The evolution of Non-Group Linear/Additive C'A has provided the platform to build the
C A based model for design of a general Pattern classifier. The same sub-class of Non-Group
C A is also used to model associative memory.

Non-Linear C'A evolved with the framework adds versatility and strength to the C A
model. This model has been also employed for design of associative memory and its con-
sequent application for Pattern Recognition. The comparison between the two models of
associative memory realized through Linear and Non-Linear C'A has been also investigated.

1.2 Organization of the Dissertation

Prior to dealing with C'A theory and its applications we have reported in this dissertation,
a comprehensive survey of the relevant research publications is undertaken. The survey
reported in Chapter 2 covers the following aspects:

(i) a general study of Linear/Additive C 4;



(ii) application of Genetic Algorithm for C'A evolution;

(iii) the schemes employed to address Pattern Recognition/Classification problems, their
strength and weakness; and

(iv) C A application reported so far to solve Recognition/Classification problems

Chapter 3 reports the complete characterization of an Additive C' A in terms of its vector
subspaces. The chapter establishes an analytical framework to study the state transition
behavior of a Linear/Additive C A in terms of its cyclic and non-cyclic subspaces.

If analysis is viewed as one side of a coin, its reverse is ‘Synthesis’. The Chapter 4
presents the schemes for synthesizing a Linear/Additive CA from the given cyclic/non-
cyclic structure of its state transition behavior.

Once the general analysis and synthesis methodologies are in place, we start charac-
terizing special sub-classes of Linear C A and start building their applications. Two most
important applications of the internetworked society of twenty-first century are addressed in
subsequent chapters. These are Pattern Classification and Pattern Recognition. A special
class of Non-Group C'A termed as Multiple Attractor Cellular Automata(M AC A) is found
capable of performing the above two tasks.

Chapter 5 establishes Multiple Attractor Cellular Automata(M ACA) as a special type
of hash family named as Hamming Hash Family(HHF'). The probability of collision of
two patterns in HHF' varies inversely with the hamming distance between them. Beside
establishing the property of M AC A, this chapter also reports a special type of Constrained
Genetic Algorithm which ensures the directed search be restricted within the M AC A family
and consequently evolve the desired M AC A required for a specified problem.

In Chapter 6 we report two important applications of M ACA. The first application is
design of a M AC' A based Pattern classifier. The basic scheme is of a two class classifier
which have been hierarchically employed to design a set of M AC A for classifying patterns
of multiple classes. Secondly, the basins of attraction of M AC A has been used for building
associative memory model. The performance of M AC A-based associative memory has been
enhanced by developing a system comprising of multiple M AC A instead of single M AC A.
Majority voting by such multiple M AC'A enhances noise immunity of the system. Various
aspects of this associative memory model and its application for Pattern Recognition is the
major focus of this chapter.

We have so far dealt with the evolution of Non-Group C'A. While extending the study for
Group C A evolution, we observed an interesting phenomena, of practical relevance. Pseudo-
random patterns are employed in many applications such as simulation, testing V LSI
circuits etc. Some of these applications demand generation of pseudo-random patterns
without a given set of prohibited patterns. Group CA have been evolved in Chapter 7
to address this specific problem, that is generation of patterns without a given prohibited
pattern set while maintaining the desired pseudo-random quality. The solution proposed
has its direct relevance for design of Pseudo-Random Pattern Generator for testing V LST
circuits.



All the earlier chapters have dealt with Linear/Additive C' A that employ XOR/XNOR
CA rules characterized in Chapter 2,8,4 . On the other hand, Non-Linear CA employs
Non-Linear rules that are not amenable to such analysis. So Non-Linear C'A are evolved
with Genetic Algorithm to design generalized M AC A referred to as GM AC A. The Chapter
8 establishes GM AC A as an efficient model of an Associative Memory. The experimental
results of the two models of associative memory - GM AC A and Multiple M AC A - are next
subjected to comparative study.

The final chapter concludes the thesis and points out the future direction of research.



Chapter 2

Survey



Terminologies

f(z)
cs

PFCS

4§ Factor Set

Characteristic polynomial of the Characteristic Matrix T'

Cycle Structure generated by a C'A

No. of elementary divisors in a characteristic polynomial.

No. of PFCS comprising an LC' A

The length of the i*» primary cycle

Cycle length of secondary cycle generated out of i** primary cycle
with length k;, 7 is an integer

Primary Cycle Structure representing the cycle structure arising

from a single elementary divisor ¢;(z)™

Primary Family Cycle Structure - Cycle structure arising from a set of
elementary divisor set [¢(z)™ - ¢(x)"2 - - - p(x)™V] each elementary divisor
having the same primary cycle

The factors of an elementary divisor ¢;(z)™ starting from 2/~! to 2.
Important point to be noted all these factors produce the same cycle
length 27 - k;, where k; is the primary cycle of the factor.

Cardinality of the j*» Factor Set in a single elementary divisor.
Cardinality of the j** Factor Set in a set of elementary divisors -

each having same primary cycle

where Sy; ;. means number of states covered by cycle length (< 27 - k;),
that is Sojp, = 37— paig; X (27 - ki)



Chapter 3

GF(2) Cellular Automata -
Analysis

A comprehensive survey of Cellular Automata (CA) as a computing model and its appli-
cations in diverse fields is presented in Chapter 2. A breakthrough in the study of CA
was initiated with the introduction of local neighborhood C'A with 2-state per cell whose
operations are defined over the Galois Field 2 and is referred to as GF(2) CA. It has a
simple elegant structure. In recent years it has been proposed as a powerful modeling and
computing paradigm [6, 19, 13, 15, 38]. However, while developing C A based models it has
been observed that much more deep insight into the GF(2) C'A is needed to exploit the full
potential of this class of CA. Although, there are various studies which confirm the abso-
lute rich variety in the state transition behavior of GF(2) C'A, scientists fail to artificially
synthesize a desired state transition behavior required to map a particular problem. This
prompts us to develop methodology to synthesize GF(2) C A for a given state transition
behavior. This chapter and the chapter next is specifically aimed to solve the problem.

In order to achieve the aim of synthesis a more detailed characterization of GF(2)
CA is required. The GF(2) CA has an important subclass of namely Linear Cellular
Automata(LC A)- the CA which uses XOR logic to generate its next state function. The
characterization of linear C'A, the most important subclass of GF(2) C'A has been widely
done by [51] as part of his exploration of linear machine and later by [9, 17]. We take a
more detailed look into the characterization, dig out some hindsight from the established
results. However, the characterization of the more generalized class of C'A - the Additive
Cellular Automata(ACA) - the CA which uses both XOR and XNOR logic as its next
state function - hasn’t been done so far, we in this chapter do a thorough characterization
of additive C A.

In the above background this chapter is organized as follows. In order to develop the
vector space theoretic analysis of GF(2) C A, we report the GF(2) C A preliminaries from
[9, 46] in Section 3.1. The vector space theoretic analysis of LC' A, the essence of which
is reported in [9, 50], is noted in Section 3.2. However, in this section, we reorient the



algorithm in such a fashion such that it provides insight to the reverse problem of synthesis
in the next chapter. The vector space theoretic analysis of ACA is reported in Section 3.3

3.1 GF(2) Cellular Automata

A Cellular Automata consists of a number of interconnected cells arranged spatially in
a regular manner. In most general case, a C'A cell can exhibit m different states and the
next state of each cell depends upon the present states of its £ number of neighborhood
including itself. Such a generalized C'A is called a m-state k-neighborhood C A. However,
Wolfram worked with several features of finite C A known as 3-neighborhood (left, right and
self) C A having 2-state for each cell. The state ¢ € {0,1} of the i'® cell at time (¢ + 1) is
denoted as

ot = flai_y,adbh),

where ¢! denotes the state of the i’ cell at time ¢ and fis the next state function called the
rule of the automata [54]. Since fis a function of 3 variables, there are 22° or 256 possible
next state functions. The structure of a 3-neighborhood C'A cell is shown in Figure 3.1.

Clock ——————— CLK

Flip-flop Q

Combinational
logic =<————— From right neighbor

From left neighbor

Figure 3.1: A 3-neighborhood CA cell.

If the next state function of a cell is expressed in the form of a truth table, then the
decimal equivalent of the output column is conventionally called the rule number for the
cell. The following is an illustration for two such rules, 90 and 150:

Neighborhood : 111 110 101 100 011 010 001 000 RuleNo
(i) NextState : 0 1 0 1 1 0 1 0 90
(i) NextState: 1 0 0 1 0 1 1 0 150

The first row lists the possible combinations of present states (left, self and right) for a
3-neighborhood CA cell at time t. The next two rows list the next states for the i** cell
at time instant (¢ + 1) - the decimal equivalent of the 8 bit binary number is referred to as
Rule Number. Each rule can be realized by a set of logic functions. The logic functions for
different rules which uses XOR/X NOR logic are noted in Table 3.1. The g;_1, ¢;, and g; 41
denote the state of the (i — 1)**, i** and (i + 1) cells respectively at t** instant of time.
The following subsection defines a few terminologies that are widely used in literature and
has been referred to throughout this thesis. These terminologies are quoted from [9].



Table 3.1: Additive CA Rules

With XOR (Linear CA) With X NOR (Complemented rule)
rule 60 : ¢(t+1)=¢-1Dg rule 195 : ¢(t+1)=¢_1Dq
rule 90 gi(t+1)=qi1® gt rule 165 : gi(t+ 1) =¢i1 D gi+1
rule 102 q,(t +1) = ¢; ® git1 rule 153 : ¢(t+1) =¢; & ¢i11
rule 150 : ¢(t+1)=¢ 10¢® g1 | rulel0s : G(t+1)=¢ 10 ¢ D g1
rule 170 : gi(t+1) = giy1 rule 85  : gi(t+1) =Gt
rule 204 : g(t+1) =g rule 51 @ g(t+1) =g
rule 240 : ¢(t+1) =¢i—1 rule 15 : ¢(t+1) =g

3.1.1 Cellular Automata Terminologies

Definition 3.1 If all the C A cells obey the same rule, then the C A is said to be a uniform
CA; otherwise it is a hybrid CA.

Definition 3.2 A CA is said to be a Null Boundary CA (NBCA) if the left(right) neighbor
of the leftmost(rightmost) terminal cell is connected to logic 0-state.

Throughout the thesis, we have used Null Boundary Hybrid C' A.

Definition 3.3 If the next-state generating logic employs only XOR logic then it is called
a linear rule.

Definition 3.4 Rules involving X NOR logic are referred to as complemented rules.
Definition 3.5 A C A with all the cells having linear rules is called a linear CA (LCA).

Definition 3.6 C'A having a combination of XOR and X NOR rules is called additive C A
(ACA).

The CA using XOR or X NOR rules follow the property of Galois Field 2. Hence it is
also termed as GF(2) CA.
3.1.2 Characterization of GF(2) Cellular Automata

Polynomial and matrix algebraic tools are used to formulate the global properties of C A.
The state of an n-cell CA at time ¢ can be represented by a characteristic polynomial [34]

PO@) = 315 g xaf

where the value of the i cell is the coefficient of z; and belongs to GF(2). Extensive analysis
of linear C'A in terms of topological characterization of the state transition graph based on
irreversibility, cyclic components, depths, etc. has been carried out with polynomial algebra.
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Following the work reported in [34], Pries et. al. [45] have also studied the state transition
behavior of linear one dimensional uniform CA. A comparatively new analytical tool based
on matriz algebra 9, 18, 21] has been developed to overcome the limitations of existing tools
based on polynomial algebra. In our work we concentrate on the matrix algebraic model to
characterize the C'A. A brief overview of this model is next outlined.

An n-cell one dimensional additive GF(2) cellular automata is characterized by a linear
operator [T,xn, matrix and an n-dimensional inversion vector referred to as F' vector[9].
T is referred to as the characteristic matrix of the cellular automata. The i** row of T
corresponds to the neighborhood relation of the i** cell, where
1, if the next state of the i*” cell depends on the present state of the j** cell

Ty =
! 0, otherwise.

Since the C'A is restricted to three neighborhood dependency, therefore, T, j] can have
non-zero values for j = (i — 1), 4, ( + 1).

In addition to the operator T', an AC'A employs the inversion vector F' defined as

[ 1, if the next state of the i'? cell results from inversion
‘71 0, otherwise.

If s; represents the state of the automata at the ¢** instant of time, then the next state
- that is, the state at the (¢ + 1) time, is given by [9]:

Supy =T -s¢ + F, thatis, supy=TF -s1+{I+T+ T? +--- 4+ TP YHF, (3.1

where for an n cell CA, F is the n bit Inversion Vector with its i* (0 <4 < n —1) bit as 1
if XNOR rule is applied on the i’ cell. The two operations ( ., +) follows the operations
of Galois Field 2.

The LC A is a special case of AC A where the inversion vector F' is an all (/s vector. As
a result, the state transition equations 3.1 gets simplified to

Sep1 =T8¢ thatis, spp=T" 54 (3.2)

respectively.

The state transition diagrams of cellular automata have been characterized from its 7'
matrix and its Inversion vector F. The state transition behavior of a GF(2) C A can be
classified into two different categories - Group and Non Group.

3.1.3 Group and Non-group CA

Group CA and Cycle Structure : For a Group CA (Fig 3.2), each state has a unique
predecessor. That is, all states lie on a disjoint set of cycles. The entire state transition
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diagram consists of a set of cycles (referred to as Cycle Structure) represented by

CS= [Mkl (kl)aukz (kZ)a M 77, (km)] (33)

where k; is the cycle length and p, is the number of times a component with cycle length k;
has occurred and is referred as cyclic component. The Fig 3.2 illustrates the cycle structure
of a 5 cell GF(2) Group CA. It has three cycles of length 3, 7 & 21 respectively, besides
the all zero state forming a self-loop.

Clock

:‘Cell

:‘CeIIO’* :‘Cell :‘Cell

-

g

O

Yot
@@@@*@*@%? L(%
:

-
&

HEHEHEHEH

I
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PR ROO

T

Il
oORr R RO
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t

Figure 3.2: A 5-cell GF(2) Group C A along with its Characteristic Matrix(T) and inversion
vector(F) with cycle structure [1(1),1(3),1(7),1(21)]

Non-group CA and Depth(d) : In the case of non-group C'A, all its states do not lie on a
cycle. There are cyclic states along with non-cyclic (also referred to as transient) states.
The maximum run of the transient states is termed as depth (d) of the C' A. Thus the depth
d can be viewed as the number of clock cycles necessary for a C'A to reach a cyclic state
starting from a non-reachable state. The state transition diagram of a non-group C'A has
a Cycle Structure consisting of a set of cycles similar to Group C'A. In addition, it has
non-cyclic subspace represented by run of transient states forming an inverted tree rooted
on a cyclic state For the 4 cell GF(2) CA (Fig 3.8), the depth d = 2 with cycle structure
of [1(1),1(3)] - that is, one cycle of length 1 & another cycle of length 3.

[Note : From the results noted in [9], it can be shown that each inverted tree of a non-
group C'A has identical structure. So for characterizing GF(2) C'A, we have concentrated
on identifying the (i)cycle structure and (ii)depth of the inverted tree rooted on a cyclic
state.]



The classification of group and non-group C'A can be done by enumerating the determi-
nant of the Linear operator T'.

If det(T) = 1, the CAisa Group CA
= 0, the CA is a Non Group CA

Besides the characteristic Matrix(7"), a more detailed analysis of the state transition be-

0 ‘ ° @ Clock
:‘Cell 0 :‘Cell 1% :‘Cell ZW:‘CGI 3

—1
Q C_F; -

n=4
r=rank = 3, depth=2
No of Predecessors=2 =2 =2
Nonreachable states = 1, 14, O, 15,3 12, 13, 2
110 1 Cyclic states = {5, 6, 7} and { 4}
110 = 0 Attractor = 4
10 1
01 o}

Figure 3.3: State Transition Diagram of a 4-cell non-group GF(2) C' A along with its Char-
acteristic Matrix(7) and inversion vector(F').

havior is done with the help of Characteristic Polynomial & Elementary Divisor.
3.1.4 Characteristic polynomial and Elementary Divisor :

Both characteristic polynomial and its Elementary Divisors play a key role in enumer-
ating the cycle structure & depth of a C'A.

Characteristic Polynomial: The characteristic polynomial f(z) of a CA is derived from
its characteristic matrix T by calculating det(T + Iz).

Minimal Polynomial: The minimal polynomial is the minimum degree polynomial which
annihilates 7'.

Elementary Divisors: The characteristic polynomial f(z) comprises of invariant polyno-
mials ¢;(z)™ where ¢;(x) is irreducible. The polynomials ¢;(z)™, invariant to the linear
operator T, are referred to as elementary divisors. Each elementary divisor, as outlined in
Section 3.2.2, generates vector subspaces.

The characteristic polynomial ¢(z) can be expressed as a product of its elementary
divisors

$(z) = d1(2)" ¢o(2)"™ - - - g (2)™ (3-4)

where ¢;(x) is irreducible (i = 1,2,---, ') [Note : In all subsequent discussions, the number
of elementary divisors comprising a characteristic polynomial is denoted by N ]
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The characteristic polynomial of a non group C'A takes the form

p(z) = 2™ - 2" -z i (2)"H - (@)™ (3.5)

where a factor z™ (i = 1,2,--+,1) (I < N) represents a non-cyclic subspace. The depth of
the C'A corresponds to the largest power of . Thus, from the relation 3.5,

depth(d) = (maz(n;))i_, (3.6)

The detailed characterization of C'A state transition behavior are reported in [17, 12,
35, 37, 7, 9]. Some fundamental results along with some new framework for analysis of
linear C A are presented below. The next section concentrates on building the theoretical
framework for analysis of LC'A. Based upon the theoretical framework of LC'A, we build
the complete characterization of Additive C A in Section 3.3.

3.2 Vector Space Theoretic Analysis of Linear CA (LCA)

The analysis reported in this section characterizes a Linear C'A4 in terms of the cyclic and
non-cyclic sub-spaces it generates. The methodology of analysis is as follow - we derive the
characteristic polynomial in elementary divisor form and analyze each individual elementary
divisor comprising the characteristic polynomial of the LC'A. Consequently, we device a
methodology to aggregate each individual result and accordingly derive the final result.

The major steps required to enumerate cycle structure/depth of an LC' A are noted below.

Algorithm 3.1 Enum_CS_Depth_from_LCA(T, CS, d)

Input : T matriz.

Output : Cycle Structure (CS), depth (d).

Step 1:  Given a T matriz, generate the characteristic matriz in elementary divisor form
and generate depth of the machine by evaluating maz(n;), where n; is the power of ¢;(x):_,
and ¥y ¢i(z) = x.

Step 2: Generate cycle structure of each elementary divisor ¢;(z)™, where ¢;(z) # x.

Step 3: Output the final cycle structure by aggregating cycle structure of each individual
elementary divisor.

The next example illustrates the execution steps of Algorithm 3.1

Example 3.1 Let the T matriz of a 7 cell GF(2) LCA be

[0 0] 0 0 0 0 O
1 00 0 0 0 0 O
0 0 [1] 0 0 0 0
T=| 0 0 0 [1 1] 0 0
0 0 0 |01 0 0
0 0 0 0 0 [0 1]
0 0 0 0 0 [1 1

Step 1: The characteristic polynomial, as per Step 1 of Algorithm 3.1, in elementary divisor
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form is 22(z + 1)(z + 1) (22 + x + 1).
From the factor x* we can directly calculate the depth of the LCA = 2.
Step 2 : Cycle Structure generated by each individual elementary divisor are

CSLCA(:H—I) = [1(1)’ 1(1)]7 CSLCA(E+1)2 = [1(1)’ 1(1)’ 1(2)]7 CSLC’A(z2+m+1) = [1(1)1 1(3)]

respectively.
Step 3 : The complete cycle structure is enumerated by aggregating the effect obtained from
each individual elementary divisor. Hence

CSroa = [1(1), 1(1)] x [1(1), 1(1), 1(2)] x [1(1),1(3)] = [4(1),2(2),4(3), 2(6)].
where X is the aggregation operator.

We next elaborate the detailed execution of each steps.
3.2.1 Deriving Elementary Divisors From 7" Matrix (STEP I)

The task of deriving elementary divisor from 7" matrix is achieved by converting the
matrix (T'+ Iz) in Smith Normal Form|[23].

Definition 3.7 Smith Normal Form is a diagonal form of matriz (T + Ix), with nonzero
elements a1(x), az(z), - - - ac(z) - - - an(z) of GF(2)[z] with degrees at least one in the
diagonal. The elements ar(x) are so arranged that ap(z) is a factor of apy1(z). The
elements a1(x),...,an(z) are the invariant factors of T and a,(z) is the minimal polynomial

of T.

Since each ac(z) in Smith Normal Form is an invariant polynomial, the irreducible
factors of az(z) can be denoted as ¢;(z)™, g1 (z)™ 1L, ..., prim (z)™+™, where each ¢ ;()
is an irreducible polynomial and ¢;,;(z)™+ is also invariant to 7. Each ¢;;(z)™+i is an
elementary divisor of T.

The characteristic polynomial can be expressed in Elementary Divisor Form (EDF) as

f(@) = ¢o(2)™ po(2)"™ - - - ()™ (3.7)
where each ¢;(z) is an irreducible polynomial and factor of any a,(x).

Example 3.2 The following example illustrates conversion of a matriz to its Smith Normal
Form by executing the following three elementary operations on the matrizx T of Example
3.1

(a) interchanging two rows or columns.

(b) adding a multiple (in GF(2)[x]) of one row or column to another.

(¢) multiplying any row or column by a non-zero element in GF(2).
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The Smith Normal Form(SNF') of matriz T is

1 00 0 0
010 0 0
SNF =10 0 1 0 0
0 00 142 0

000 O 1+ z)2 (2?2 +z+1)
The characteristic polynomial f(z) in EDF = (1 +2)(1 +z)?(z®> + = + 1)
The minimal polynomial frim(z) = (1+z)%(2? + 2z +1).

[Note : a1(z) = az(z) = a3(z) =1, as(z) = (1 +z) and as(z) = (1 + z)?(z® +z +1).]

We next present the theorem reported in [23] which establishes the feasibility of conver-
sion of any matrix 7" into Smith Normal Form.

Theorem 3.1 Let T be an n X n matriz over the field GF(2). Using the three elementary
row and column operations ( a,b and c noted above), the n x n matriz (T + Ix) with entries
from GF(2P)[x] can be expressed in Smith Normal Form.

Proof : Proof available in [23]. O

The complete algorithm for Step 1 is presented next.

Algorithm 3.2 Enum_ED_from_T(T, [¢i(z)™], d)

Input : Characteristic Matriz T

Output : [¢;(z)™] : Elementary Divisor(ED) set : ¢(x) # (z + 1), d: depth;
(a) Convert T + Ix into Smith Normal Form.

(b) Represent the characteristic polynomial in the Elementary Divisor Form.
f(@) = ¢1(x)™ (@)™ - - - dar (@)™ (3.8)

where each ¢;(x) is an irreducible polynomial and degree of ¢pi(x) > ¢;i—1(x).
(c) For each ¢;(x)™, where ¢;(z) = (z +1) Vi,
Enumerate d = maz(n;) Vi_,.

(d) Form the elementary divisor set [¢;(x)™ ] with ¢y1(z)™+! - drio(z)™+2 - - Ppr(z)™V.

3.2.2 Generation of Cyclic Sub-space by each individual Elementary Di-
visor(Step II)

An Elementary Divisor ¢;(z)™ produces two different cyclic sub-spaces referred to as
Primary and Secondary periods [9]. A Primary period is the cycle structure generated by
the factor ¢;(z) while the Secondary Period is the cycle structure formed by the factors
¢i(z)! V}iy. Thus an elementary divisor ¢;(z)"™ generates the cycles corresponding to the
factor ¢;(x) and corresponding each of the factors — {¢;(z)}?, --- {¢i(z)}"™.

The complete cycle structure is the union of the cycle structures of these factors. Fnu-
meration of Primary Cycle Structure for ¢;(x) - It consists of uy cycles of length k& (denoted
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as [ug(k)]), where

2" — 1
e = —p (3.9)

7; being the degree of ¢;(x), an 1s the smallest integer such that ¢;(z) divides z* + 1.
; being the degree of ¢;(z), and k is th llest integ h that ¢;(x) divides ¥ + 1

Enumeration of Secondary Cycle Structure :
The enumeration of secondary cycle structure consists of enumerating cycle length and
cyclic components respectively.

Enumeration of Secondary Cycle Length : The secondary cycle length is of the form 27 - k
where j is an integer. Lemma 3.2 establishes the relationship between factor of a polynomial
and the length of the cycle it generates.

Lemma 3.2 All the factors of an elementary divisor ¢;(z)", starting from pi(z)? 1 to
#i(x)?, contribute the same cycle length (27 - k), where k is the primary cycle length.

Example 3.3 Let an elementary divisor be (z?+x+1)°. The primary cycle length is 1(3).
Then all the factors (z?> +x+1)%, (22 + 2+ 1)%, (22 +2+1)" and (z? +z+1)8 form cycles
of length 23 -3 = 24.

Enumeration of Secondary Cyclic Component : In the above framework to enumerate cyclic
component corresponding to each secondary cycle length, we introduce the term j** factor
set.

Definition 3.8 A factor of ¢;(z)™ whose power lies between 2971 + 1 to 27 is referred to
as a member of j** factor set. The cardinality of the j** factor set in an elementary divisor
¢i(x)™ is denoted as N(F;) and can be determined by the formula

i1, if n; > 24
TLi—Qj_l if 291 <n,~§2j

N =19 o, if n; < 291, (3.10)
1, ifj=08&mn; >1

[Note : Each member of the 5" factor set produces a cycle of length (27 - k), where k is the
primary cycle of the polynomial & the mazimum value of j = |loga(n;)| and the mazimum

value of j = [loga(n;)].]

The following theorem ensures the enumeration of cyclic component of cycle length 27 - k.

Theorem 3.3 The cyclic component corresponding to the cycle length 29 - k, is given by
the following relation

or YU N(F}) _ or S N(Fy)
i = - 11
Hai .k 2% -k (3.11)
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The union of the cycle structures of all the factors yield the complete cycle structure of
LCA. 1t is represented as CSpca(g;(z)m)

mp )
CSrcaswy) = 1) + D pioi (2 - k)] (3.12)
j=0
where my, = [loga2(n;)], 1(1) represents the all-zero vector forming a self-loop.
We introduce a new terminology and a new method of representing CSy.c 4(¢;(z)m -

Definition 3.9 A Primary Cycle Structure (PCS) represents the cycle structure generated
by an elementary divisor ¢;(x)™. In addition to the representation by Relation 3.12, it is
also denoted by a triplet (ug, k)™, where [1(1), px(k)] is the cycle structure of the irreducible
polynomial ¢;(x), that is,

e Ly is the cyclic component corresponding to the irreducible polynomial ¢;(x)
e k is the cycle length of the irreducible polynomial ¢;(x)

o ui and k are also referred to as primary cyclic component and primary cycle length
of the elementary divisor respectively

e n; is the power to which the irreducible polynomial ¢;(x) is raised in the process of its
formation of elementary divisor.

This form of representation imparts an identical mapping with the elementary divisor.
Henceforth, the terms factors of an Elementary Divisor and factors of PCS are used syn-
onymously.

Definition 3.10 Primary Cycle Family : All the cycles of the form (27 - k), where k is a
primary cycle, are the members of the family of cycles referred to as Primary Cycle Family.
It is also referred as k-Cycle Family.

We now state the generation of cycle structure in algorithmic form and subsequently
illustrate it with an example.

Algorithm 3.3 Enum_PCS_from_ED (¢(x)", PCS)

Input : Elementary Divisor(ED) : (¢;(x)™)
Output : Primary Cycle Structure(PCS).
Primary Cycle Enumeration : Find the least value of k such that ¢(z) divides z* + 1.
Secondary Cycle Enumeration :
Enumerate the ™ factor set for j = 0 to [loga(n;)]
For j = 0 to [loga(n;)]
Enumerate pq;., through relation 3.11 and
Accordingly obtain ;i (27 - k).
Output the Final Primary Cycle Structure (PCS) by union of all secondary cycles.
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Example 3.4 The characteristic polynomial f(z) of an example LCA is given by f(z) =
(z? + z + 1)°.

Therefore, degree r; = 2

Primary Cycle:

Since (z + z + 1) divides (23 + 1), k = 3. The p = 221 = 3. Therefore, the cycle
structure contributed by (z% + z + 1) is 1(3)

Secondary Cycle :

The j™ Factor Sets are N(Fy) = 1, N(F) = 1, N(Fy) = 2, N(F3) = 4, N(Fy) = 1.
_ 92(1+1) _92(1)

Cyclic Component corresponding to ji91.4 = 513 =2

) ) 92(2+3) _92(2)
Cyclic Component corresponding to pge. = ——r3—— = 20.
Cyclic Component corresponding to jigs.,= 22(411%3)7_22(4) = 2720.

cyclic Component corresponding to pos.p,= &22_52—2(8) = 4096.

Hence the complete cycle structure CSpca2a+1)e = [ 1(1), 1(3), 2(6), 20(12), 2720(24),
4096(48) 1.

The Primary Cycle Structure can also be represented by the triplet (1,3)° since as per
Definition 3.9, ur = 1, k = 3, n; =9.

The following lemmas provide some more insight into the cycle length of an LC A. The
lemmas provide the foundation for executing Step 3 of Algorithm 3.1, as well as the efficient
synthesis of LC' A reported in Chapter 4.

Lemma 3.4 Cycle length of primary period is always odd.

Proof : From Primary Cycle Enumeration primary cycle structure [1, ux (k)] follows the

relation
g x k=2 — 1 (3.13)
Since 2"¢ - 1 is odd, both the factors are necessarily odd. O

Lemma 3.5 A secondary period corresponds to an unique primary period.

Proof :  Cycle length of a secondary period is expressed in the form of 2/ - k for j > 1
and where k is a primary cycle and hence odd. Thus for two primary period k; and k2 to
have same secondary period the relation 271 - k; = 272 . ky must hold, which is possible
only when k1 = ko. O

Characterization of vector spaces generated by each elementary divisor of an LC'A en-
ables the characterization of the LC' A having multiple elementary divisors. The next sub-
section provides detail analysis of such an LC' A

3.2.3 Vector Space of an LC A having Multiple Elementary Divisors

The entire vector space S produced by a LCA is the direct sum of the sub-spaces
generated by its elementary divisors. The cycle structure of the LC A is obtained from cross
product (x)[50], as defined below, of all the Primary Cycle Structures (Definition 3.9).
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Definition 3.11 Cross Product (x) of two cycle structures CS; and CSs, where

My, M,
CS1 = [1(1) + D prryy, (k1iy)] and CSy =[1(1) + D pakys, (kisy)]
21=1 22=1

is the product of each i term of C'S1 with it term of CSs.
The product of pik,;, (k1i,) and ks, (kai,) results in cyclic component py of length k following
the equations [50]

Mk = Mklil -ngiQ .gcd(klil y k2i2) and k= lcm(klil,kgiz) (3.14)

The complete cycle structure of LC' A, the cross-product of cycle structures of individual
elementary divisors, is then expressed through the following equation.

CSrca(f(z)) = CSrcagi@m) X - CSroa(gs@mi) ¥ - X CSpcagy@ry)  (3-15)

To efficiently utilize the concept of cross product, the algorithm for evaluation of the
final cycle is divided in two steps.
Step A : We evaluate the cross product of PCS having same primary cycle and form a
Primary Family Cycle Structure(PFCS).
Step B : We then successively evaluate the cross product each of the obtained PFCS,
starting from the product of the PFCS which has the largest primary cycle.

But before explaining each of the steps, we characterize the nature of the final cycle
structure of the LC A.

Theorem 3.6 The cycle structure (CS(N)) of an LCA with N elementary divisors can

be represented as

CS = 1) + X3 1z 4,2 - ) (3.16)
ki j—0

where k; is odd.

M, .
Proof : Let o = Y pigj 1, (27 - k;). Then CS(N) = [1, en] x [1, ag] +-- [1, o]
§j=0
On performing successive cross product, as per relation 3.15
CS(N) = [1(1),((11,(12"',06N),(051 X2, ON -1 X aN)a"'a(al X Qg X+ X CMN)]

That is, each member in the i*» group (marked within ‘()’) is formed by cross producing 4
number of a’s that forms a component of CS(N).

Each component, as noted below for ¢ = 2, represents a primary cycle family. Generaliza-
tion for ¢ > 2 follows directly.
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Let C'S = (a1 X ) and let [CL] be the set of Cycle Lengths formed from the above
cross product.
Then the general nature of [CL] set is expressed by the following relation.

[CL] = lem((2" - k1), (272 - ky)) = 2™920132) e (ky , ks). (3.17)

Let lem(k1, k2) = k3. Consequently, all cycle lengths of the [CL] set is a member of k3 cycle
family and the cycle structure can be expressed in the form

maz(my, ;Mk,)

Cs = Do poig (20 k3)
§=0
Since both k1, ko are primary cycles and odd, therefore k3 is also odd. Hence the proof. O

As it is obvious from the above theorem, that the cycle structure of a LC A follows a
certain symmetry. In this connection, we define the term Legal Cycle Structure.

Definition 3.12 Legal Linear Cycle Structure is a cycle structure which satisfies the cri-
teria defined in relation 3.16 and which can be broken into Primary Cycle Structures.

With the results of the above theorem in the background we proceed to explain each of
the steps - Step A and Step B.

Step A : Final Cycle Structure of set of Elementary divisors with identical
Primary Cycle Length

This step shows the final structure C'S obtained from the following relation
CS =PCS, x PCSy x---x PCS; x---PCSy

The final cycle structure obtained from cross-producting cycle structures of Elementary
Divisor having identical primary cycle is termed as Primary Family Cycle Structure (PFCS).
We defined PFC'S and develop the method of obtaining it.

Definition 3.13 Primary Family Cycle Structure (PFCS) is a special class of cycle struc-
ture that results from cross product of Primary Cycle Structures, each having the same
primary cycle length. That is, the primary cycle length is identical for all the underlying
elementary divisors generating the PFCS. It is of the form -

PFCS = [1(1) + % phoi (27 - k)] (3.18)
j=0

The following example illustrates the concept of Primary Family Cycle Structure (PFCS)

Example 3.5 Let us consider the characteristic polynomial f(z) = (z?2+z+1)!- (2?2 +z +
DA (22 + 2+ 1) (22 + 2 + 1)® represented in the elementary divisor form.

21



The PCS are (1,3), (1,3)%, (1,3)7, (1,3)® respectively.

The cycle structure CS = (1,3)% x (1,3)? x (1,3)! that is, writing in ezpanded form
€S = [1(1), 13)] x [1(1), 1(3), 2(6), 20(12)] x [1(1), 1(3), 2(6), 20(12), 672(24)] x [1(1),
1(3), 2(6), 20(12), 2720(24)]

Consequently, C'S = [1(1),85(3), 3688(6), 5591040(12), 4581088288(24)]

which shows CS has a primary cycle of length 8. The CS is a Primary Family Cycle
Structure (PFCS).

The cycle structure of the PF'CS is obtained directly from the cardinality of factor set
of each individual constituent elementary divisors, that is, Primary Cycle Structure(PCS),
forming it.

Let a PFCS be formed from characteristic polynomial f(z) where f(z) = ¢(x)™ -
d(x)"2--- p(z)"~ in elementary divisor form, which implies the PFCS is formed from
cross-product of the set of PCS and

PFCS = (pu, k)™ x (u, k)™ x (u, k)"~

each PCS (u, k)™ corresponds to Elementary Divisor ¢(z)™. N(Fj) is the number of j™
component present in a single elementary divisor or PCS(Definition 3.10). From N (Fj),
we derive the definition of N(F}).

Definition 3.14 N(FJ) is the sum of the number of j' factor set present in all the con-
stituent PCS comprising the PFCS.
[Note : j components are the factors 2/~! + 1 to 2/ present in any PCS - (u, k)™ ]

Example 3.6 Let a PFCS be formed from cross product of PCS such that
PFCS = (1,3)' x (1,3)* x (1,3)7 x (1,3)®

The underlying elementary divisors are (z2+z+1)32, (v24+1+1)? and (z2+z+1) respectively.
While computing N (F;) for each value of j, it result in

N(Fy) = 4 (0" component) - that is, the irreducible polynomial (2 +x +1) must be present
in all the four PCS.

N(Fl) = 3; the 1°* component. That is, the factors starting from 2'~1 +1 to 2! are present
in the last three PCS. N(Fg) = 6; the 2" component - that is, the factors starting from
22=1 11 to 22 are present only in the last three PCS.

N(Fg) = 7; the 3" component - that is, the factors starting from 237141 to 2% are present
only in the last two PCS, four in the last one and three in the 2" last state.

The highest value of 7 is 2 as the highest value of j among all the individual components is
2.

The algorithm to enumerate N(F;) from N PCS comprising the PFCS is reported
below.
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Algorithm 3.4 Enum_N(F;)_from_PCS([PCS], [N(F;)] )
Input : N set of PCS

Output : [N(F;)] : 5 =0, 1, 2, ---

For j = 0 to maz([logz(maz(n;) 1))

L

N(F;) =0

Fori=1toN

{

For each PCS; calculate N(F;) by relation 3.10

N(F;) = N(F;) + Ni(Fj) /* N;(Fj) - the number of j** component in the ith PCS */
}

}

Based upon the concept of N (F;), we formulate the theorem for calculating the cycle
structure of PFCS

Theorem 3.7 : The cycle structure of PFCS is of the form [1(1), g, (k), - - - pi (27 - k) - -]
where the value of the cyclic component py;., follows the relation

or Yo N(Ey) _ or 2 N(Fy)
- , 1
Hoj -k 2] j k (3 9)

where N(F7) represents the sum of the number of J*" factor set present in all the con-
stituent PCS.

Proof : A cycle of length (27 - k) can be formed only by cross product of (27 -k) & (27 - k)
where (J < j) (relation 3.17). Therefore, the value of cyclic component po;.;, depends only
upon the number of (J < j)™ factor set. Since this is a iterative relation, the extra states
produced with the introduction of the j** factor set is responsible for the value of cyclic
component fio; .

The extra set of states S generated in the process is given by
G = o o N(Fy) _ gr Y N(Fy)

Hence pqj.p = where 27 - k is the cycle length corresponding to the component po; .

a

S
27 -k

Example 3.7 Let a PFCS be formed from cross product of PCS such that
PFCS = (1,3)' x (1,3)* x (1,3)7 x (1,3)®

8 is the highest power of any constituent PCS, in this case, the last PCS.
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Therefore, for the values 0, 1 and 2, the J™ factor set is present in the characteristic
polynomial.
The cyclic components

22(4) _ 22-0 22(4—1—3) _ 22-4
H20.3 = W = 85, Mol.3 = T = 3688
22(7—|—6) _ 22-7 22(13—|—7) _ 22-13
Mo2.3 = T = 5591040 Ho3.3 = T = 4581088288

The complete cycle structure C'S = [1(1),85(3), 3688(6), 5591040(12), 4581088288(24)]

The complete algorithm is now stated

Algorithm 3.5 Enum_PFCS_from_PCS( [PCS |, PFCS)

Input : N constituent PCS of PFCS : [PCS]

Output : Cycle Structure (PFCS) : [ 1(1), ug(k), -+, proj x(27 - k), -+ ]
Enum_N (F;)_from_PCS([PCS], [N (F;)] )

Calculate pyi.g, for each j by using relation 3.19

The Step B where the methodology to obtain the final cycle structure from the set of
PF(CS each having different primary cycle is discussed next.

Step B : Final Cycle Structure from set of PF'C'S each having different
primary cycle

This step shows the final structure C'S obtained from successive cross product of the
constituent PFCS, that is

CcS = PFCSl X PFCSQ X PFCSZ X PFCSZ'_H e X PFCSN (320)

The methodology for successive cross product is discussed taking into consideration a dy-
namic situation CS = CS; x CS,. where

CSlzpFCSi, CSQZPFCSi+1 X---XPFCSN'
with the assumption that the primary cycle (k1) of CS; is smaller than all the primary

cycle k; in CS,. Therefore, with the help of relation 3.16 & 3.18, we can write the above
statement in notation form.

CS =CS8, x CSy where CSy =[1(1),a] and CSy=[1(1),,H]
ki
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and

mkl ' mki )
= poig (27 k1), Bi= poig, (2 ki), i>1
= j=0

B; represent each cycle family in C'Se. The next couple of theorems elaborate the effect
CS1 & CS; respectively produces on CS.

Theorem 3.8 The cyclic components (ugj.i, ) corresponding to ki cycle family will be same
in CS and CS1, where CS = CS; x CSs.

Proof : By definition,

CS =11(1),0] x [1(1),2&)] (3:21)
That is,
CS=1(1), ) B, Za X f3i] (3.22)

In the above equation, the cycle structure « is generated directly from CS; while the
cycle structure 8 is generated from CSs, and it does not have any primary cycle of length
k1. The cross product of k; cycle family with each k; cycle family results in a ks cycle
family where k3 = lcm(kq, k;). Hence it is greater then k.

Therefore, the cyclic components of k1 cycle family only comes from « and it is same in
CS & CS;.
Hence the proof. O

The following example illustrates generation of C'S; from a given C'S. [Example to be
changed]

Example 3.8 Given CS1= [1(1), [3(1), 2(2)]] and CS2 = [1(1), 1(3), 3(5), 3(15)]. CS
formed from cross product of CS1 and CSs is given by [1(1), [3(1),2(2)], [4(3),2(6)], [12(5),6(10)],
[12(15),6(30)]]. We see that the cyclic component corresponding to primary cycle 1 is same

in CS1 & CSs.

Subsequent discussions formalize the behavior of C'Sy in relation to CS (CS = CS; x
CS3). Relation 3.22 shows that the cross product occurs between each k; cycle family
generated by CSy and kq cycle family generated by C'S;. Let us concentrate on a single
member ky € k;, where k3 = lem(kq,k2). The cycle family obtained from cross product of
«a X B9 thus has primary cycle ks.

The following theorem and corollary characterizes k3.

Theorem 3.9 The value of the cyclic component (jo; .y, ) formed from the cross product of
cycle component of k1 & ko-cycle family in CS1 and CSy respectively is determined by the
following relation.

Moi gy = [A + B] (3.23)
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where

A= H2i .k 'SQJ‘-kl 'QCd(kla’W) & B= M3 .y 'SQJ‘—I-k2 'QCd(klak2)
k}l k2

Soi.k; means number of states covered by cycle length (< 27 - k;), that is

J
Soiy = D togp X (27 - ki) (3.24)
T=0

Proof : As per the relation 3.17, the cross product of 27! - k1 and 272 - ky results in cycle
length 2mex(i1.72) (k3), where k3 = lem(kp, k2). Therefore, to produce 27 - ks, either j; or jy
has to be equal to j.

Enumeration of A : If jo = 7, then all the cycles 29! - k; where j; < j when cross
producted with 27 - ko will produce 27 - k3. The cross product, as per relation 3.14, will
produce Part A of the cyclic component of ji5;., given by the relation

Moi ks = Hoiky * [Bhy + H2eky X 2+ k1o poi g, X 27 - kq] - ged(ky, k2)

The equation can be rewritten as

i X (2K
sy = rasy - [2T2012 - C R0 gedtia, o) (3.25)

With the help of relation 3.24, the equation can be simplified

kg * 993
Wi kg = NZchQTZJkl - ged(k, k2) (3.26)

Enumeration of B : Similarly, if j; = j, cross product with 272 - ky jo < j will produce
(27 - k3). To avoid cross-product between 27 - k; and 27 - ky twice, j, ends at (§ — 1) in the
second case. Hence the proof. O

From the theorem the following corollary follows

Corollary 3.1 : The cycle structure of the k3-cycle family will be of the form

mk3
CS(k3) = Z Moi ks (27 - k3), where my, = maz(mg,,my,) (3.27)
=0
where max(my, , my,) indicate the maximum between the highest power of either k; and ko

cycle family.

26



The value of k3 can be of two types 1. lem(k1,k2) = ks > ko. and 2. lem(ky1,ke) = k3 = ko.

o If k3 = ky, then both 33 & a x 3 belong to the same cycle family. fig;.,, in CS will
be represented by the relation

ﬁ2j-k3(05) = ﬁZj-kz(CS) = M2k (B2) + HQj-kz(a X [B2) (3.28)
Since lem(kq,k2) = ko, therefore ged(ky1, k2) = k1. Combining Relation 3.23 & 3.28

- k
fi2i kg (C'S) = [l9i .y - (Soiy + 1) + poip, - Sai-1.4, k_;] (3.29)

o If (k3 > lem(ky, k2)), then besides the cyclic component pig;.;, of the kz-cycle family
from CSs, the k3-cycle family is also added to C'S where the cyclic component

ﬁ27-k3(C‘S) = 27 ks (330)
We now state the algorithm for generating CS from CS; & CSo

Algorithm 3.6 Enum_CS_from_CS1&CS; (CS1,CS3,CS)

taput : 08, = (101, 3 possy (P K] €S = [1(1), 33 iy (- o)
k;

k1 < k; Vi.

Output: CS

for each k; € CSy in ascending order
{

ko = k;

Zf lcm(kl, kg) = klg

{

Obtain each fig; r,(CS) from relation 3.29
CS < CS + figj .,
}

else

{

Obtain each fig; .k, from relation 3.50
CS < CS + figj 1,

CS«+CS +H2j.k2(052)

}

CS =CS + C8; from Theorem 3.8

}

Example 3.9 Case : lem(ki, ko) > ks.
Let CSy = [1(1), 1(3)] & CS2 = [1(1), 3(5)]. Therefore k1 = 3, ko = 5. lem(3, 5) = 15 #
b.
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Hi1s = MSTSS - ged(3,5) = 33—3 =3

Final CS = [1(1), 1(3), 3(5), 3(15)].

Case : lcm(ky, ko) = k3.

Let CS; = 1(1), 3(1), 2(2)]; CS2 = [1(1), 1(3), 3(5), 3(15)]
kl = 1. First kQ = 4. lcm(kl,kgj = KQ.

Therefore, jis = [pug - (S1+1)] =1 x 4 = 4.

fig = [pe- (So+1)+p2-S3-3] =[0+2-3-3] =2
Similarly, fis = 12, i = 6

fis = 12, jizo = 0.

In order to dynamically generate the final C'S from each of the constituent PFCS the
Algorithm 3.6 has to be called iteratively starting from the PFCS which has the largest
primary cycle. The algorithm is noted below.

Algorithm 3.7 Enum_CS_from_PFCS( [PFCS], CS)

Input : Cycle Structure set PFCS,, PFCSy--- PFCSg : [PFCS]
Output : Final Cycle Structure C'S.

Sort the PFCS in descending order of the size of the primary key.
CSy ¢

while i < N

{

CS, + PFCS

Enum_CS_From_CS51&CS3(CS1, CS,, CS)

CSy =CS

14+

}

3.3 Vector Space Theoretic Analysis of Additive Cellular
Automata(ACA)

Complete characterization of the state transition behavior of an ACA is undertaken
in this section. An ACA C’, as noted in Section 3.1, is represented by the characteristic
matrix 7' and non-zero inversion vector F. The linear counterpart of the C" is the C which is
represented by the same characteristic matrix 7" with all 0’s F' Vector. The state transition
behavior of C’ and C' share some common properties that are reproduced below from [9].

e An C'is a group CA if and only if LC'A is a group C'A.

e The depth of a non-group C' is same as that of C

Since the depth of an ACA can be directly derived from that of the corresponding LC A,
we simply concentrate on enumareating the cycle structure of ACA.
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The cycle structure of C' and C maintains some relations that are investigated in this
section. In the subsequent discussions, both C' and C' are assumed to have the same T
matrix with inversion vector F=0 and F' # 0 respectively. During analysis, we use the
important concept of null space. The term null space and its relation with cycle length is
stated below [42].

Definition 3.15 Null Space : The null space of a matriz(T) consists of all such vectors
that are transformed to the all-zero vector when premultiplied by the matriz.

Axiom 3.1 : Cardinality of Null Space and Cycle Length : Suppose a LC A represented
by T has a cycle length k, then the cardinality of the null space of (T* + I) indicates number
of states forming cycles of length k or sub-multiple of k.

The analysis of AC A concentrates on the characterization of the following properties :

Py, : The method of checking whether a cycle length (k) is present in AC' A, that is, in the
state transition behavior of AC A.

P, : The special class of ACA - C' whose cycle structure is always same as that of C
irrespective of its inversion vector F'.

P; : The class of C' whose cycle structure differ from that of C. The property of F' vectors
which impart this difference and the nature of difference.

Py : Finally, the method to enumerate cycle structure and depth of C’.

Each of P; (i= 1 to 4) has been detailed in subsequent discussions.
3.3.1 P; : Method to determine presence of cycle of length(k) in ACA

We present a theorem which enables us to determine whether a cycle of length(k) exists
in ACA or not.

Theorem 3.10 In the AC A characterized by T and the inversion vector F, there will exist
a cycle of length k if

rank([T* + 1)) = rank([T* + I, F]) (3.31)
where F = [+ T+ T +---+ T+ 1F

Proof : Let z be a state in a cycle of length k in C’. Hence, as per the relation 3.1 in
Section 3.1,

t=[I+T+T*+.--+TFF + Ttz (3.32)
We can rewrite the equation as

[T* + Iz =F (3.33)
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where
F=[I+T+T*+---+TFYF (3.34)

If a cycle of length k is to exist in the C’, then the equation 3.33 should be consistent. The
condition for consistency is that

rank([T* + I)) = rank([T* + I, F]) (3.35)

Hence the proof. O

3.3.2 P, : Special Class of C' for which cycle structure is identical to that
of C irrespective of F

The Theorem 3.10 is utilized to explore a special class of C' which has cycle structure
identical to that of C' irrespective of its inversion vector F'. The following theorem formally
identifies the class.

Theorem 3.11 The cycle structure of C' and C are identical if the characteristic polyno-
mial f(z) of the T matriz doesn’t have a factor (x + 1).

Proof : Let k be the length of a cycle in the ACA - C. For a cycle of length & to exist
in corresponding ACA - C’, the condition of relation 3.35 has to be satisfied.

The number of vectors forming cycle of length k or sub-multiple of k¥ in the ACA/LC A are
derived from enumeration of the Null Space of oy = (T* + I)[42].

The solution vectors are also roots of the equation ¢.(z) = 0, where ¢.(z) is the largest
factor of the characteristic polynomial f(x) which divides (z*+1) = (z41) (¥~ 44z +1).
So the solution space, as derived for a1, is also obtained from the Null Space of oy = ¢.(T').
Since f(x) doesn’t have a factor (x + 1), each ¢.(x) divides [1 + = + 22 + - - - + zF~1]
Therefore, the Null Space of az = [I + T + T2 - - - T*71] also produces the same solutions.
Hence,

Rank(T* + 1) = Rank(T* + LT+ T +T%---T% 1) (3.36)
Therefore, the next relation
Rank(T* + I) = Rank(T* + I, F)

directly follows for any F'.

Therefore, all the cycle lengths of LC A -C also exist in ACA - C'. Since the number
of vectors forming each cycle length is same for both, (directly derived from cardinality of
Null Space) the cycle structures for both is identical. Hence the proof. O

Example 3.10 Let an example ACA of Figure 3.2 be represented by the Matriz T with
inversion vector F # 0, where
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The characteristic polynomial of the matriz(T) is (3 + z + 1)(z? +  + 1) and the cycle
structure of the LCA is [1(1),1(3),1(7),1(21)]

The C', as per the Theorem 3.11, has the same cycle structure as that of the corresponding
LCA - C, irrespective of the value of F. We illustrate the result of the theorem for a
particular cycle length (say) 7. As per the theorem, we enumerate oy = T7 + I, ag =
T2+ T+1,a3 =TS +T5+T*+T3+T?+ T+ I, where

o

01011 11010
11010 1 00 01
T"+I=(0 0 0 0 0 |, T°4+T+1=|0 0 0 0 O
00 000 00000
00000 00000
100 01

11011

TS+ T34+ T44+T3+T*>+T+I=| 0 0 0 0 O

0 0 0 0O

00000

All the three matrices with 37¢, 4" & 5™ row as zero have the same null space solution :

{00000, 00001, 00011, 00010, 00100, 00001, 00100, 00110, 00111}.
Therefore, Rank(a;) = Rank(og,a3),
and Rank(c) = Rank(as,F), F=(I+T+T?)-F, F being a 5-dimensional inversion vector.
Therefore, both C' and C have cycle of length 7. The number of states having cycle length 7
or sub-multiple of 7 (here 1) is 8. Therefore, the cycle component of cycle length 7 = @
=1.

Enumerating in this fashion, the complete cycle structure of C' can be shown as [1(1),
1(3), 1(7), 1(21)], same as that of C.

3.3.3 P;: Nature of the Class of AC' A for which the Cycle Structure differs
from that of LC'A

From the Theorem 3.11 it is obvious that the cycle structure of C and C’ can differ only

if the characteristic polynomial has a factor of (z+1). Hence, study of the role of the factor

(z +1) is necessary. The subsequent analysis first concentrates on the LCA/AC A having a

single elementary divisor as (z + 1)™ and next proceed for its generalization. We introduce

terminologies employed in subsequent discussions.
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e (C((x+1)")) : The LCA having characteristic matrix 7' with characteristic and
minimal polynomial (z + 1)™. The cycle structure of the LC'A is given by

CS=[1(1) + i,ugj@j)] where m = [loga(n)]. (3.37)
§=0
and
Rank of (T+1) = n—1, and Rank of (T +1)' = n—i. (3.38)

e [FX] : The set of inversion vectors which annihilates only (z + 1)¥, that is,

(T+D)F-z=0, while (T +1)¥z#0where k' <k &z € [F*]. (3.39)
e Car[FX| : Cardinality of the set F*.

Theorem 3.12 The cycle structure of ACA-C'(xz + 1)" differs from that of its linear coun-
terpart LCA-C(z + 1)™ if and only if the inversion vector of ACA - F € [F™].

Proof : In order to test whether the cycle structure of C(z + 1)" and C'(z + 1) are
identical, the consistency of the relation 3.33 is checked for presence of a cycle of length &
in the C',where k is the cycle formed by C. The LC A has cycles of length k& where

k=2, j=(0,1,2,---,m), m = [loga(n)]. (3.40)

Since the cycle lengths (k) of the C(z + 1)™ is of the form 27, the relation for consistency
can be rewritten as

(T? + Nz =(I+T+T*+---+T? HF (3.41)
Wherej = (07 ]-a 27 T m)7 m = ”092(71”
The relation has to be satisfied for all values of j to establish equivalence of cycle structure
of C & C'. Since

T +0)=(T+D? & [+T+T*+-- - +T? = (T +1)¥ !
we have

(T+DN¥z=(T+1)?"'F (3.42)

In order to prove the theorem, the consistency of the above equation is checked for the
following two cases -
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e Case 1. C'(x + 1)" with inversion vector F € [F"] where n' < n.

e Case 2. C'(z + 1) with inversion vector F € [F™].

The proof establishes that in the first case both C' and C' have the same cycle structure
while in the second case the cycle structure of C’ differs from that of C. The proof is
established by checking consistency for every cycle length (k = 27, j = {0,1,2,---,m})

Case 1: Inversion vector F € [F™] where n' < n.

The relation 3.42 can be rewritten as
(T+D?(T+T)z=F] where Fe[F"] (3.43)
Therefore, the consistency of the following relation
(T+1Nz=F

will directly prove the consistency of relation 3.42. We show that the relation is consistent
if and only if z € [F™ *1].

If z € [F™ *1], the state transition equation can be written as
(T+D)" . z=0=>(T+D)" - [(T+Dz]=0 (3.44)

Since according to definition, (7" + I) - x # 0, therefore, the vectors y will be formed by
enumerating the equation

T+Dhz=y (3.45)
Moreover, the relation 3.42 can be rewritten as
(T+D" - y=0 = yel[FY] ie. (T+D" -y#£0 n"<n (3.46)

Since rank of (T'+1) is n -1, therefore, 2 different z, ( z1, z2 € [F™ *1]), when premultiplied

with (T + I) will produce the same y in relation 3.45. That is,

Car(F™'+1)
2

Hence, exploiting all the possible pairs of z, we obtain the set of y have cardinality
where the cardinality of [F™ *'] is denoted as Car(F™t1).

Since rank of (T 4 I)"*! is one less than that of (T + I)™, therefore directly from rank
relationship (relation 3.38)

Car(F"*1) = 2 x Car(F™)
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Therefore, Car(y) = Car(F™) that is the full set of (F™') is represented by y. That implies
the relation

(T+Iz=F

is consistent for all values of F' € [F™] and consequently, the relation 3.42 is consistent for
allF € [F"], n' <n.

Case 2 : Checking Consistency of Cycle Length for ACA C'(x + 1)™ with inversion vector
F e [F"

In this case, it is seen that relation 3.42 is inconsistent for all cycle length 2/ < n. Multi-
plying either side of the relation 3.42 with (T 4 I)"~% . we obtain

(T + )"z =(T+I)"'F, (3.47)

It is inconsistent since the left hand side(LHS) = 0 while right hand side(RHS) # 0.
Since the characteristic and minimal polynomial of C is (z + 1)", the relation 3.42 is
consistent if 2 — 1 > n when both LHS & RHS = 0. O

Corollary 3.2 : The cycle structure of C'(z 4+ 1)" with F € F™ is
CS=p@), W=2"" & m =|log(n)|+1 (3.48)

where the cycle structure of C(x + 1) is

CS=[1(1) + iﬂzj(Zj)] where m = [loga(n)].
§=0

Proof : From Theorem 3.12, the relation 3.42 becomes consistent if 2/ — 1 > n, that is
cycle of length 27 exists in C' if 2/ —1 > n. The minimum value of j, at which the equation
becomes consistent is represented by m' where 21 <y < g,

If n = 209271 then n is of the form 27 where j is an integer. Therefore, [logon] = |logan|
= logon. In that case, m'= |logan| +1.

If n < 2/09271 then m’ = [logan] = |logan| +1. Combining both cases, m’ = |logan| +1.
Since all the states fall in the Null Space of (T + I )Qm’, the AC A will have only cycles of
length 2 and the number of cyclic component(u) will be 27 /2™ = 2n=m" O

The following example illustrates the result of the theorem & corollary.

Example 3.11 The T matriz and two inversion vector F' of a 4 cell GF(2) CA is given by
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110 0 1 1
0110 1 1
T=logo1 1| P71 | 27|,
000 1 1 0

Characteristic and Minimal Polynomial of the Matriz is (z + 1)*.

The cycle structure(CSc) of the LCA - C((z + 1)*) with characteristic matriz T is given
by [2(1),1(2),3(4)].

The inversion vector Fy annihilates (T + I)*. The ACA C'(z + 1)* with characteristic
matriz T and inversion vector Fy changes cycle structure to [2(8)].

The inversion vector Fy doesn’t annihilate (T+1)*. The ACA C'(z + 1)* with characteristic
matriz T and inversion vector Fy has its cycle structure CS¢r identical to CSc generated
by LCA C(z + 1)*

Generalization of Theorem 3.12: The above theorem is now extended for a more
generalized class of LCA/ACA. The cycle structure of C’, as per Theorem 3.11, can differ
from C only if the characteristic polynomial of C/C’ contains a factor of (z + 1). The
Theorem 3.12 & corollary 3.2 has characterized the role of the invariant factor (z + 1) and
its relation with the inversion vector . We here define such class of C A as Eligible Cellular
Automata (ECA).

Definition 3.16 A LCA/ACA whose characteristic polynomial contains a factor of (z+1)
is termed as Eligible Linear(Additive) Cellular Automata (ELCA/EACA). The character-
istic polynomial of ELCA/EACA can be represented in Elementary Divisor Form(EDF)

flz) = (z+ D)™ - (z + D)ldpq (z)M+ - -y (z)™ (3.49)

where (i). each ¢;(x)™ is an elementary divisor and (ii). the irreducible factor of the first
elementary divisors is equal to (x+1). These elementary divisors are also termed as (z+1)
- elementary divisors.

The cycle structure of an ELC A from relation 3.16 s of the form

mki
CSpLCA=[1(1)+ > > poif,(2 k)] k=1
k; j=0

The following theorem states the nature of cycle structure of corresponding Eligible
ACA.

Theorem 3.13 : Given the cycle structure of ELC'A with characteristic matrix T as

mp, .
CSproa=[11) + ) > poig, (2 - k)] k=1
k; j=0
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the cycle structure of EAC A, with characteristic matrix T and inversion vector F, is of the

form
mki
CSpaca=Y_ Y Hoip(2 ki), k=1 (3.50)
ki j=M
A (Boj g, X 27 - ki) +1
> ! k=1
— 2M k;
fomp = o o & and M = 2llognil+1 (3.51)
' Hoit g, X 4 Ry .
Z —_— therwise
YR 0
= 2M k;
and
foig; = Maig; J > M (3.52)

where the (xz + 1)-elementary divisor with largest power annihilated by F' is n,;.

Proof :  We develop the proof with the assumption that (xz + 1)™ is the only factor
annihilated by F. It can be easily generalized to the fact that (z 4+ 1)™ is the largest factor
annihilated by F.

The characteristic polynomial f(z) is denoted as
f@) = (z+1)" x §(=) (3.53)

where

$(@) = d1(@)™ - i1 (€)1 - figr (@) - - (@)™ (3.54)

The cycle structure CS 3(2) corresponding to ¢(z) is same for both LCA and AC A. Let
F be the inversion vector which annihilates the factor (z + 1)™:.
As per the Theorem 3.12, the cycle structure generated due to the factor (z + 1)™ differ in
C and C'. The cycle structures are respectively CScr(z+1ymi and CSg(gq1yn: fromceorollary
3.2, where
CSturays =W@™), W =25 & ' = [logs(n)] +1

and

OScaerys = [101) + 3 1z (29)]  where m = [loga(n)].
§=0
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from relation 3.48 & 3.37.

Therefore, the cycle structure of CSg(g(z)) and CScr(g(s)) are respectively represented
as

CSc(4(a)) = CSC(aa(w)) X CSc((e+1)mi) (3.55)

! _ ! !

The cycle structure of C (c;NS(x)) follows from relation 3.16
k; -
CSuaay = L) + D0 poi, (27 - k)]
ki j=0

The cross product in relation 3.55 yields cycle structure of C'S¢(g(s)) which is

CSgrca =11 +ZZH2]k (27 k)] k=1

ki j=0

whereas the cross product in relation 3.56 yields CScr(4(z)) where

L . ik X 29k
CSpaca =3 Y Hyp @ k) ki=1 phay, = }j“2 Bk — = (3.57)
ki j=M

a

The theorem provides some important inference which is used to develop the algorithm
for enumerating cycle structure of EACA. The inferences are

Inference 3.1 : All cycles of length above 2™ - k; have same component in ELCA and
EACA.

Inference 3.2 : There is a striking similarity between CSc(4(z)) and C’S'C,( #(z))" The
change between each individual clustering of k; in CSc(4(z)) and CSE,( #(z)) respectively
is that all the cycle length < 2M.k; gets converted to 2™.k; and the cyclic component
corresponding to 2™ - k; in ACA are adjusted to cover the complete state space generated
by cycle lengths (< 2M - k) accordingly.

We also define two terms directly arising from the theorem.

Definition 3.17 Minimum Additive Factor : The least cycle length of any primary cycle
(k) in an additive cycle is denoted by 2 -k, where M is denoted Minimum Additive Factor.
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Definition 3.18 Legal Additive Cycle Structure : A Legal Additive Cycle Structure is the
cycle structure which can be e:cpressed by relation 3.51 and where the corresponding Linear

Cycle Structure CS = )+ Z Zuzj ki (27 - k;)] is a Legal Linear Structure.

k; 7=0

The results of Theorem 3.13 is illustrated below with the example ACA.

Example 3.12 The T matriz of a 5 cell GF(2) CA is given by
1 0 0 0 O 0 1
01 1 00 1 1
001 00 and Fp = 1 and Fy = 1
00 0 01 0 0
00 0 11 0 0

The characteristic polynomial f(z) of the ezample LCAJ/ACA in Elementary Divisor
Form(EDF) is
f(@) = (@ +1)(z+1)*(z* +z +1).

The inversion vector F= [0 1 1 0 0]. The vector Fy annihilates only (z +1)2. There-
fore, M = |log2(2)] + 1= 2.

f(z) can be expressed as ¢(x) x (x+1)%, where p(z) = 1+ ) - (x> 4+ z + 1).

The cycle structure CSg g,y = [CSc4a)] X [CSo(a2+2+1)] = [1(1), ] [1(1),1(3)]
= [2(1),2(3)]-

The cycle structure CSc(14q)> = [1(1),1(1),1(2)] whereas CScr(14q)> = [1(4)]-

Therefore, the resultant structure CSc(g(z)) = CSg gy X CSc(i4a) = [4(1),2(2)],
[4(3),2(6)]. The set of odd cycles CL = {1,3}.

The resultant cycle structure CScr(g(z)) = CSc(ga) X [CScr140)2] = [2(4),2(12)].

Similarly, Fy = [111100] annihilates both elementary divisor (z + 1) and (z + 1)2.
Therefore, CS¢ gy = [2(2),2(6)]. The resultant cycle structure CS = CSci4(a)) X
CScr(z41) = [2( ) ( )] x [1(4)] = [2(4),2(12)], same as the previous.

Note : The change between each individual clustering of k; in CSc(g(z)y and CScr(¢(x))
respectively is according to relation 3.51 of Theorem 3.13. Taking for example 2(4)
where ki =1 and 2M =J, the corresponding cycle structure in C which have got
merged in C' are [4(1),2(2)]. The cycle component of po2.1 has been formed according

to relation 3.51, pipe = 221 F2X2 — 9
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3.3.4 P,: Algorithm for Enumerating Cycle Structure of an AC'A

The Theorem 3.13 clearly establishes the relationship between the cycle structure of
C and C'. Tt shows that once the cycle structure of C is evaluated and arranged as per
the format noted in relation 3.37 , the whole task of the algorithm for evaluating the cycle
structure of an AC A reduces to the deduction of the value of M.

The value of M is deduced with the help of the Theorem 8.10. The rank of [T* + I] and
[T* + 1, F] is successively compared for all k = 2™ -k;, m > 0 until the rank becomes equal.
The value of k at which both the ranks become equal gives us the necessary M.

The algorithm for deduction of M is next elaborated.

Algorithm 3.8 Enum _M(T, F)

Input : T matriz, F Vector.

Output : M

M=0

Evaluate F = [I+T +T? + ... + T2M*1]F

Evaluate R1 = rank{T?"' 1 + 1] and R2 = rank{T?"' ! + I, F]
while ( R1 < R2)

{

Evaluate F = [[ +T + T2 + ... + T 1F

Evaluate R1 = mnk[TQM_1 +1] and R2 = mnk[T2M_1 +1,F]

M=M+1
}
return M.

Once the M is enumerated, the modified cycle structure for each k; is deduced through
relation 3.51.

Algorithm 3.9 Enum_CS _depth_from_ ACA( T, F, CS', d)
Input : (1) The Characteristic Matriz T and Inversion Vector F.
OUTPUT: The Cycle structure of C’ & depth
Enum_CS_depth_from_LCA(T, CS, d)

where

OSe = 1M) Y ias (2 - ko)

k; 7=0
where k; is odd and CL is the set of odd cycles k;.
Output the depth of C as that of C'.
If characteristic polynomial of T doesn’t have a factor of (x + 1), then
Output the cycle structure CS of C as CS' of C'.

else

M = Enum _M(T, F)
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for each k; € CL
{

Evaluate piorm.i; for each k; by relation 3.51
ngj.ki = pgj.y; Jor j > M

}

mki '
Output CS' = Z Z poig; (20 - ki), k1 =1
ki j—M

We now illustrate the algorithm of enumerating AC A with an example ACA. The ACA
is represented by T matrix and F' vector where the T" matrix taken in the following example
is one that has been used in Example ?7.

Example 3.13 Let the T matriz of a 7 cell GF(2) ACA be

00 0 0 0 0 0

[T 00 0 0 O 0 O 1

0 0 1] o0 0 O O 0
T=]1 0 0 0 [1 1] 0 O and F =1 0

0 0 0 (01 0 0 0

0 0 0 0 0 [0 1] 0

00 0 0 0 [1 1

The matriz [T* + I, F)] is referred to as Augmented Matrix.

Step 1 & 2 : Finding Characteristic Polynomial and Cycle Structure.
Characteristic Polynomial 2 - (x +1)3 - (22 +z + 1)

The cycle structure of the LC A is [4(1), 2(2), 4(3), 2(6)].

Depth of LCA = 2 = Depth of ACA =2

Step 3 : Finding the values of M.

e Rank of (T' +I) is 3, while the rank of the augmented matriz is 4. Hence cycle of
length 1 does not erist

e Rank of (T? + I) is 2, while the rank of the augmented matriz is 3. Hence cycle of
length 2 also does not exist in the AC A

o Rank of T* + I is 2, while the rank of the augmented matriz is 2. Hence cycle of
length 4 exists.
So, the value of M, as per Step 3, is 2.

Step 4 : Finding the Component

L. ki =1 pupq = 20 — 9
2. kz :3 M22-3 — 4X3+22>§'63+0><12 — 2.

Hence the cycle structure becomes [ 2(4), 2(12) ] .

3.4 Conclusion

This chapter presents the complete characterization of the cyclic and non-cyclic subspaces
of Additive Cellular Automata(ACA). The proofs of related theorems and algorithms to
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identify the cycle structure and depth of the state transition behavior of an AC'A are
presented. The analytical framework for characterization of the vector subspace of the
ACA is based on the characteristic polynomial, minimal polynomial, elementary divisor,
characteristic matrix and inversion vector of the AC A. Based upon analysis, we develop
the synthesis scheme in the next chapter.
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Chapter 4

GF(2) Cellular Automata -
Synthesis

This chapter details the methodology of synthesizing GF(2) C'A from a given the vector
sub-space in terms of cyclic and non-cyclic components. The analysis of GF(2) C'A in the
previous chapter provides the foundation for the synthesis scheme.

Cellular Automata (C A), as noted in the survey of Chapter 2, appealed to researchers
both for their theoretical interest as well as practical applications. In recent times, C'A has
been effectively employed in the areas of pseudo-random testing, cryptography [56, 28, 32,
38], signature analysis[31, 20], error correcting code[14, 16], image compression[41], pattern
recognition, etc. However, all these applications depend on the availability of a C'A with the
specified characteristics. Principal among such characteristics is the desired state transition
behavior of the C'A to be used for an end application. This can be conveniently expressed
as the cycle set and depth specification of a C'A formulating a C'A from a specification of
the cycle structure and depth.

A number of researchers have concentrated their efforts for C' A synthesis. Notable among
them is the work of Kattel & Muzio[4, 24] where they proposed an algorithm for synthesis
of CA from irreducible polynomial. Serra et al [47] presented an algorithm for synthesis of
an 90/150 hybrid C A from the specification of the characteristic polynomial.

The first attempt of synthesis of Linear C A from a given cyclic/ non-cyclic vector sub-
spaces through a table driven approach has been done by [44]. But the scheme fails to
guarantee the generation of a solution even if a LC'A exist for the given input. However, no
attempt has been made to generalize the problem and effectively synthesize an AC'A from
a given set of cycle and depth specification. But the scheme fails to generate C'A from all
legal consideration. To the best of our knowledge none of other works so far reported in
the literature has dealt with synthesis of a AC A to generate a specified cyclic/non-cyclic
vector sub-spaces. The scheme reported in this chapter perfects the scheme for LC A, that
is the scheme is always able to generate an LC A if the given input is valid, generalizes the
scheme for AC' A and reports an efficient synthesis methodology which has polynomial time
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complexity for all practical consideration.

The cyclic/non-cyclic vector subspaces generated by an ACA follows some symmetry
dictated by the laws of linear algebra. Naturally, any arbitrary asymmetric cyclic sub-
space cannot be generated by an ACA. The cycle structure which can be generated by
an GF(2) CA is termed as legal cycle structure. In this chapter, we explore into the
methodology of synthesizing GF(2) C A from a given legal cycle structure. The features of
Legal Additive/Linear Cycle Structure are defined in Definition 3.12 & 3.18. If an illegal
cycle structure is given the algorithm itself can understand that it is illegal. Accordingly,
it returns that the cycle is illegal.

The chapter is organized similar to Chapter 3. We first present the methodology for
synthesis of Linear CA and then based upon the results the algorithm is generalized for
Additive C A.

4.1 Synthesis of an LCA

The characterization of LC'A detailed in the last chapter has provided the foundation
for its reverse operation - Synthesis. The synthesis scheme accepts a given legal cyclic
(Definition 8.12) and non-cyclic subspace as input and outputs an LCA generating the
vector space. The basic approach of synthesis is outlined below.

e At the first stage, elementary divisors are derived from the cycle structure(CS). Pri-
mary Cycle Structure(PCS) and Primary Family Cycle Structure(PFCS) enumeration
acts as an intermediate step in this derivation process.

e The depth d of the C A is realized by the elementary divisor type z¢.

e Each elementary divisor ¢;(z)™ refers to a vector space represented by a equivalent
T; matrix. Total space is the direct sum of the vector spaces generated by individual
elementary divisor. Consequently, the LC A represented by a T matrix is obtained by
placing the individual matrices(T;) in block diagonal form.

e If an illegal input is given, the algorithm reports that such a cycle structure is not
feasible.

The major steps for the synthesis of LC'A from legal cycle structure are noted in the
algorithm reported below:

Algorithm 4.1 Enum_LCA_from_CS_depth(CS, d, T)

Input :  Cycle Structure (CS), depth(d)

Output : LCA - (T matriz)

A : Generate each individual Primary Family Cycle Structure (PFCS) (Definition ??) from
CS.

B : Generate Primary Cycle Structures(PCS) in triplet form (Definition 3.9) from each
PFCS.

C1. Find the elementary divisor ¢;(xz)™ corresponding to each primary cycle structure
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(PCS;) and

D : Find LCA(T;) corresponding to each ¢;(x)™ and Find the LCA;(T;) generating the
non-cyclic space - depth d.

Synthesize the LCA combining the set of LC' A; generated.

Each of the above steps have been detailed in subsequent sub-sections. However, in order
to express the underlying principle of synthesis we take the help of the following example
illustrating each of the steps.

Example 4.1 To design an LCA having its CS = [4(1), 2(2), 4(3), 2(6)] & depth(d) = 2.
Step A: The given CS can be expressed as a product of two PFCS as noted below. CS
= [1(1),3(1),2(2)] x [1(1),1(3)]

Step B: From the two PFCS, three PCS can be derived in triplet form and so CS can
be represented as CS = (1,1)' x (1,1)2 x (1,3)!

Step C1: Corresponding to the set of PCS, the elementary divisors (z + 1), (z + 1)2,
(z2 +z + 1) are obtained.

Step C2: From depth(d) we obtain the elementary divisor z>.
Hence we obtain the characteristic polynomial in elementary divisor form as z%(z + 1)(z +
D2(z? 4+ +1).

Step D: From the elementary divisors we obtain the LCA (T matriz) as

[0 0] 0 0 0 O O

1 00 0 0 0 0 O
0 0 [1] 0 0 0 0
T=| 0 0 0 [1L 1] 0 ©
0 0 0 |01 0 0
0 0 0 0 0 [0 1]
0 0 0 0 0 |1 1

Each of the steps is next discussed in detail.
4.1.1 Generation of PFCS from Cycle Structure(CS)

The conversion tool accepts the given cycle structure(C'S) and partitions it into corre-
sponding PF'CSs such that C'S follows the relation

CS = [PFCSy] x [PFCS,] x -+ x [PFCS ] (4.1)

where N specifies the number of Primary Family Cycle Structure in the synthesized LCA.

The overview of the conversion algorithm is stated below.
Step I : In the first step we divide CS = C'S; x CSy where C'S; is Primary Family Cycle
Structure(PFCS) while C'Sy follows the relation CSy; = CS - { CSy, CS; x CS2}. While
satisfying the following condition, the primary cycle k1 produced by CS; is the smallest
among all primary cycle lengths in C'S.

Step II : Making C'Sy as C'S, the steps are repeated until CS = C§;.
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As it is obvious from the above overview, the algorithm is recursive in nature. Hence,
developing the algorithm for solving one step will lead to solution of the entire problem.

1. Generation of CS; The cycle structure CSy is generated with the help of Theorem
3.8, which states that the cycle structure corresponding to the smallest primary cycle family
is same in CS & CS§;. The family whose primary cycle is least forms CS;. The following
example illustrates the generation of C'S;

Example 4.2 Given CS=[1(1), [3(1),2(2)], [4(3),2(6)], [12(5),6(10)], [12(15),6(30)]]

Then CS1 is the cycle structure obtained from the k- cycle family, where k has the least
value.

Since here 1 is lowest, therefore ki = 1 & CS; = [1(1), 3(1),2(2)].

2. Generation of CS2 : During generation of C'Se from CS, the cycle families k;s
constituting C'S are arranged in ascending order. Each cycle family is tested in ascending
order and decision is taken whether to include it in C'Sy or not. When we decide to add a
cycle family ko in C'S to C'Sy, we have to keep in mind that in addition to ko cycle family,
we have to deduct the cyclic components of the cycle family from CS derived from the cross
product of C'S; & CS,. We already know k; - the primary cycle of CS;. Any cycle k3 € C'S
which has arisen from cross product of k1 & ko € CSs where k3 = lem(ky, k2) should be
deducted from C'S in the process of formation of C'Ss.

In the process of adding a cycle family ko in C'S to CS, following two cases may arise
that are treated separately.

e Case 1: lem(ki,ka) > ko

e Case 2: lem(ki,ka) = ke

Case 1 : lcm(kl,kg) > ko
It is illustrated through the following example.

Example 4.3 CS =[1(1), [1(3)], [3(5)], [3(15)]]; k1 = 3.

cs) = [1(1), 1(3)

The remaining cycles in CS are k; = {5, 15 }

Taking the first cycle ko = 5,

k1 is not a factor of ks.

Therefore, CSy = [1(1), 3(5)] that is, the entire cycle structure 3(5) in CS comes from CSs.
The cycle family arising as a cross product of k1 & ko is ks = lem(ky1,ke) = 15 &
Therefore, p15 which should be deducted from CS is calculated from relation 3.23

pis = p3 - ps - ged(ps - ps) = 3.

Cycles remaining in CS = CS - [3(5), 3(15)] = [1(1)].
Since all the cycles are ezhausted, CSy = [1(1), 3(5)].

So to summarize, the following decisions and actions can be taken in this case to Case I
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e The cycle family (k2) has not arisen as a result of cross product. As a result, the
entire cycle family (k) is a member of C'Ss.

e The k3 cycle family derived from cross product of ks & ki cycle family has to be
accordingly deducted from CS. The components of k3 cycle family are obtained
through Relation 3.23.

e Consequently, in this step, two cycle family (ke, k3) of C'S are resolved; ko becomes
a member of C'Sy while the effect of cross product of k9 & k1 cycle family is resolved
with the nullification of k3 cycle family.

Case 2 : lcm(kl,kg) = k‘g

In this case, the cross product of ki-cycle family and ka-cycle family yields a cycle family
whose primary length is also k2. So unlike the previous case, instead of adding the entire
cycle family to CSy from C'S, we have to add a part of it, so that the effect of cross product
of CS; and C'Ssy gets balanced.

The case where cross product of k; & ko cycle family produces a ke cycle family is
discussed through Relation 3.29 where evaluation of figj.k, in CS from py;p, in CSs is
made. To evaluate the cyclic component 955, to be added to C'Sy from the given cyclic
component fig;., in CS the relation 3.29 has been re-framed as follows

fios 4y (CS) = [fi2i 1, (CS1)] - [Sai-1.4, (CS2)] - B2
[SQ]' k1 (CSl)] +1

H2i gy =

where

o [igj.k,(CS) is the cyclic component corresponding to ko-cycle family in C'S.
® L9k, (CS1) is the cyclic component corresponding to ki-cycle family in CS;.
e Sy.4,(CS1) means number of states covered by cycle length (< 27 - ko) in CS;.

e Syj-1.4,(CS2) means number of states covered by cycle length (< 2771 - ky) in CS,.
When we are enumerating fiy;.%,, all the cyclic component g5, (7 < j) is already
enumerated.

The following example illustrates the manner in which equation 4.2 is used to extract
individual cycle structure.

Example 4.4 CS=[1(1), [3(1),2(2)], [4(3),2(6)], [12(5),6(10)], [12(15),6(30)]]

k1 = 1.(the smallest cycle length)

¢S = [1(1), 3(1), 2(2)]

The cycle structure of CS after CSy is subtracted from CS leading to CS = [1(1), [4(3),
2(6)], [12(5), 6(10)], [12(15), 6(30)]]

The remaining primary cycles in CS k; = {8,5,15}. For each k;; lem(k;, 1) = k;.
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ko = 8.
i - : 1 _4x0x 1
From relation 4.2 - u3 = f13(CS) Ml%(fill) 50(CS)-3 _ 4 ‘;j_?xs =1

fig—p2-S3- 1 2—2x3x L
H6 = —(5y+1 fE gy =0
Similarly, for ke = 5, us = 3, u1o = 0;
and ke = 15, p15 = 3, p3o = 0;

Then CSy = [1(1), 1(3), 3(5), 3(15)]

The algorithm for enumeration of both C'S; and C'Ss is presented next. In the following
algorithm, [ is used to denote cyclic components in CS, while u is used to denote cyclic
components in CS; & CS,.

Algorithm 4.2 Enum_CS1&CSy_from_CS(CS, CS1, CS3)
Input : CS = [1(1), DY pai.g, (27 - ki)
k,

Output : CSq, CS,

CSy = [1(1), 3 poik, (27 - k1)], where ki is the smallest member of k; - cycle family set.
CS =CS =3 pojp, (27 - kr).

for each k; € CS; in ascending order

ko = ki

if k1 1s a factor of ko

{

Obtain fiy;.5,(CSa) from relation 4.2

CSy «+— CSy + K23 ke

CS < CS - [igjg,

/*Although f[igj .k, is deducted from CS, pgj.y, cross-porducted with members of ki-cycle
family is added to CSy as 1oy, is responsible for formation of fig; k., */

}

else

{

CSy +— CSy + 193 Ky

Obtain fig; .k, from relation 3.23(ks = lem(ky, ky))

CS <+ C8 — figj k,

CS «+ CS — iy g,

/* Both the ko cycle family and the impact it creates when cross producted with k1 is removed

from CS */
}

Complexity Analysis Evaluation of Relation 4.2 € 3.23 in Algorithm 4.2 needs a constant
time. Let CS have m terms. At each iteration, at least one term gets resolved. Therefore,
the complexity of the algorithm is O(m).

We now present the relationship between the LCA size n and number of terms in CS -
m. We report the important assumptions made during analysis and the final result. The
assumptions are
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e The probability of two cycle length ky & ko to be mutually prime is 0.5 while

o If two cycles k1 & ko are not mutually prime then there is 0.25 probability that & is
divisible by ko that is lem(k1,ks) = ko or vice versa and there is is 0.25 probability
that one is not divisible by other.

With these assumption the expected number of components F/(m) is given by the equa-
tion
E(m)=1L [2%4—2—4 (§)%+3] (4.3)
= e 1 .
where L is the expected number of components present in a single PFCS and K is the
expected size produced through a single PFCS.

Hence in average case, the order of the algorithm is 0(2% ), which implies the algorithm
is super-polynomial in nature.

However, in practical applications we would be interested to synthesize an LC' A at most
of size 5000. We find that for all value of n < 5000, the computation of E(m) through
relation 4.3 gives value which is less than n3. Hence for all practical purpose the complexity
is O(n3). The complexity calculation comes from the following assumption of L & K.

In such large LC' A, whose constituent cycles will satisfy the prime/non-prime probability
relationship, the following assumptions regarding L and K can be easily made

e The expected number of components in each PFCS is L is assumed to be 4.

e Let each PFCS comprise of a single elementary divisor ¢;(z)™ and the expected
degree of the polynomial is assumed to be 15. Since n; is produced by 4 separate
components, hence the value of n; = 8 (follows directly from Lemma 3.2). Therefore,
K =15x2%"1 =15 x 8 = 120.

The Algorithm 4.2 can be recursively called, as noted in Algorithm 4.3, to generate PFCS
out of a given CS.

Algorithm 4.3 Enum_PFCS_from_CS (CS,[PFCS])

{

Input : CS - Cycle Structure

Output : Primary Family Cycle Structure Set PFCS,, PFCSy --- PFCSN : [PFCS]
Enum_CS,6CSy_from_CS(CS, CS1, CSs)(Algorithm 4.2)
PFCS; =CS

[PFCS] «+ PFCS;

If (CSy = PFCS)

{

[PFCS] < PFCS

Ezit
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}

else
CS =C8,
Enum_PFCS_from_CS(CS,[PFCS))

}

Complexity Analysis : The expected number of PFCS is given by & as the expected
size of each individual PFCS is K. Hence the complexity of the algorithm is given by
O(n - 2%). However, for practical consideration for n = 5000, the complexity will be =
O(n -n?®) = O(n?).

At this point we have obtained a set of Primary Family Cycle Structure(PFCS). Our
next work lies in generating the Primary Cycle Structure(PCS) set from this PFCS.

[Note : Each PCS corresponds to an Elementary Divisor(ED). So in subsequent dis-
cussions the terms Primary Cycle Structure(PCS) and Elementary Divisor(£D) have been
used interchangeably. Consequently the symbol A denotes the cardinality of the PCS set
which is equal to the number of EDs in an LC A.]

4.1.2 Generation of Primary Cycle Structure (PCS) from PFCS

In this step the Primary Family Cycle Structure (PFCS) of (say) k cycle family is taken
as input and the Primary Cycle Structures in triplet form is given as the output, such that
it maintains the relation

PFCS = (jug, k)™ X (e, k)™ X -+ X (g, k)™ (4.4)

where N denotes the number of elementary divisors forming the LC A.

In order to achieve this, we have the following two tasks.
Task 1 : Determination of .
We determine the value of py with the help of the following axiom

Axiom 4.1 : The irreducible polynomial ¢(x) having cycle length k has cyclic component
px; where py = (28 — 1)/k; 1 is the smallest integer for which k becomes a factor of 2! — 1;
the coefficients of ¢(x) lies in GF(2).

The following three theorems form the foundation block based upon which we derive Aziom
4.1 The first two theorems show we have to consider the smallest integer [ for determination
of pr and the third theorem proves the irreducibility of the polynomial ¢(X).

Lemma 4.1 Ifk is factor of 2\ — 1, where | is the smallest integer for which k becomes a
factor of 2! — 1, then k is only factors of 2™ — 1, where m is a positive integer.

Proof : We proof the necessary condition first. If k is a factor of 2/ — 1, then it is also a
factor of 2™ — 1 as 2! — 1 is a factor of 2™ — 1.
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Sufficient Condition : Let k be a factor of 2 — 1 where mi < I; < (m + 1)l for some m.
Then ﬁ;i—m = 22:,2 = 212 where I, = [; — ml and 141, o are results obtained from dividing
2l — 1, 2™ _ 1 by k respectively.

Therefore, the following relation arises
Eo(ui+22xpg)=22-1 (4.5)

which implies k is a factor of I5. But [y is less than [. Therefore, it is not possible.
Hence, k cannot be a factor of 241, m|

The next theorem shows all other cyclic component can be realized by taking multiple
instances of the base case.

Theorem 4.2 : The cycle structure [1(1) + pu(k)] where u x k + 1 = 2™ where [ is the
smallest integer for which k is a factor of 2! — 1 and for some integer m is realized by the
characteristic polynomial in elementary divisor form f(z) = ¢(x)¢(z) - - - m — times, where
the cycle structure of ¢(z) = [1(1) + pu1(k)] and p x k +1 = 2!

Proof : If ¢(z) = [1(1) 4 p1(k)] then

F(2) = 1) + px(B)] % [1(1) + e (k)] - -~ m — times
that is the cyclic component of the cycle length k
b= mClH, m02u2 . k, e mcmum L Em—1
Therefore, simplifying

. 14+™Cy (k)™ Cy (k)™ .~ 14p-k)™—1

i = +7Ch (p )’r]rfl (k) —%.Thatls,u:%

That is, i = 2 k_l = U.

Hence the proof. O

The third theorem shows that the polynomial underlying the base case is necessarily
irreducible.

Theorem 4.3 : The polynomial ¢(z) which has cycle structure [1(1)+p(k)] and pg x k+1
= 2! and [ is the smallest number dividing 2! — 1 is irreducible.

Proof : Let ¢(z) be reducible and ¢(z) = ¢1(x) - pa(z).

Therefore, cycle structure of each ¢;(9)(x) has to be [1(1), u1(2)(k)]-

That is pyo) X k = 2l — 1, where ligy < I. But this is not possible. Hence ¢(z) is
irreducible. O

Task 2 : The next important task is to output the Primary Cycle Structure(PCS) in
triplet form; that is, PFCS = (uk, k)™, (g, k)™ - - (g, &)™V
Hence Task 2 lies in fulfiling the following objectives

e Determining the value of N.

e Determining the value of the powers (n1, no --- ny) of the underlying irreducible
polynomial ¢(x)
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In order to attain the objectives

e We find out the total number of 5% factor set - N (F})

e Consequently we find out the number of PCS required to accomodate these N (F)
number of factors and the power of each resultant PCS.

The relationship between the primary cycle family and the underlying elementary divisors
has been discussed in section 3.2.8 where we have shown that the cyclic component of a
particular cycle length (27-%) depends upon the total number of j™ factor set N (F;) present
in the Primary Cycle Structure set. N (F;) represents the sum of number of 5% factor set
present in all elementary divisors - that is, PCS.

The relation 3.19 illustrates the relationship. We are reproducing it for convenience.

2TZ§=0N(FJ')_27 Q_ZION(FJ')
Hoi.fp = 2]k

The equation can be reoriented and we can derive N(F}) as

1 S R,
N(F}) = ~loga(ugi j x k x 2077 2g= NI 4 1) (4.6)
T
where pq ), is the given cyclic component from which the number of j** factor set has to
be derived, 7 is the degree of the polynomial ¢(x).
The following example illustrates the above formulation.

Example 4.5 Given CS = [1(1),85(3), 3688(6), 5591040(12), 4581088288(24)] in GF(2),
r = 2. Therefore, from the relation 4.6

N(Fy) = Jloga(85 x 3 x 2070 4 1) = len2(236) _ 4

N(Fy) = 1logs(2688 x 3 x 21=4%2 4 1) = lon:(64) _ 3

N(Fy) = L10gy (5591040 x 3 x 22-(4+8)x2 | 1) — log2d09%6) _ g
N(F3) = Llog, (4581088288 x 3 x 23-(4+3+6)x2 | 1) — log2(16380) _ 5

N(F;) denotes the total number of j* factor set present in all the PC'S. The next step
lies in determining the manner in which these j** factor set are distributed in individual
PCS. In this connection we define the term - N(PCS(j)).

Definition 4.1 N(PCS(j)) is defined as the number of elementary divisors/PCS having
the j factor set and satisfying the constraints that the first N(PCS(j)) — 1 has all the
possible 20=1 factors. (from Relation 3.10)

Example 4.6 Let f(z) = ¢(z)' - ¢(x)* - ¢(z)7 - ¢(z)8. Then for j = 2, the 27¢ factor
set(Definition 3.8), that is the factors of values 3(237! +1) & 4(23) are present in 2 elemen-
tary divisors [¢(z)7, #(z)®]. The last elementary divisor have all the possible 237! factors
namely 5, 6, 7 & 8, while the last have only the 3 factors. Hence N(PCS(j)) = 2. O
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Following lemma formalizes the above discussion

Lemma 4.4 The number of Primary Cycle Structure N(PCS(j)) required to accommo-
date N(Fj) is given by the formula

N(F;) F s
Npes() =4 [t ] izl (4.7)
N(F;) j=0
Proof : Since in an elementary divisor, the maximum number of the j** factor = 271,

Therefore, the number of elementary divisor to accommodate N(F7) is given by Relation
4.7. N(Fp) represents the irreducible polynomial which each elementary divisor can have
only one. O

The following example illustrates the concept, as well as lays the foundation for the next
step.

Example 4.7 Given N(Fy) = 4, N(F\) = 3, N(Fy) = 6, N(F3) = 7. Find N(PCS(5))
for each value of 3. To evaluate we have to make use of relation 4.7.

(0)) = 4, that is there are 4 irreducible polynomial. Hence number of PCS = 4.
N( (1)) = 8, that is 3 PCS out of 4 has factors ranging from 2'~1 +1 to 2.
N(PCS(2)) = 8, that is 8 PCS has factors ranging from 22~ +1 to 22.
N( (3)) = 2, that is 2 PCS has factors ranging from 23! +1 to 23.

On calculation of N(PCS(j)), we know the constituent factors of each PCS. Therefore,
the next task is enumerating the power (n1,ng,---nar) of each elementary divisor/PC'S by
compiling from the obtained factor information.

The next theorem illustrated the method.

Lemma 4.5 The number of PCS (say Nj) which will have power P; where 2771 4+ 1 <
Pj < 27 is given by the equation

Nj = N(PCS5(j)) = N(PCS(j —1)). (4.8)

The exact value of P; are given by the formula

[ 2 for (N -1) PCS
Py = { 27-1+L; for /\f}h PCS (4.9)
where
N(F;) mod 2271 j>0
Ly = j—1 s
2 7=0
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Proof :  The value of Nj is determined by the fact that there is no higher factor set in
those elementary divisors. The Relation 4.8 determines that.

From Lemma 4.4, all the (N; — 1)"* elementary divisors are fully filled with the J* factor
while in the last elementary divisor, the remaining factors are allotted. Hence the value of
Pj is accordingly determined. g

The following example summarizes the above discussions on generation of PCS(Primary
Cycle Structure) in triplet form. Ezample 4.5 & /.7 are reproduced for convenience.

Example 4.8 Given CS = [1(1),85(3), 3688(6), 5591040(12), 4581088288(24)] The Table

4.1 shows step by step calculation of each of the parameters to arrive at the final result.

Table 4.1: Calculation of Primary Cycle Structure

j | N(F;) | N(PCS(j) | Nj | P
0] 4 7 1] 1
1] 3 3 01| o
2| 6 3 1] 4
3| 7 2 2178

We are elaborating the method of obtaining N3 & Ps to exzplain Lemma 4.4.

Since N(PCS(3)) is 2 & N(PCS(4)) =0, (as there is no N(PCS(4))) therefore, there will be
2 [N(PCS(3)) - N(PCS(4))] PCS whose power will be between 23~ + 1 to 23.

Out of which the one PCS will have power Py =8(2%) from Relation 4.9, while the second
one will have power 2371 + N(F3) mod 8 = 237! +7 mod 4 = 7.

Therefore, the final output of Primary Cycle Structure in Triplet Form is

CS = (1,3)! x (1,3)* x (1,3)" x (1,3)8.

We sum up the discussions providing the algorithm to convert a Primary Family Cycle
Structure(PFCS) into Primary Cycle Structure(PCS)

Algorithm 4.4 Enum_PCS_from_PFCS (PFCS,[PCS])
{

Input :  Primary Family Cycle Structure(PFCS)

Output :  Primary Cycle Structure Set PCS1, PCSy --- PCSyr : [PCS] in triplet form.
Find py, through Axiom 4.1

For each j

{

Find N(Fj). - Relation 4.6

Find N(PCS(j)) - Relation 4.7

Nj_1 = N(PCS(j — 1)) - N(PCS(5)) - Relation 4.8
Find P;_; - Relation 4.9

for each N(PCS(5))*" PCS

[PCS] + PCS;

}
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Nj_1 = N(PCS(j — 1)) - Relation 4.8
Find Pj_; - Relation 4.9
[PCS] «+ PCS; --- PCSx

}
Complexity Analysis

e Finding pg - The value of pi X k can be at most be 2" -1 where n is the number of
cells in LCA. So we have to do at most n comparisons.

e Each of the iterative steps are accomplished in constant time.

o Number of iteration : The highest value of j can be when the PFCS constitutes of
a single elementary divisor ¢(z)™ - that is all the factor set is generated by a single
elementary divisor and the value of r and p are both 1. In this case, the highest factor
set is [loga(n)](follows directly from Lemma 3.2). Therefore, the number of iterative
steps(j) can be at most logy(n).

e The overall complexity of the algorithm is thus O(n)

Once we have obtained the Primary Cycle Structure our next task lies in deriving the
polynomials underlying them

4.1.3 Conversion of Primary Cycle Structure(PCS) into Elementary
Divisors(E Ds)

An elementary divisor ¢;(z)™, as noted in Definition 3.9, has the PCS in triplet
form - (ug, k)™ where the irreducible polynomial ¢;(x) can produce the cycle structure
[1(1), pors (K))-

This subsection reports the process of generation of the polynomials from the given cycle
structure uy (k) where pg X k = 2" — 1. Database of primitive polynomial for all values of r
in GF(2) has to be maintained in this process.

A primitive polynomial is a special type of irreducible polynomial. The cycle structure
of a primitive polynomial of degree r is CS = [1(1),1(2" — 1)], whereas an irreducible
polynomial of degree r has C'S = [1(1), ux (k)] where py xk = 2" —1 [22]. For example, for
r=6, C'S of a primitive polynomial is C'S = [1(1), 1(63)], whereas an irreducible polynomial
can have CS = [1(1), 7(9)].

The following theorem illustrates the method of calculating the irreducible polynomial

of degree r from an r degree primitive polynomial. The primitive polynomial can be repre-
sented by a linear operator 7' with the help of Rational Canonical Form [22).

Theorem 4.6 IfT is the characteristic matriz of a primitive polynomial having cycle struc-
ture CS = [1(1),1(k)], then the characteristic polynomial of T* has the cycle structure
[1(1), px (k)] where pp x k = k.
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Proof : If the cycle structure of T is [1(1), (1(k)], then TF =1, Tmexk = ],

Therefore, the matrix T#* will have cycle length of k or sub-multiple of k. Let k; be a
factor of k and for some state z, (T"*)¥1 . z = z. Therefore, T(*+*k1) . ;; = . But this is

not possible.

Hence T** has cycle structure [1(1), pr(k)]. Consequently, characteristic polynomial
f(z) = det(T"* + Iz) has cycle structure [1(1), pg(k)]. O

The complete algorithm is now presented.

Algorithm 4.5 Enum_ED_from_PCS(PCS, ¢;(z)™ ).

Input : Primary Cycle Structure in triplet form [ug, k, n;]
Output : Elementary Divisor ¢;(z)™

Step 1 :  Calculate r = loga(ug X k+ 1)

Step 2 :  Choose primitive polynomial of degree r X p in GF(2).
Step 3 :  Construct T matriz from polynomial f(x) in GF(2)[29].
Step 4 :  Find T"*.

Step 5 :  Find characteristic polynomial ¢;(z) = det(THr + Ix)
Step 6 :  Output ¢;(x)™

Complexity Analysis

e To maintain the database of degree N, we have a space complexity of O(N?), each
polynomial of degree n requiring at most n? places.

e Step 4 : A matrix multiplication is of order n3. The largest value of uj can be 27.
Therefore, multiplication of T+ will take n* unit time.

e Step 5 : The determinant calculation takes O(n?) time.

e Thus the algorithm has a time complexity of O(n*) while a space complexity of O(N?).

The following example illustrates the algorithmic steps.

Example 4.9 To generate the elementary divisors for PCS = (3,5)2, that is the coefficients
of the elementary divisor are in GF(22).

Step 1: Findr = (loga(pr xk+1)). (r = 4)

Step 2: Find a primitive polynomial of degree 4 in GF(2). (z* +z+1)

Step 8: Construct the T matriz from the polynomial using Rational Canonical Form.

0001
T:1001
0100
0010

Step 4: Calculate T3.
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0100
T _ 0110
0 011
1 0 01
Step 5: Calculate the characteristic polynomial of Tk to obtain ¢(z).
¢(z) = det[T? + Iz] = (z*+ 23+ 22+ 2+ 1). Therefore, the elementary divisor =

(#*+ 22+ 22+ +1).

Once we have obtained the elementary divisors we can proceed to generate the linear
operator T' of the LCA. As we have already mentioned, this step is done specifically for a
three neighborhood LC A.

4.1.4 LCA Synthesis from Elementary Divisor

The generation of C'A from Elementary Divisor is accomplished by the following opera-
tions.
Operation 1 : Convert each elementary divisor - ¢;(z)™ into LCA;.
Operation 2 : Merge each LC A; to form the complete LC A.

Illustrative examples and formal algorithms follow the explanation of the operations.

Operation 1: Under the assumption of 3-neighborhood dependency of each cell of LC A,
the elementary divisor, ¢;(z) is converted into a tridiagonal matrix. The elementary divisor
may either represent a cyclic subspace or it can also represent an acyclic subspace of depth(d)
of the machine where the corresponding irreducible polynomial is z%. We discuss both the
cases.

Case 1: Elementary Divisor Representing a Cycle Structure. To achieve this target, we
first convert the underlying irreducible polynomial ¢(z) into 3-neighborhood LC A-Matrix.
The algorithm proposed by Kattel et.al. in [4] is executed to obtain the matrix. The
formation of LC'A with characteristic and minimal polynomial as ¢;(z)™ is executed using
the principle of the following theorem [22].

Theorem 4.7 Let d,,_1(z) be the greatest common divisor of all minors of order (n — 1)

in the matriz (T + Iz) of order n, and let ¢(x) be the characteristic polynomial of T. Then
the minimal polynomial M (x) of T is given by

M(z) = ¢(x)/dn—1(x) (4.10)

We now present the theorem with the help of which the matrix T'(¢;(z)"™¢) corresponding
to ¢;(x)™ is formed.

Theorem 4.8 Given a tridiagonal matriz T'(¢;(x)) whose characteristic polynomial is ¢;(x),
then the matriz T (¢p;(x)™) where
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0 o 0 T(di())

has both characteristic and minimal polynomial as ¢;(z)™:.

Proof :  The proof is presented for n; =2. The proof can be easily generalized for any
value of n;. We first find the characteristic polynomial of T" where

rgay = | T ]

0 T (¢i(z))
Therefore, the characteristic polynomial will be
T(¢i(z)) + Iz 1 B | o 2
o l 0 T(pi(z)) + Iz | ¢(z) - p(z) —1-0 = $(z)

The minimal polynomial is found with the help of Theorem 4.7. To have the irreducible
polynomial represented by a 3-neighborhood LC A, the super-diagonal and sub-diagonal has
to be non-zero[4]. Therefore, placing one in the junction gives us a non-zero minor. Through
suitable row, column operation [22], the value of minor (d;) will be one. Therefore, ged of

all minors
d(z) = ged(di(x),---,dp(z)) =1 s2ince d; = 1.
Hence minimal polynomial = ¢(T) = ¢(z). O

Example 4.10 Given an elementary divisor (z2+xz+1)2, we have to synthesize a T matriz
whose characteristic and minimal polynomial is (z? + z + 1)2.

1100

11 1 1
GivenT(:vQ-l—w-l—l):ll O],thenT(:v2+x+1)2: 0 g ) (1)
0010

Case 2 : Building T matriz generating depth d : The elementary divisor generating
depth d is given by z¢ (follows from relation 3.5). The algorithm to synthesize an LC A
whose characteristic polynomial is 2% is reported next.

The algorithm is presented below.

Algorithm 4.6 Build_D_Matriz(d, D)

Input : d : Depth

Output : D matriz with characteristic polynomial z¢.
Initialize the d x d matriz(D) with all (s elements.
Assign D[i][i — 1] = 1 wherei =2,---,d.

Output D.

Example 4.11 Let depth = 8. Then depth matriz produced through the algorithm is
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Il
O = O
= o O
o O O

Once all the LC' A Matrices for all the individual elementary divisor are obtained, the next
task lies in combining them to form the final matrix through Operation 2.

Operation 2 : This operation involves the construction of the final LC'A having charac-
teristic polynomial ¢(z), where ¢(z) = ¢1(z)™ - - ¢pi(z)™ - - - dar(x)™N. The LC A for the
characteristic polynomial ¢(x) can be easily formed by the following theorem.

Theorem 4.9 If the characteristic matrices T (¢;(z)™) with characteristic polynomial ¢;(z)™
1s arranged in block diagonal form, then the resultant matriz T has characteristic polynomial

¢(z) where )
T(¢s(x)™) 0 ah
0 T(¢a2(z)") 0
T =
0 T(pn(x)™) |

Example 4.12 Let the characteristic polynomial ¢(z) = x3 - (x + 1)? - (22 + z + 1)2. The
T—matriz becomes

[0 00 0 0 000 O
1 00 0 0 0 00 0
0100 0 0 000 O
00 0 11 0 00 O
T=|10 00 (01 0 00 0
000 0 0 110 0]
000 0 0 [1 01 0
000 0 0 001 1
0000 0 0 |00 1 0],

We present the final algorithm for generation of 7' matrix.

Algorithm 4.7 Enum_LCA_from_ED([¢i(z)™], d, T)

Input : [¢i(z)™] - set of elementary divisor, d - Depth of LC'A

Output : T matriz.

Build T; matriz for each individual elementary divisor ¢;(z)™ .

Build_D_matriz(d, D)

Form the final Matriz combining all T; matriz and D Mairiz in Block Diagonal Form.

Complexity Analysis : The algorithm to build 7' matrix from an irreducible polynomial
#(z), is non-deterministic. Each iteration of the algorithm takes O(n?) time [24]. Extensive
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experimentation shows that in almost all the cases T' matrix is obtained after a very few
iterations. Consider, M number of iteration required to form the 7. Therefore required
time is O(M - n3). The typical value of M = 2 or 3. Hence for all practical purpose the
complexity is O(n?).

Overall complexity of the algorithm - Enum_LCA_from_CS_depth

e Theoretically, the algorithm has a super-polynomial complexity. The complexity has
been imparted by Step A & Step C respectively.

e However, for all practical purpose, for synthesizing LC' A of size upto 5000, the Step
A has a complexity of O(n?).

e With certain space complexity of O(N?), the Step C also reduces to O(n*).

e Hence, the complexity of the entire algorithm is O(n?*) with a space complexity of
O(N?) where N is the degree upto which we want to operate.

4.2 Synthesis of ACA

The analysis of AC' A has been detailed in Section 3.3 of Chapter 3. This analysis provides
the synthesis scheme discussed next. The synthesis scheme accepts a given legal additive
cyclic(C'S") and non-cyclic subspace (d) as input and outputs an AC' A generating the vector
space. In the analysis we have shown that the cycle structure of an AC A follows a definite
relationship with its corresponding LC A. The basic approach of synthesis outlined below,
utilizes the explored relationship between LC' A & ACA.

e To synthesize the linear operator T, at the first stage, the Primary Cycle Struc-
ture(PCS) is derived from the additive cycle structure (C'S"). The Additive Primary
Family Cycle Structure(PFCS') acts as an intermediate step in this derivation pro-

cess.
e Once PCS is formed, the synthesis of T follows the same methodology of LC A.

e The inversion vector F' is synthesized after the synthesis of T

The major steps for the synthesis of ACA are noted in the algorithm reported below.
Steps A - D refers to synthesis of T while the F' vector is synthesized in Step E.

Algorithm 4.8 Enum_ACA_from_CS&depth(CS', d, T, F)

Input :  Cycle Structure (CS'), depth(d)

Output : ACA - (T matriz) & (F wvector)

A : Generate each individual Additive Primary Family Cycle Structure (PFCS") from CS'.
B : Generate Primary Cycle Structures in triplet form from each PFCS'.

C & D : The Steps C & D are same as that of LCA

E : The inversion vector F' is synthesized.
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The following example illustrates the sequential steps of the synthesis algorithm. Tt
accepts the analysis results obtained in Ezample 3.1 and performs the reverse operation of
Synthesis on this input to get back the original LC'A.

Example 4.13 Let CS’ = [16(4), 24(8), 1397760(12), 3072(20), 44039680(24), 4608(40),

71302144(60), 2246048256(120)]

The value of minimum additive factor - M = 2.

Step A: Separating each primary cycle family we obtained CS' = [64[4], 24(8)] x [1(1),

4095[12], 2560(24)] x [1(1), 15[20]] x[1(1), 15[60]]

Step B: From each PFCS' we obtain PCS in triplet form CS = (1,1)? x (1,1)% x (1,3)?

x (1,3)8 x (3,5) x (1,15)}

Step C & D: After performing Steps C & D, the linear operator T is obtained.

Step E : Corresponding to T, the inversion vector F where
F=[1100110000101]

t
is synthesized.
17x1

The following important aspects arising from the above example are noted below.

e The cycle structure follows the criteria of Legal Additive Cycle Structure where the
minimum additive factor(M) is 2.

e Secondly, the prerequisite of formation of additive Cycle Structure (C'S’) - the exis-
tence of the factor (z 4+ 1), that is the presence of cycle family k£ = 1 is satisfied.

From the example it is clear, that to synthesize the AC A from the given C'S’ & depth, we
proceed in a step by step fashion of segregrating each participating primary cycle. In this
process we define the terms PFCS’ and redifine the term CS’ in broader perspective.

While forming Additive Cycle Structure, the 1-cycle family encompasses the all-zero state
(1(1) separately written in relation 3.16 during definition of Cycle Structure of LC'A) Thats
why when we form PFCS', it is of the form

mkl

PFCS'(k=1) = [Somp, 2M K], D piosg, (27 - k1)) (4.11)
j=M+1
mki
PFCS'(k > 1) = [1(1), Somp, 2 K], D pgig (27 - k)] (4.12)
J=M+1

Similarly C'S’ - the remaining additive cycle structure i to be resolved at any dynamic step

is termed as

CS' = 1Y S 2Pkl S @R, if by € (4.13)
k; j=M+1
08! = [1(1), 3 (Spri 2N ki, S gy (20 - k)] Ky ¢ (4.14)
ki j=M+1
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The new notation Sya .y, [2 - k;] is termed as Cycle Information(C1T). The definition of CT
is noted below.

Definition 4.2 Cycle Information(CI) represents the information of a cycle length (< 2M.
k) of a primary cycle family. It has the notation Som ;[2™ - k] where Sy ) indicates the
states covered by cycle length starting from k and < 2M . k.

Steps A, B, E are next discussed in detail.

4.2.1 A. Generation of PFCS' from Cycle Structure(CS’)

The step is exactly similar to the step following in case of LC A for generating PFCS
from C'S in Section 4.1.1. Only in this case the Cycle Information, that is the information
regarding the number of states covered by cycles < 2M . k; is generated differently. From
Theorem 8.13, it is quite clear that the cyclic components of cycle length (> (2M - k;) — VE;)
are same in C'S and C'S’ and hence are derived in same process as LC A. Therefore in our
following discussion we concentrate of generating Cycle Information of < (2M - k;) — V&;.

The conversion tool accepts the given additive cycle structure(CS’) and partitions it into
corresponding PFCSs such that CS’ follows the relation

CS' = [PFCS]| x [PFCSy] x --- x [PFCS] (4.15)

In order to separate each primary family cycle structure, the same recursive technique as
LCA of dividing CS' = CS] x CS) is followed. Here CS; is the PFCS with the smallest
primary cycle and CS) = {CS' — {CS],CS, x CS1}}.

We present the algorithm for converting CS' to PFCS’ and the algorithm to generate
CS}| and CS) from CS’. The two algorithms are exactly similar to Algorithm 4.8 & 4.2
respectively.

Algorithm 4.9 Enum_PFCS'_from_CS' (CS,[PFCS'])

{

Input : CS' - Cycle Structure

Output : Primary Family Cycle Structure Set PFCS}, PFCSYy --- PFCS'N : [PFCS']
Enum_CS| &CS,_from_CS'(CS', CS}, CS)(Algorithm 4.10)
PFCS! = CS!

[PFCS'] « PFCS!

If (CS, = PFCS')

{

[PFCS'] <+ PFCS),

Ezit

}

else

cs' = sy

Enum_PFCS'_from_CS'(CS',|[PFCS"])

}
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The Algorithm Enum_CS]&CS)_from_CS'(CS’, CSy, CS) differs from its linear coun-
terpart Enum_CS1&C Sy _from_CS'(CS, CS1, CSy) (Algorithm 4.2) only in the enumeration
of Cycle Information. The lines where it is differing is maked in a box.

Algorithm 4.10 Enum_CS{&CS, _from_CS'(CS', CSy, CS))

Input : S = [1(1), Xy, X i (2 - ko)

Output : CS}, CS)

CSy = [1(1), 3 poik, (27 - k1)), where ki is the smallest member of k; - cycle family set.
CS' = C8' =% pioi g, (27 - k1)

for each k; € CS] in ascending order

ko = k;
if k1 is a factor of ko
{

Obtain Som.i,(CSy)from relation 4.19
CSy < C8) + Som,(CS5)
CS' < CS' - Syrmi.p, (CSh)
For 3 > M
Obtain pyj 1,(CS5) from relation 4.2
S « CS + i,
CS' + CS8' - figj .,
}
else
{
CSYy « CSy + Syiy,
Obtain §2j,k3 from relation 4.18(ks = lem(k1, k2))
CS' + CS' — Sy 4,
CS' + CS' — Sy 4,
For 3 > M
S CS + fini s,
Obtain fig; g, from relation 3.23(ks = lem(ky,ky))
CS' « CS" — [igi g,
CS' + CS" — figj 1,
/* Both the ko cycle family and the impact it creates when cross producted with k1 is removed

from CS" */
}

The method of deriving relation 4.18 & 4.19 is elaborated next. To derive the relations,
we analyse the nature of Cycle Information(CT) produces when two cycle family ki & ko

are cross producted.

Analysis : The Theorem for deriving the Cycle Information(CI) of cycle family k3 from
cross product of k1 € CS] and ky € CS) is discussed next. The Theorem is in line with
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Theorem 3.9 . The CS| and CS), are defined below

mkl
Sompy M Eal, Y proig (27 - k1) k=1
, j=M+1

CSI = mkl

1(1), Sormp, 2M K1l D poig (27 k1) k> 1

j=M+1
mki
CSy = [1(1),) Sompe, M Kil, D poi, (27 ki)
k; j=M+1

We study the impact created on Cycle Information of k3 cycle family. The impact created
on cyclic components of cycles 27 - k3 j > M is elaborated in Theorem 3.9. The impact is
characterized in the following theorem.

Theorem 4.10 The Cyclic Information(CI) of ks-cycle family is formed from the cross
product of cyclic component of k1 & ko-cycle family in CS1 and CSy respectively. The
following relation elaborates the nature of formation

SgM.kS = SZM.kl X SQM.]C2 (416)

Proof : Proof analogous to proof of Theorem 3.9 . O
As in LC A, the value of k3 can be 1). lem(ky,k2) > ko. and 2). lem(kq,ko) = ko.

In the special case, k3 = ko, the number of states covered by cycles < (2M.ks) - Som. g, in
CS} has changed to S'QM_,Q in CS’. The change is characterized by the following relations.

Sympy (CS') = [Somp, +1(CS) X Spary, (CS) (4.17)
If lcm(kl,kg) > ko .
SQM.ks(CSI) = Som ., (as derived in relation 4.16) (4.18)

Synthesis : During the generation of C'S} from C'S, when a cycle family k9 is encountered,
we check the nature of ko

o If k3 = lem(ky1, ko) > ko, then the entire cycle family ko is added from CS’ to CS),
and the resultant Cycle Information 5‘2M,k3 (obtained from relation 4.18) of ks cycle
family is subtracted from CS’.

o If ks = lem(ky, ko) = ko, then the Cyclic Information which will be added from C'S’
to CS4 is determined from relation 4.17
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Synthesizing back, the Cycle Information Sy .y, of CSj the relation 4.17 is reoriented
and we get the following relation.

SQM.]CQ (CSI)

Sor.p,(CS3) = Borcy, + 1(CST) (4.19)

An example is given to illustrate the whole methodology.

Example 4.14 Given CS' = [1(1), 4095[12], 2560(24), 15[20], 1044465[60], 130560(120)]
& minimum additive factor - M = 2.

CSy =[ 1(1), 4095[12], 2560(24)].

The cycle structure of CS" after C'SY is subtracted from CS' is CS' =[1(1), 15[20], 1044465[60],
130560(120)]

The remaining primary cycles in CS' k; = {5,15}

Taking the first cycle ko = 5,

k1 is not divisible by k.

Therefore CS5 = [1(1), 15[20]], that is the entire cycle structure arising from primary cycle
5 becomes member of CS}.

The cycle family arising as a cross product of k1 € ko is ks = lem(ky, ko) = 15.
Therefore, from relation 4.16 - Sgo = S12 X So¢ = 61425[60]

While pgx15 = “22%5 = 7680 - relation 3.23

Both the cycles are subtracted from CS'.

Therefore, the remaining cycle structure CS" = [1(1),983040[60], 122880(120)]

Here ko = 15 which is divisible by k;.

Therefore, following relation 4.19, Sgg = giggéo = 240[60]

While ug.15 = 0. -relation 4.2

Hence CS), = [1(1), 15]20], 240[60]]

Complexity Analysis of Algorithm 4.9 and 4.10 :  Algorithm /.10 differs from
Algorithm 4.2 only in the derivation of Cycle Information (CI) which is accomplished in
constant time (enumeration of relation 4.18 & /4.19). Therefore, the complexity of the
algorithm 4.10 is same as algorithm 4.2.

The algorithm 4.9 takes the same number of steps as algorithm 4.3. Hence, its complexity
is same as algorithm 4.3.

We now present the method of converting C'S’ into regular Primary Cycle Structure(PCS).
4.2.2 Generation of Primary Cycle Structure (PCS) from PFCS’

The methodology adopted to generate PCS from PFCS’ is largely similar to the one
elaborated in Section 4.1.2. The only difference in step is the enumeration of the number
of j factor set - N (F;) from the Cycle Information part of the PFCS’. To elaborate
the similarity we present the algorithm to generate PCS set from PFCS’. The difference
between the algorithm and that of Algorithm 4.4 is pointed out.
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Algorithm 4.11 Enum_PCS_from_PFCS'(PFCS,[PCS])
{
Input : Additive Primary Family Cycle Structure(PFCS’)
Output : Primary Cycle Structure Set PCS,, PCSy --- PCSy : [PCS] in triplet form.
Find py, through Axiom 4.1
For each j
{
IfG<M)
Find N(F;) from Cycle Information(CI)
else
Find N(Fj;) j > M- Relation 4.6
Find N(PCS(j)) - Relation 4.7
Nj_1 = N(PCS(j —1)) - N(PCS(j)) - Relation 4.8
Find P;_1 - Relation 4.9
for each N(PCS(j))h PCS
[PCS] «+ PCS;
}
Nj_1 = N(PCS(j —1)) - Relation 4.8
Find Pj_; - Relation 4.9
[PCS] < PCSy

}

Therefore, for conversion of PFCS’ to PCS, the extra explanation is needed for the
methodology for conversion of Cycle Information to the j** factor set which is reported

next. To explain the process, we bring forward the concept of elementary divisor - the
base polynomials responsible for the formation of cycle structure. While designing the
methodology for conversion, we base it upon the following salient features explained in
Chapter 3.

e Additive Cycle Structure(CS’) has arisen as a result of presence of an elementary
divisor (z + 1)™, where M = |loga(n;)] + 1, that is the maximum and minimum
value of n; is given by the following relation.

maz(n) =2 -1 & min(n;) = 2M7! (4.20)

e Additive Cycle Structure arising from elementary divisors other than (z + 1)s has
their resultant cycles (< 2™ - k;) merged in (2™ - k;) and the components have been
accordingly adjusted.

e The factors of elementary divisors which are responsible for the change in cycle struc-
ture from CS to CS’ are < 2M. As it is noted in Theorem 3.7, the higher factors of
elementary divisors doesn’t affect the cycle structures of lower factors.
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From the above salient features the enumeration of the j** (j < M) factor set can be done
ignoring the existence of higher factors. We model the elementary divisor set accordingly.

e In case of ¢(x) other than (z + 1), a cycle of length (< 2™ - k) arises from polynomial
< ¢(ac)2M. Therefore, the underlying elementary divisor set f(z) which generates the
states Som.. is given by the relation

oM oM

~p(@)* - p(a)” - plz)" L<2M (4.21)

e In case of (z+1), the Soamp, has arisen from the characteristic polynomial f(z), where

M

f@) = ¢(@)?" " ()2 - p(2)? - ()" (4.22)

where the total states covered by f(z) is Som.,; This is because one (z+ 1)-elementary
divisor must have power between 2~ and 2™ — 1. We are considering the least
value.

Based upon the above knowledge we develop the theorem for enumeration of j** factor set
- N(F;) reported next.

Lemma 4.11 Given Som.;, the number of 5% factor set N(F;) (j < M) is given by the
equation

Jj =0
(N + B)2i-! 0 < j < [logaL]
N ) NPT (L =27 = [logaL]
N(F;) = 4 (N)2i-1 [logaL] < j <M (4.23)
(N —1)271 j=M k=1
[ (V)29 j=M k>1
where
M-—1
v e k=1
N = { Ll0g2;§§+1)J E>1 (424)
and
| (logar (S +1) —2M YYmod (2M) k=1 (4.25)
| logyr Smod 2M k>1 )
and
0 L=0
B_{l L >0 (4.26)
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Proof :  The proof is only shown for ¢(z) # (z + 1). The proof for (z + 1) accordingly
follows. A cycle of length 2 - k arises from polynomial ¢(x)2M. Therefore, the underlying
elementary divisor set f(z) is given by the relation

()" (4.27)

where the total states covered by f(z) is Sor.;; The number of elementary divisors having
the power 2™ is N and the residual states which cannot be covered by qb(ac)zM is covered
by ¢(z)".

The number of elementary divisor is

N L =0
) 4.2
N {N+1 L >0 (4.28)

Generalizing
A. N = N + B, where B follows relation 4.26.

The highest factor set which L covers is given by L= [logaL]. Hence each of the N+ B
divisor have the full factor set 0 to L — 1. Therefore,
B. N(Fj))=(N+B)-250<j<L
For j = L, the N elementary divisor has full L factor set, while the (N 4 1)** elementary
divisor has L — 29~ factors of L factor set. Therefore,
C. N(Fj)=(N)- 27 ' +(L-2"1);5=1L
For the ;" factor set, where L < j < M present in the first N elementary divisor. Therefore,
D. N(Fj)=(N)-2"5 L <j< M.

The value of N & L is obtained from equating the number of states covered by f (z) with
SQM.k.

Syniy, = 272N ol (4.29)

a

An example is given to explain the method.

Example 4.15 Given C'S' = [1(1), 4095[12], 2560(24)].

Then CI = [4095[12]], M = 2r = 2, §=4095, k = ;

N = |2 = g

L = log,>(4095) mod 22 = 2;

L= loga(2) = 1;

Therefore, B =1. Calculating each of the factor set.

NFy) =1+1=2;

N(Fy) =1 x 217t 4+ (2-2171) = 2

N(F) =1 x 2271 = 2.

The total number of factors covered by N(Fy) +N(Fy) +N(Fy) = 6.
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Nezxt we find N(F3) which has to be found by Relation 4.6 N(F3) = $10g2(2560 x 3 x
2371x2x6 4 1) = logy(16)/2 = 2

Finding out the PCS is now straightforward. The table shows step by step calculation of
each of the parameters to arrive at the final result.

Table 4.2: Calculation of Primary Cycle Structure

7 [ N(F) [ N(PCSG) [ N, | B,
0 2 2 0 0
1 2 2 1 2
2 2 1 0 0
3 1 1 1 6

Therefore, the final output of Primary Cycle Structure in Triplet Form is
CS =(1,3)? x (1,3)¢

For case where k = 1 that is the underlying irreducible polynomial is (x+1), an example
is given to explain the method.

Example 4.16 Given the cycle structure CS = [16(4), 24(8)]
M = 2, r=1; CI = [64[4]]

The value of N = [IOLI(;QM] =2

Similarly, the value of L = (logy (16) — 21 )mod 22 =0.
Hence, B = 0.

NFy) =1+1=2.

N(F) = (1 + 12171 =2

N(F) =1 x 2271 = 2.

Total number of factors covered is N(Fy) + N(Fy) + N(F») =6.
N(F3) = 1; calculated using relation 4.6

Therefore, CS = (1,1)2 x (1,1)3

Complexity Analysis of Algorithm 4.11 The complexity of the algorithm is same
as that of Algorithm 4.4. This is because the complexity of enumerating N(F;) from CT
through relation 4.23 is same as the complexity of N(Fj) from gy through relation 4.6.

We now present the method of synthesizing the inversion vector F'
4.2.3 Synthesis of Inversion Vector - F

The synthesis of F' vector is guided by the principle laid down by the results of the The-
orem 3.13 & 3.12 which states that the inversion vector F should lie . only in the null space
of (z + 1)™ - where |loga(n;)| + 1 = M - the factor of the characteristic polynomial f(zx)
responsible for imparting the additive structure. To synthesize F' holding such property,
we first synthesize F' for the characteristic polynomial f(z) having (z + 1)™ as the single
Elementary Divisor, that is f(z) = (z + 1)™.

g

The T matrix representing (z + 1)™ is given by

68



T(z+1)™ =

Ty X1

Given the above T' matrix representing (z + 1)™, the following lemma characterizes the
desired F' vector.

Lemma 4.12 The inversion vector F' with all 1's lies only in the null space of (z + 1)™.

Proof: None of the equations (T+I)/-F = 0 unless j = n;, that is, F = [ 11 --- 11 ]
lies only in the null space of (z + 1)™ . O

Using this result, we generalize the synthesis of F' vector for a characteristic polynomial
flz) = (@)™ ---(z+ 1) - - p(z)"™.

The characteristic polynomial is the direct sum of individual elementary divisors and
consequently, the characteristic matrix corresponds to each elementary divisor are arranged
in block diagonal form to obtain the final matrix 7' ( Theorem 4.9). Hence each elementary
divisor (ED) occupies a Block in the total matrix 7' where Block is defined below.

Definition 4.3 Block (ni,r) : A Block(ny, 7) is a submatriz of dimension r X r formed
from matriz T by selecting elements from r columns and r rows of T staring from the (ni,n1)

position.

Example 4.17 Given the characteristic polynomial f(x) in elementary divisor form as
f(z) = 2?(z + 1) (z + 1)%(2? + . + 2).
The T matrix representing it is

0o 0 0 0 0 0
10 0 0 0 0 0
0 0 1] 0 0 0 0
7= 0 0 0 [1 1] 0 0
0 0 0 [01 0 0
0 0 :0 0 0 [0 1]
0 0 0 0 0 [1 1]
The T(x + 1)? occupies Block(4,2).

Let T'(z + 1)™ occupy the Block(L,n;) Then the following lemma defines the method for
synthesizing the desired F' vector.

Lemma 4.13 The inversion vector F has all I's in the (L ) to (L+n; -1)** row belongs to
the null space of (T + I)™.

Proof : Since the matrices are arranged in block diagonal form, the value of the equation
(T'+1)7-F only depends upon the multiplication of the Block(L,n;) with the (L)-(L+n; - 1)
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rows of the F-vector. Therefore, whatever be the values in the other rows (T'+ 1) - F =0
only when n; = 7. Hence the proof. m|

Example 4.18 The F vector which lies only in the null space of Tx?(x+1)(z+1)?(z%+x+1)
of the previous ezample is given by F=( 0/1 0/1 0/1 [1 1] 0/1 0/1 )T

The complete algorithm is presented

Algorithm 4.12 Enum_F_from_T(T, M, F)

Input : T Matriz, minimum additive factor : M

Output : Inversion Vector F, Cycle Length M

Step 1 : Identify the Block in T matriz representing (x + 1)™ where M = [loga(n;)] + 1
Step 2 : Put 1 in the corresponding row of F' Vector

Step 3 : Put either 1 or 0 in the other rows of F' Vector.

Complexity Analysis : Identification of Block takes O(n) time and the formation of F
vector also takes 0(n) time. Hence the complexity of the algorithm is O(n).

Overall Complexity of the Algorithm - Enum_ACA_from_CS _depth

The complexity of each of the steps A - D is same as the corresponding steps A - D
in Enum_LCA_from_CS_depth. The additional work of synthesizing F' Vector takes O(n)
time which is much less than the overall complexity of Enum_LCA _from_CS_depth. Hence,
complexity of Enum_ACA_from_CS _depth is same as Enum_LCA_from_CS_depth.

4.2.4 Conclusion

The two chapters provide the detailed synthesis scheme for the Linear and Additive
CA. The synthesis scheme can synthesize any legal linear or additive cycle structure(C.S)
to the corresponding C A. However, there may be cycle structure which may be required
for different different application and may not be legal. So an interesting variation of the
problem can be to synthesize a legal cycle structure ‘close’ to an illegal cycle structure
We present the overview of the methodology of synthesizing an LC A from an illegal cycle
structure. The details are however, beyond the scope of the thesis. Hence not discussed
here.

Synthesis of LC A Close to the Specified Structure

In order to synthesize cycle structure C'S; that is not legal, we first convert the illegal
cycle structure C'Sj; to CSjegq which ‘close’ to C'S;; and then apply the synthesis algorithm.
An example to illustrate the case.

Example 4.19 Let CS; = [1(1), 1(3), 3(4)] in GF(2). We convert CSy to a legal cycle
structure CSjegqr which is ‘close’ to the illegal cycle structure (CS). A ‘close’ legal cycle
structure is CSjegar = [1(1), 1(3), 2(6)].

After this conversion, we apply the algorithm Syn_LCA and obtain the LC A whose T matrix
is
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The points which are to be involved in this conversion are

e The time complexity to convert an illegal cycle structure into legal cycle structure
must be polynomial.

e The definition of ‘close’ will vary from application to application, the algorithm should
be capable enough to handle each of the situation.

e Moreover, the direction of the algorithm should be based upon a quantitative assess-
ment of ‘close’ rather than any qualitative, perceptual observation.

The in-depth discussions of the above issues require detailed analysis which is beyond
the scope of this thesis and hence omitted.

The analysis and synthesis schemes provide a solid foundation based upon which we
explore a special class of linear CA - termed as M ACA - which is used to develop the
applications of pattern recognition and pattern classification.
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Terminology
weight (w)
MACA(n,m)
PZC (w’ n7 m7 y)

Number of ones in a pattern

n-bit M AC A with 2™ attractors

Set of patterns in 0-basin of M ACA

w signifies weight, n signifies size of the pattern,

2™ signifies the number of attractors

y signifies an optional parameter characterizing the vector subspace,
(y is absent if the parameter we are looking for refers to the average
value of a number of subspaces)

z = Number of M ACA involved (z is ignored if z = 1)

Number of patterns in the set P

Number of n-bit patterns with weight

w chosen unbiasedly forming a pattern pool of 2"~™

All possible n-bit M AC'A with 2™ attractors
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Chapter 5

Multiple Attractor Cellular
Automata (MACA)

The last few decades of the twentieth century have encountered massive advancement in
computing technology. The computing speed has leaped from kilo to mega to giga and
is now reaching the unthinkable terra flops. However, in spite of such leaps, machines
have failed to match the ease with which human brains recognize/classify patterns. The
conventional machine in spite of gaining immense power leads to match the human brain
due to its inherent weak memory organization concept.

The entire human brains is divided into zones each zone either associating or classifying
a class of element. Fig. shows the broad methodology followed by human brain. In Fig. ,
it is seen that the brain associates all the different variations of same letter around a pivot
point. While in Flg., the brain classifies similar object in one zone. To match the dexterity
of human brain, scientists, researchers, practitioners are trying to build machine which can
simulate the associativity and classification capacity of human brain.
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Figure 5.1: Association and Classification

This chapter introduces a special class of Cellular Automata termed as Multiple Attrac-
tor Cellular Automata. This class of cellular automata is capable of emulating the pattern
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classification and association model of the human brain. The unique state transition be-
havior of the M AC A imparts it the power. The state transition graph of the M AC A(Fig.
divides the entire vector space into discreet zones, each zone converging towards a sink
state. This nature of state transition diagram exactly maps with a classifier/associative
memory model. In this chapter, we analyse the property of the state transition behavior
and show that the division of state space into discrete zone is based on distance metric. We
also describe the methodology of synthesizing a particular M AC'A through evolutionary
algorithm. The synthesized M AC As state transition behavior is oriented according to a
given problem. Based upon the analysis and synthesis technique we describe the M AC A
Based Associative Memory and M AC A Based Pattern Classifier in the next chapter.

A Drief preliminary overview of M AC' A follows.

5.1 Multiple Attractor Cellular Automata

The set of non-cyclic states of an M AC A forms inverted trees rooted at the cyclic states.
The cycles are referred to as attractors. Fig.5.2 depicts the state transition diagram of a
5-cell M AC A with four attractors {00000(0),00011(3),00101(5),00110(6)} having self loop.
In the following two chapters, by an attractor we refer to a cycle of length 1. The states of
a tree rooted at the cyclic state « form the a-basin.

Definition 5.1 The depth d of an M ACA is the number of edges between a non-reachable
state and its attractor. For the 5-cell MACA of Fig.5.2 d = 3.

[ o0 | [ o1010 ] [ 10000 | [ 10110 ] [ o001 | [ o011 ] [[10101 | [ 10111 |--omimmimm 3

11000
11000
01100
00101
00001

©)

Figure 5.2: State transition diagram of a 5-cell M AC' A with Characteristic Matrix T and
Rule Vector < 102, 60, 60, 90,204 >

Note : (i) The i*" cell (i = 1 to 5) employs the rule specified by the i*” element of the rule
vector; the corresponding dependency, as specified in Table I, gets reflected by the i** row
of the T" matrix.

(ii) Four cyclic states 0,3,5,6 are referred to as attractors and the corresponding inverted
tree rooted on a (@ = 0, 3, 5, 6) as a-basin.
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The details on the characterization of M ACA is available in [9]. A few fundamental
results for an n-cell M AC A having k attractor basins is next outlined.

e Result I: The characteristic polynomial of the M AC A is 2 ™(14x)™, where m = logs (k).

e Result I1I: The characteristic polynomial of an M AC A can be also written in elemen-
tary divisor form as z%-z% - --z%.(1 4 z)-(1 + ) - -m times where d; > dy - - > d,
and dy +dp - +d, = n—m.

e Result III: The minimal polynomial of an MACA is z% - (1 + ), where d; is the
depth.

Definition 5.2 An m-bit field of an n-bit pattern set is said to be pseudo-exhaustive
(PEF) if all possible 2™ patterns appear in the set.

Theorem 5.1 In an n cell MACA with k = 2™ attractors, there exists m-bit
positions at which the attractors generate pseudo-ezhaustive 2™ patterns [9].

Theorem 5.2 The modulo-2 sum of two states is a predecessor of O-state (pattern
with all 0’s) if and only if the two states lie in the same attractor basin [9].

Example 5.1 The example M ACA of Fig.5.2 illustrates the above results.

o [t is a 5-cell MACA having 4 attractors and the depth of the MACA 1is 3.

e The characteristic polynomial of the MACA is x3 - (1 + x)2. Therefore, m = 2; the
number of attractors k = 2™ = 4; depth di1 = 8. Its elementary divisor form is
23 (1+x)-(1+ ) and the minimal polynomial = z3 - (1 + z).

o In the MACA of Fig.5.2, two least significant bit positions constitute the pseudo-
ezhaustive field (PEF ). Let take an attractor 00011 and any two states 11111, 11101
of 00011-basin. The modulo-2 sum of these two is 00010 which is a state in 0 — basin.
By contrast, for two states 00001 and 11000 belonging to two different attractor basins
00001 and 11000 respectively, the modulo-2 sum is 11011 which is a state of the non-zero
00101 basin.

Based upon the above properties of M AC A, we design a special technique of synthesizing
an n-cell, 2™ attractor M AC A termed as M AC A(n, m)

Construction of MACA(n, m) : The basic guideline of the technique is dictated
through the following theorem and its proof.

Theorem 5.3 An MACA(n,m) is conceived as a combination of m number of n;-bit (i =
1, 2, --- m) 2-attractor MACA such that ny +ne + -+ + Ny =0
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Proof : The characteristic polynomial of an M AC A (noted under Result II of Section II-
B) can be written in elementary divisor form as < z%-z% ...z%.(1+z)-(1+x)--m times >
The entire vector space produced by M AC A is the direct sum of individual vector spaces
produced by each elementary divisor [27].

The elementary divisors can be clubbed into m groups each containing one (1+z). Each
cluster has the characteristic and minimal polynomial as z%(1+ ), and therefore constructs
an M AC' A with 2-attractor basins. O

The construction of T' matrix representing M AC A(n, m) following the above theorem is
as follows. The T matrix is formed from block diagonal arrangement of T;s where each T;
represents an M AC A(n;,1) in Figure 5.3.

7]

Figure 5.3: Ty, T5, - -, etc. in Block Diagonal Form.

Example 5.2 The characteristic polynomial of the M AC A in Fig. 5.2 can be represented
as two clusters - [(1 + ) - 3] - [(1 + z)]. The T matrix representing the M ACA can be
conceived as block diagonal arrangement of T7 & T where

100 0] 0
000 0 0 éggg

T= |0 10 0 0 |whereTi= | = = |andTy= [1]
0°0 1 0] 0 0010
000 0 [1

Upon studying the pattern distribution of each cluster, the pattern distribution of zero
basin of the corresponding M AC A can be easily accomplished through Cartesian product
of each cluster. O

We term all the M AC A formed through this process as members of M AC A family and
show that the family has a special property. The property of PEF allows M AC A to behave
as a hash function. MACA as a Hash Function: For the purpose of hashing, a node in
an M AC A tree (Fig.5.2) is viewed as the key to be hashed. The address for a key is given
by the PEF of the attractor containing the key. That is,

Hyraca(key) = PEF (attractor) (5.1)

where Hpraca(key) is the hashed value of given key. The hash table size in this scheme is
k, the number of attractors of the M AC A.

Example 5.3 The MACA in Fig. 5.2 provides an Hash Table of size 4 with table entry
(0 to 8), each attractor uniquely identifies its position in the table by the pseudo-exhaustive
field(PEF'). And for example all patterns in the basin 11111 hash to table entry 3(11).
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The M ACA family has an unique property in terms of hashing. It forms an Hamming
Hash Family (HHF) - a hash family where the probability of collision of two patterns varies
inversely with their hamming distance. The analytical foundation of HH F' is next discussed

5.2 Hamming Hash Family

The concept of HH F is established through a detailed study of the vector space generated
by the 0-basin.

Theorem 5.4 The pattern distribution of the 0-basin reflects the nature of collision with
respect to Hamming Distance between two random patterns hashed with M ACA.

Proof : Let Pj,com be a noisy pattern derived out of a pattern P;. In an MACA let a
pair of patterns (Pjncom,P;) fall in the same basin where, Pror = P; @ Pincom- Let w(Pgor)
= weight of pattern P, = number of 1's in Pyor. So, HD(P;, Pincom) = W(Pgor). As per
Theorem 5.2, Pyor falls in the 0-basin. Therefore, studying the distribution of patterns in
0-basin in respect of their weight is equivalent to studying the nature of collision of Pjpcom
and P; in terms of Pjpcoms distance from P;. O

The behavior of the patterns which collide that is, fall under the same attractor basin
is explained in Ezample 1. The pattern representing modulo-2 sum of two states in the
same attractor basin of a M ACA lies in the 0-basin. For the example M ACA of Fig.5.2,
the patterns s;=11001 and s;=11100 are the members of 31-basin. The pattern s,=
00101(11001 & 11100) is a state of the 0-basin and it corresponds to the hamming distance
between 11001 & 11100.

Therefore, to establish the concept of HHF in MACA, we have to show that the 0-
basin has a definite bias for lower weight patterns. The bias gets reflected in the ratio of
(i) the probability of a pattern of particular weight(w) to fall in the 0-basin and (ii) the
probability that a pattern when chosen from an unbiased pattern pool of cardinality 2™~
(the cardinality of the 0-basin) would be of that particular weight(w). In other words, the
bias can also be expressed in terms of ratio of the average number of patterns of weight w
falling in the 0-basin of an M AC A(n, m) referred to as |P(w,n, m)| and |P(w,n,m)| - it is
defined as the number of patterns of weight w in pattern pool of cardinality 2"~™ provided
each pattern in the pool is chosen unbiasedly from the entire n-bit pattern pool of 2".

Expected Occurrence: The Expected Occurrence (EQO) of patterns P(w,n,m) with
particular weight (w) in the 0-basin of an M AC A(n,m) can be denoted as

EO(P(w,n,m)) = % (5.2)

Computation of |P(w,n,m)|
The total number of w-weighted n-bit pattern = "C,,. If we want to chose a pattern pool
of cardinality 2™ ™, so that there is no bias towards any particular w, then the number of
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w-weighted patterns |P(w,n,m)| in that pool can be derived by simple unitary method

- "C, nC
[Plw,n,m)| = 2 x gnm =

2n 2m

(5.3)

The computation of |P(w,n, m)| demands a detailed analysis of 0-basin described in the
following subsection.

Computation of |P(w,n,m)|

In a vector space of dimension 7, the total number of patterns = 2" and |P(w,n)| = "Cly;
that is, out of n bits w number of bits are 1’s in such patterns. In a subspace of dimension
(n — m), the total number of patterns = 2" ™. If there is no bias towards any particular
w, then

"Cw
om

|Plaw,mym)| = (5.4
The computation of |P(w,n,m)| requires a detailed analysis of 0-basin described in the
following subsection.

Computation of |P(w,n,m)|

An M ACA(n,m), as already mentioned, is so constructed so that it can be conceived as
concatenation of m - M ACA(n;,1). Therefore, the computation of P(w,n,m) is based
upon the computation of |P(w,n;,1)|. The details of |P(w,n,m)| and |P(w,n;,1)| are
explained in next section of the chapter. The following theorem theorizes the relation
between |P(w,n,m)| and |P(w,n,1)|.

Theorem 5.5 Each w weighted pattern P(w,n,m) in 2™ attractor M ACA is formed by
selecting an unique combination of w; bit pattern from each of the n; bit 2-attractor M ACA
and concatenating them. such that w1 + wg + -+ + w, =w and Ny + Ng + +++ Ny, = N.

Proof : An n-bit pattern z in the 0-basin of the M AC A follows the relation T - x = 0.
Since the T' matrix representing the M AC A(n,m) is formed from placing m T;s in block
diagonal form, the relation can be represented as

] o0 - [ [xa] ]
0 [TQ] 0-- [Xg]
Tx X= X =0
0 - [Th] [Xm]

where X; represents n;-bits of X and occupying the same rows as T;. Therefore, each T} - X;
individually is zero. Hence each X is zero. Hence each X is formed from concatenation of
unique combination of X;s. O

As already mentioned, the details on computing P(w,n, m) are noted in next section. We
in this section show the nature of the graphs of EO(P(w,n,m)) obtained from enumerating
relation 5.2. The graphs of Fig. 7?7 - 5.7 plots the Expected Occurrences EO(P(w,n,m)) -
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denoted by relation 5.2 in the y-axis, while the weight of patterns is plotted on z-axis. In
Fig. 7?7, 5.5 & 5.7, the weights are represented as a fraction of n (the number of bits in a
pattern) while in Fig. 5.6 the z- axis plots in terms of the absolute value of w.

Fig. 7?7 depicts the expected occurrence EO(P(w,n,1)) for different weights of patterns.
From the graph, it can be observed that the bias for low weight patterns in 0 basin gets
reflected.

1.7 9 Distribution of Zero Basin
15 -

1.5 4
1.4 4
1.3 4
1.2 4
1.1

Expected Occurrence

0.9 o Tl
0.8 Tl
0.7

01n 02n 03n 04n 05n 06n 07n 08n 089n n
Weights as Fraction ofn

n=40

Figure 5.5: Expected Distribution of MACA with 4 attractors (m = 2)

The biasness becomes more prominent as we increase the value of m. The graph in
Fig.5.5 plots the expected occurrence FO for different values of n for m = 2. Unlike
for m = 1, the function becomes monotonically decreasing. That is, the probability of
appearance of lower weight patterns in the 0 basin is significantly higher than its higher
weight counterparts. The same graph is plotted in Fig 5.6 with the z-axis representing the
first 10 weights in absolute terms rather than as fraction of n. It is seen that with the
increase of n the value of Expected Occurrence of lower values of w rises significantly.

Fig.5.7 shows that the expectation of lower weight patterns in 0 basin increases signifi-
cantly as the value of m is further increased.

The formal proof of the bias of lower weight patterns in the 0 basin - the fundamental
foundation stone of Hamming Hash Family is presented next. As already mentioned in
Theorem 5.3 & Theorem 5.5, the M AC A(n, m) and its patterns in 0-basin are formed from
concatenating m- M ACA(n;, 1) and its corresponding patterns. Due to this concatenation,
the slight bias of lower weight patterns in two attractor M AC A (Fig. ?7) gets magnified as
we increase the number of attractors(Fig. 5.5) The formal proof of the bias of lower weight
patterns in the 0-basin - the fundamental foundation stone of Hamming Hash Family is
presented next. To prove it for m > 1, we make an important approximation, that the bias
of smaller weights is not present in 2-attractor M AC A. We show that even then the effect
of concatenation brings in biasness for lower weight patterns in M ACA(n, m) for m > 1.
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Figure 5.6: Expected Occurrence(EQO) of patterns with weight w in 0 basin (as per relation
5.2)

A bias-less 0-basin of a two attractor basin M AC'A will always have the all zero-vector

as its attractor state. Hence,
|P(0,n,1)| = Number of patterns with 0 weight = 1 (5.5)

while the number of patterns with weight w in the 0-basin (equation 5.4)

2l —1
|P(w,n,1)] = 1 "Cly (5.6)
This is obtained by excluding zero vector from both the vector space which has a cardinality
of 2" and the 0-basin which has a cardinality of 271

For subsequent discussions, we shall use the symbol k where

on—1_1

A |

The following theorem formally characterizes the occurrence of patterns with weight w -

that is, the patterns using w number of 1's.

Theorem 5.6 : The probability of occurrence of a pattern with weight w in the 0-basin
of an M AC A(n,m) varies inversely with w.

Proof : We present the proof for m = 2 and show that it can be easily generalized
for any value of m. Let an M AC A(n,2) be formed from combination of M ACA(n;,1) &
M AC A(m;, 1) where n; + m; = n. We show that the pattern distribution of this M AC A(n, 2)

varies inversely with w.
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The number of w-weighted pattern P(w,n, 2) for a particular n; will be formed by picking
w; weighted patterns from n; and w; weighted patterns from 7; (such that w; + w; = w)
and concatenating them. The number of w; weighted patterns in M ACA(n;, 1) as well as
the number of W; weighted patterns present in M ACA(m;, 1) is defined by equations 5.5 &
5.6. Therefore, |P(w,n,2)| is given by

|[P(w,n,2)| = (k™ Cy T Co AT Cu, - K T ij ......... +7 Cy - kT Cw)

n; +M; = n and w; + wW; = w.
The equation can be rewritten as

|P(w,n,2)| = k- (1= k) - (MCyp +™ Cu) + £° - (O_ ™ Cu; ™ C;) (5.7)
J

Hence, the Expected Occurrence EO(P(w,n,2)) of a pattern of weight w from equation
5.2

P 2
EO(P(w,n,2)) = L2 (5.8)
|P(w,n,2)]
From equation 5.4
, nC,
‘P(wan72)‘ = 92 (59)
Therefore,

Ko (1= k) ("Cy +™ Cy)k? - (X, C; ™ Cug;)

BO(P(w,n,2)) = i
4
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The value of

ng [
2 "Cuw ™M Oy,

=1
nCw

as it is a hyper-geometric function[49]. Therefore,

EO(P(w,n,2)) = W Aok (1—k)+4-K (5.10)
Both the functions
Fi(w) = ng: folw) = ng: (5.11)

are monotonically decreasing functions with respect to w for any particular value of n;.
Hence FO(P(w,n,2)) is a monotonically decreasing function. Hence the proof.

For any value of m > 2, the generalization can be done by assuming that the M AC A(n,m)
is formed from concatenation of a 2™~! attractor M AC A with a 2-attractor MACA. In
line with the proof for m = 2, in this case also we assume that there is no bias in patterns
either in MACA(n;,m — 1) or in MACA(m;, 1). O
The above discussions establish the fact that the 0-basin has strong bias for patterns with
low weight value. Therefore, the patterns in a non 0-basin are close to each other in terms
of Hamming Distance (HD), since HD of a pair of patterns in a non 0-basin reflects the
weight of a pattern in 0-basin.

5.3 Computation of |P(w,n, m)|

This section elaborates the method of calculating |P(w,n, m)| - the expected number of
patterns with weight w in the 0 basin of an M AC A with 2™ attractors. The computation
is carried in two steps. In Step 1, we compute |P(w,n,1)| and subsequently calculate
|P(w,n,m)|

To derive an analytical expression for computing | P(w,n,m)|, we introduce the concept
of Dependency Vector and Dependency String. The Dependency Vector is used to explain
|P(w,n,1)| while Dependency String is used to explain |P(w,n,m)| for m > 1.
Dependency Vector and Dependency String: In a subspace of dimension (n — m),
if the set of n-bit vectors of the subspace is conceived as a system of n variable equations,
then there will be m dependent variables. The following example illustrates the point.

Example 5.4 Take the vector subspace V = {00000, 01001, 10001,11000, 00110, 01111,
10111,11110}. All the vectors v; € V are 5 (= n) bits long. The dimension of the vector
subspace is 3. Therefore m = 5 - 83 = 2. Let the vector set (V) be a system of linear
equations with five variables (a,b,c,d,e). Then the elements of the vector sub-space can be
rewritten in the form noted in Table 5.1.

In the set of equations of Table 5.1, a and c¢ are two dependent variables as defined below:
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(1) a is dependent on b and e, that is, a ® b ® e=0 in all the vectors v; € V; and
(2) c is dependent on d, that is, c®d =0 in all v; € V.

Table 5.1: System of Linear Equations representing a set of Vectors

Vector | Corresponding Linear Equation
00000 [ 0:a+0-b+0-c+0-d+0-e=0
01001 | 0-a+1-b+0-c+0-d+1-e=0
10001 [ 1-a+0-04+0-c+0-d+1-e=0
11000 [ 1-a+1-04+0-¢c+0-d+0-e=0
00110 [ 0:a+0-b+1-c+1-d+0-e=0
01111 {0:a+1-b+1-c+1-d+1-e=0
10111 | 1-a4+0-b+1-c+1-d+1-e=0
11110 | 1-a+1-b4+1-¢c+1-d+0-e=0

In the context of the above illustrative example (Table 5.1) we next introduce the terms
Dependency Vector and Dependency String.

Definition 5.3 Dependency Vector (DV) represents each individual linear dependency
relationship supported by all the elements in the vector sub-space (V). The two dependency
vectors for the illustrative Example 5.4 are < 11001 > & < 00110 >. Each of the n bits
signify the variables in that order - that is, the bits in the DV represents the variable in
the sequence < abcde >. The I's in the DV specify the dependent variables; the summation
(xor) of the corresponding variables in all v; € V. = 0, that is,

DV-vi=0 Vu eV (5.12)

Definition 5.4 Dependency string (DS) represents the multiple linear dependency, if it
exists in the vector sub-space (V). The Dependency String in the Example 5.4 is [11221]
where ‘1’ indicate the relationship between a, b € e while ‘2’ indicate the relationship between
¢ and d. In essence, the two Dependency Vectors (DV') are merged together to form the
string.

A few basic concepts are noted for subsequent analysis.

e For an (n—1) dimensional vector subspace, Dependency Vector and Dependency String
are synonymous.

e The O basin of an MACA(n,1) is a subspace of dimension (n — 1). So there is one
dependent variable in the vector subspace and thus the characterization of the 0 basin
can be solely done by a dependency vector. Whereas the 0 basin of an M ACA(n,m)
is a subspace of dimension (n — m). Therefore, there are m dependent variables in
the subspace. A dependency string representing multiple DV is necessary for charac-
terization of M ACA(n,m).
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e Let a dependency vectors involve % number of variables, that is, the number of 1’s
(that is weight) of the vector is @w. The number of w-weighted pattern in the vector
subspace generated by the dependency vector is |P(w,n,1,w)|.

e The pattern distribution of an (n — 1) dimensional vector subspace (V') is determined
by weight of the dependency vector (DV') representing the subspace. The relationship
is expressed through the following lemma.

Lemma 5.7 The value of |P(w,n,1,w)| is given by

)
|P(w,n,1,@)[ = > YCp" “Coyi (5.13)
k=0,2,---
Proof : Let V be a vector subspace. In any vector (v € V'), since @ bits are dependent,

the summation of the corresponding w bits in v is zero. Therefore, in those w bits, the
number of 1’s is even. Hence the relation 5.13 follows. |

5.3.1 Computation of |P(w,n, 1)

The computation of |P(w,n,1)| is based upon the concept of legal dependency vector.
A 3-neighborhood M AC A whose next state depends on itself, its left neighbor and right
neighbor, cannot produce 0 basin supporting all the variations of dependency vector. In the
present context, the dependency vector which can be generated by 0 basin of M AC A(n, m)
is termed as legal dependency vector respectively. The following Theorem sets the guideline
for determination of legal dependency vector.

Theorem 5.8 The vector subspace of the 0 basin of a three neighborhood n cell MACA
with two attractor basins cannot generate a Dependency Vector (DAV) of the form [1--- 1
- (k0's) -+ 1---1] with k number of 0’s between a pair of 1’s, where k > 2.

Proof : The proof is presented for the case of k (= 2) numbers of 0's between a pair of
1’s. Tt can be easily generalized for any value of k. The DV as per the theorem, is

DV = [ 1 -+ 1; 0 0 143 --- 1 ] , where the 1’s at either end ensures its uniqueness
for a particular value of n. (0 at any end would imply that the DV is supported by smaller
values of n and hence the proof can proceed accordingly)

The characteristic and minimal polynomial of an n-cell M AC A, as noted in [9], is z¢(1+
x)(Result III Sec ITA), where d is the depth of its attractor basin, and d = n - 1. Rank of
the characteristic matrix 7" is given by

Rank(T)=n -1 (5.14)
From Cayley Hamilton Theorem [27], the following result follows :
T +T)=0 de T¢T=T14¢ (5.15)
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where T is the n x n M AC A matrix and

T¢. v =0,Yv € 0 — basin (5.16)

The theorem characterizes a two attractor basin M ACA with its characteristic matrix
T. So the number of elements in 0-basin is half the total number of elements in the vector
space. Hence, there is only one independent row in 7. and consequently, the rank of T¢ is
1[9). This row can be viewed as an n-dimensional dependency vector(DV) generating the
vector sub-space of the M AC'A 0-basin.

In the following proof, we show that the rank of the 7" matrix will not be equal to (n — 1)
if the independent row of T% is equal to the DV having k¥ number of (/s in between a pair
of 1's, where k = 2. The proof is given by contradiction. We show that the DV, as noted
in the theorem, makes the rank of 7" matrix as (n — 2), that contradicts the relation 5.1/.
The proof is divided in four phases. The result of each phase is used to develop the next
phase.

Phase 1 : Identifies the ‘0’ elements of the tri-diagonal 7" matrix of the 3 neigh-
borhood MACA

In a tri-diagonal matrix, all the elements other than main and two off diagonals are neces-
sarily 0's. So we concentrate on identifying the elements in this band.

The independent row of the 7% matrix can be conceived as 1 x n dimensional vector
where 7% is denoted as DV =[1 --- 1 0 0 1 --- 1]. Hence, to satisfy the relation

5.15, we concentrate on the independent row of DV and consequently we have

[1---1001---1]x[---T =[1 - 1001 -+ 1](517)

where T is the 3-neighborhood band matrix representing the M ACA and having char-
acteristic polynomial z¢(1 + ).

In order to satisfy the relation 5.17, the T' matrix should be of the form

ithcol - - (i + 3)col
Voo
* 0 0 o0 — it row-
T = * x x 0 (* indicate either 0 or 1)
0 * ok % .
0 0 [0] = — i+ 3" row-

That is, in the T;;11th & Tiysitoth position (specified within [ ]), the T matriz can
have only ‘0" element. Presence of these two (/s guide the remaining phases of the proof.
Specifically, T; ;11 = 0 guides the proof & conclusion of Phase 2 & 3, while the Phase 4
summarizes the identical results for the case of T;3,;11 = 0.

Phase 2 : Identifies the nature of dependency of the i** bit on the 7' matrix
rows for evaluation of relation 5.16
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Let any pattern v € 0—basin be represented by v = [ by -+ b; biy1 biy2 biys - by ]

Therefore, the relation 5.16 - T - v = 0, specifies that we obtain the all 0 vector by
multiplying v by the T" matrix successively d times.

Considering the bit b;, the successive product of i** row of T matrix produces b;|ty = 0,
where (t4) indicates the state of the bit after d time steps. The computation of b; after d
time steps depends on other rows of T in addition to its i** row. We next probe this nature
of dependency.

We first illustrate the nature of dependency for ¢ = 2, then generalize the result for ¢ =
d.

In the " row, only the elements T; ;_1, T;; & T; ;41 can be non-zero, hence the following
relations can be written.

After one time step,
bilti = Tii—1 - bic1 + Tii - by + T i1 - big1 (5.18)
After two time steps,
bilto = T -1 - (bi—1|t1) + Tii - (bilt1) + Tiigr1 - (bigalt1) (5.19)
The relation 5.19 can be substituted with relation 5.18 and can be written as follow

bilto= Tii1- (Tic1i—2-bio+Ti145-1-bi1 +Ti—1;-b;) + Ty (Thio1-bi1+
Tii-bi + Ty big1) + Tiir1 - (Tit1i - bi + Tipr,i+1 - big1 + Tig1,i42 - bil®»R0)

The relation 5.20 can be represented in a concise form as

1+1
bilta =Y (Tij - (Tjj—1-bj—1+ Tjjbj+ Tjjs1-bjr1)) (5.21)
j=i-1

For subsequent generalization, we define a function J where J = 1(0) if T;; = 1(0).
Consequently,

biltz =Y (T - (Tjj—1-bj-1+Tjj-bj + Tjj1-bjt1)) (5.22)

From the relation it is clear that the state of b; depends for its evaluation after 2 time steps
on j* row only if the value of J = 1. We denote [dj] as the set of rows on which the
evaluation of b; depends. Consequently, the membership criteria of any j to be in [dj] is
determined by the value of corresponding 7 being one.
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Generalizing the above formulation, after d time steps we have
bilta = Tii—1 - (bi—1|ta—1) + Tiji - (bilta—1) + Tijig1 - (bip1lta—1) =0 (5.23)

Following the same methodology expressed through (relation 5.20 & 5.22) the relation
5.28 can be written in concise form as

bilta =Y (T (Tjjo1-bjmr +Tjjbj+ Tjjur -bipa) =0, T =10) i  [IIZ{ Tk, = 1(005.24)
where
{li =4,kg—1 = j,lay1 = kg, where ko ={lgorl,—1orl,+1}} (5.25)

As per Phase 1 result, T; ;11 = 0. Therefore, from relation 5.24 & 5.25, the value of J
can be 1 only if k; is either {i — 1,7}. Subsequently, from relation 5.25 ko has to be either
{# — 2,7 — 1,i}. In this fashion, we can show that the upper limit of k4_; is i. Hence,
Vi € [dj], j < i, that is evaluation of b; as per the relation 5.24 depends on rows having
index less than or equal to i

Phase 3 : Establishes the rank of the set of [dj] rows as |dj| - 1 (|dj| indicates
the cardinality)

We reorient the relation by clubbing each of the b;s together. The relation 5.20 is
rearranged in this line and reproduced below.

bilta= Tii1-Ti1i-2-bio+ Tii1-Tic1i1+ T Tii1) -bii+ Tiio1-Tiv,i+ T Ti
+ Tisv1-Tiv1,) - b + (Tii - Tiir + Tiirr - Tit1,i+1) - bir + (Thijit1 - Tig,i42) - Di5.26)
The relation can be rewritten in closed form as
k=i+2 min(k+1,+1)

bilta= ) ( > (Tij - Tjw)) - be (5.27)

k=i—2 j=maz(k—1,i—1)

For subsequent generalization, we use the function J where J = 1(0) if T;; = 1(0).
k=i+2 min(k+1,i+1)

bilo= > (> (T -Tjw) b (5.28)

k=1—2 j=max(k—1,i—1)

Generalizing for d time steps
k=i+d min(k+1,3+d—1)

i1
bilta= Y ( > (T - Tjx) b =0 F=10) if [Tk =1(@-29)
a=1

k=i—d j=mazx(k—1,—d+1)
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where as per relation 5.25,
{li =4,kg1 = j,lax1 = ke, where ko ={lgorl,—1orl,+1}}

that is, k' columns of the [dj] rows are clubbed together to form the coefficient of by.
(Since it is a three neighborhood T matrix, hence the non-zero rows of the k™ column are
k—1,k & k+ 1, so only those three rows are significant.) As per the result of Phase 2, the
maximum value of j € [dj] is <. Hence from relation 5.29 maximum value of k = 3.

The relation 5.29 is a set of simultaneous equation, the variables of which are denoted by
bi- The value of the simultaneous equation can be zero if each of the coefficient (3°(J T} 1))
is zero or there exists a dependency among the b; bits. However, a dependency will not
exist because according to definition, the dependency vector binding the vector subspace
has dependency between b; & b; 13 and b; 3 is not present in relation 5.29.

Therefore, the relation follows

O (T -Tjx) =0, VEk (5.30)

The expression (3 (J - Tjx)) implies summation of all the elements of the dependent [dj]
rows over the &k column.

Hence from relation 5.30, it directly follows that among the [dj] rows there is at least one
dependent row.

Phase 4 : Sums up and shows the contradiction

Similarly, with the help of the information T;;3;12 = 0 (as noted in Phase 1 of the
proof), we can show that the rows upon which b;;3 is dependent after d time steps are
> 1+ 3 and among these rows, there is at least one dependent row.

So from the above two instances there are at least two separate dependent rows in the
T-matrix and therefore, we can conclude rank(T) < n — 2. But the rank, as per relation
5.14, is n — 1. Hence there is a contradiction.

Therefore, dependency vector of the form DV =[1 --- 1 0 0 1 --- 1] cannot
exist. O

Example 5.5 The examples of Dependency Vectors which cannot be generated by a three
neighborhood M ACA are < 100011 >,< 1001001 >. In both the cases, there are two
or more zeroes between a pair of 1’s. Two legal dependency vectors are < 101011 >,<
11010111 > etc. g

The value of |P(w,n,m)| for m = 1 can be derived from the results of following two
lemmas. The first lemma calculates the total number of M ACA(n, m). The second lemma
enumerates the total number of w-weighted patterns these M AC A(n, m) can produce. Sub-
sequently, we perform the average function.

Lemma 5.9 The total number of Dependency Vectors (N(n,1)) for two attractor basins
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(m=1) MACA is given by
N(n,1) = 3" |D(@)| (5.31)
w=1

where |D(w)| denotes the set of Legal Dependency Vector of weight .

Proof :  As per the Theorem 5.8, in all the legal dependency vector D(w), the 1's are
placed in such a way so that there are no two or more consecutive zeroes in between a pair
of 1’s. So the number of legal |D(w)| is given by

k
D(@)| =Y CP'(n—w —k+1) (5.32)
k=0
where k = Min{(w — 1), (n — @ + 1)}.
Hence the total number of Dependency Vectors (N(n,1)) - that is, the number of
MAC A(n,1) each having a different zero basin configuration is given by

N(n,1) = |D(@)]
w=1

a

|P]\7(n,1)

with weight w in N(n,1) number of n-bit vectors of (n — 1) dimensional subspace.

(w,n, 1), as defined under Terminology, denotes the total number of patterns

Lemma 5.10 In two attractor basins M AC A, the total number of patterns with weight w
denoted as (|P1\7(n 1 (w,n,1)|) is given by

n

1Py (wsn, 1) = Y |D(@)| - |P(w,n,1,0)] (5.33)

w=1

Proof: Asper Lemma 5.7, each member of D(w) has |P(w,n, 1,w)| (Lemma 5.7) number
of patterns with weight w. So, in all possible vector space N (n,1), the number of patterns
with weight w will be

n

[Py (w,ms 1) = 3 | D(@)| - |P(w,n, 1,9)]

w=1

Theorem 5.11 The value of |P(w,n,1)| is given by

=1 |D()| - | P(w,n)|(d(w))
Lip=1 |D(w)|

[P(w,n,1)| = (5.34)
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Py 1
Proof : The value of |P(w,n,1)| is given by |P(w,n, 1)|:% The rest of the

proof directly follows from that of Lemma 5.9 and 5.10, - that is, from FEquation 5.81 and
5.83. 0

5.3.2 Computation of |P(w,n, m)|

Based upon the results of |P(w,n,1)|, the computation of P(w,n,m) is initiated. The
concept of Legal Dependency String in place of Legal Dependency Vector to enumerate the
number of 2™ attractor n-cell M ACA. The following lemma characterizes Legal Depen-
dency String.

Lemma 5.12 A legal dependency string has the constituent dependency vector placed in
non-overlapping positions.

Proof : From Lemma 5.8 & Fig. 5.8, an M ACA(n,m) is so formed that the con-
stituent 7; matrix, each representing an M ACA(n;, 1) are placed in block diagonal form.
So each T; has no dependency or overlap with any T;. Since each T; represents a 2-attractor
MACA, corresponding to each T;, there is a dependency vector. Hence, the M AC A(n,m)
is concatenation of m non-overlapping dependency vector. m|

Example 5.6 An example legal dependency string is [101012020], whereas the following
dependency string [12010], where 1 & 2 are interleaved is illegal. The vectors of the 0 basin
of an M AC A will not generate such illegal dependency string. O

To calculate P(w,n,m), we first calculate the number of legal dependency string. It
specifies the number of M AC A(n,m) with distinct 0 basins and is denoted by (N(n,m)).
Further, |PN(n,m
of these M AC A(n, m). Finally, we measure the average.

)(w,n, m)| - the total number of w-weighted pattern formed in a 0-basins

Computation of N (n,m) : The essential steps are elaborated below.

e Since a Legal Dependency String(LDS) is formed from m non-overlapping Legal De-
pendency Vector, at a particular partition configuration, the total number of LDS is
the product of distinct LDV in each partition.

e For example, let us take an LDS comprising of 3 LDV of length 10, then a particular
partition configuration is (3, 3, 4). Let the number of distinct LDV at each partition
be 7, 7, 9 respectively. Therefore, the total number of LDV =7 x 7 x 9 = 441. We
now elaborate the concept of Distinct LDV

e Distinct Dependency Vector : An example is given to clarify the nature of the problem.
Suppose a Dependency String is [1010202], the partition point can be considered as
(4,3) as well as (3,4).

e In order to ensure uniqueness, we impose the condition that given a partition an unique
MACA is one which has a 1 in the last position. Therefore, the above Dependency
String will be considered as a member of partition (3,4) only. Such restriction is not
needed in the last partition.
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A~

o Number of n;-bit LDV in the last position : Tt will be equal to N (n;,1) - N(n; —1,1),
where N (ni, 1) is all possible LDV of size n; and N (n; —1,1) is all possible LDV
with size n; - 1, that is, it doesn’t have 1 in the last position. Since the last position
doesn’t have the restriction.

e Therfore,

m—1
N(n,m)= > (] N'(m,1) x N(nm,1)) (5.35)
Perm(n) I=1
where
N'(ny,1) = N(ng,1) — N(n; — 1,1) (5.36)
and Perm(n) is all possible partition configuration.
Computation of |P1\7(n m) (w,m,m)| :
e At each partition configuration, the number of unique MACA(n;,1) - UN(n;,1) at
each partition has |PUAN(W 1)(wj,n, m)|, j = 0 --- n number of w; weighted pattern.

o Let wy, wa, -+ wy, = w. Since each w weighted pattern is formed from concatenation
of w; patterns (Theorem 5.5, therefore, the total number of w-weighted pattern is the
cross product of each |PU7V(ni 1) (wj,n, m)]|

e That is, number of w-weighted pattern in the 0-basins of M AC A, given a particular

partition configuration and a particular combination of w;s, such that } w; = w is
T Py oy ()

e This is summed over all possible combination of w such that )~ w; = w. Therefore,

number of w-weighted pattern in the 0-basins of M AC' A, given a particular partition

configuration is ZC’omb(w) | \PU}V(ni,l)(wjana m)|.

e Hence, summing over all partition configuration,

m
Py (wmml =30 3 T Powg,wsmm)] (5.37)
Perm(n) Comb(w) i=1

The average number of w weighted patterns in each 0-basin of an M AC A(n,m) is spec-
ified by the following theorem.

Theorem 5.13 The value of |P(w,n, m)| is given by

Z erm(n E omb(w 71 P ; Wy, 1, M
|P(w,'n,m)| _ P (n) Comb( )A 1=1 | UN(nl,l)( J )‘ (538)
(N(n,m))

Proof: The value of |P(w,n,m)| is given by  |P(w, n,m)|:|PN(n,m) (w,n, m)|/N(n,m).
The rest of the proof directly follows from Equation 5.37. O
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5.4 Synthesis of MACA through Genetic Algorithm

The previous two sections have detailed the behavior of the M ACA basins. It has
been seen that the M ACA basins behave as natural clusters. This section details the
methodology synthesizing a desired M ACA (T matrix) that can memorize the given set
of patterns in its attractor basins. The number of attractor basins (say k) of the M ACA
may be fixed or it can vary depending upon the design requirement. We have employed
evolutionary algorithm to design the desired M AC'A. The following discussion reports the
methodolgy to evolve M ACA through Genetic Algorithm. Genetic Algorithm performs
directed search through the pool of M AC A(n,m). We discusses the directed search process
for two scheme - Scheme 1 - where m is fixed and Scheme 2 - where m varies.

The basic structure of G A revolves around the concept of evolving the successive solutions
according to its fitness. The fitness function is defined according to the functionality for
the purpose of which M AC' A is evolved. In the next chapter, we elaborate two different
functions of M AC'A - classification and associative memory modeling. The fitness functions
of each individual cases are elaborated. Moreover, each solution (the solution is an M ACA)
has to be encoded in bit string format (chromosome) for the purpose of evolution. Hence,
the prerequisite for GA evolution is to encode an M AC A in bit string format.

The most obvious method of encoding an M AC A would be to encode the binary coun-
terpart of C' A rules employed for each cell in bit string. Researcher while combining GA
with C'A has applied this encoding scheme [36, 5, 26, 25, 33]. But the problem which lies
ahead is that since M ACA is a very specialized class of Linear C' A, a different sequencing
of the same rules produces C'A which do not preserve M AC A characteristics. For example,
a b cell CA with Rule vector [102 60 60 90 204] forms an M ACA (F'ig 5.2) while [204 102
90 60 60] is not an M AC A even though both employ the same set of rules. Hence, encoding
the rules of M AC A would result in the undesirable effect of taking the solution set out
of the M AC' A domain. In order to circumvent this problem we have introduced a special
encoding scheme also termed as pseudo-chromosome format to generate the solution of the
problem with GA framework.

The encoding scheme is described next.
5.4.1 The Encoding Scheme

The encoding scheme encodes an n-bit M AC A having 2™ attractors. The characteristic
polynomial of the T' matrix of an M ACA can be represented by a sequence of z%’s and
(1 + z)'s. The T matrix of Fig 5.8(a) represents an M AC A. Only tri-diagonal elements of
the matrix is shown in the figure since the remaining elements are zero. The figure shows

the blocks of z¢ & (1 + z)'s derived from T matrix.

The sequence of z%’s and (1 + z)'s is encoded in a chromosome like format. It gives
a semblance of the chromosome and hence termed as pseudo-chromosome format. It is
a string of n bits where (a) d; positions occupied by a z% is represented by d; followed
by (d; — 1) zeros (for example, 3 = [300]), and (b) (1 + z) is represented by -1. The
pseudo-chromosome format of the M ACA is illustrated in Fig. 5.80b.
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Figure 5.8: MACA encoding for GA formulation

The three major functions of GA - Random Generation of Initial Population, Crossover
and Mutation operate on this encoded format. Each of the function is elaborated one by
one. Variations in each function with respect to Scheme 1 - Scheme where the number of
attractor basin is fixed and Scheme 2 - Scheme where the number of attractor basin varies
is simultaneously highlighted during the discussions.

5.4.2 Random Generation of the Initial population(IP)

To form the population, it must be ensured that each solution (randomly generated) is
an n-bit M ACA with 2™ number of attractors where m > loga(k). The value of m may
be fixed (Scheme 1) or it can be randomly generated (Scheme 2). Based on the value of m
we generate a sequence of the elementary divisors and consequently synthesize the M AC A.
The following example illustrates the underlying principle.

Method | Method 11 Therefore, the characteristic polynomial
. . 28(1+2)? is randomly arranged as z*- (1+
T= T T= T 2 2 3
B T z)-z?- (14 z)-z*. In the synthesis scheme,
each elementary divisor is separately syn-

thesized (Algorithm 4.7). The T matrix is
finally synthesized by randomly using alter-

T, native schemes of arranging submatrices in
T =
[T

Method 111

block diagonal form/block triangular form

[49], each submatrix corresponds to an el-

[ Ty ]& [ T» ] in Block Diagonal Form each ementary divisor. The schemes are illus-
represents an Elementary Divisor (either 27 or (1+ trated in Fig 5.9. Method II & III places
z)) two sub-matrices in block triangular form
Note: While using Method II, III, one restriction ~While Method I places two sub-matrices in
to be maintained - Ty & T both cannot be (1+z). Block Diagonal Form. Method I & III can-
not be used if each sub-matrices represent

Figure 5.9: Different methods to arrange two (1 4+ z). This restriction ensures our con-
matrices struction policy (Fig. 5.3) which specifies

each block represents a two attractor M AC A, hence contains a single (1 + z) factor.
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Adopting different schemes, the same sequence of the elementary divisors produces two
different T' matrices as (Figure 5.8 a & c - the positions where they are differing is encircled
in Figure 5.8 (¢)). However, the pseudo-chromosome format of both of them are same.

[Note : The structure of the attractor basins of the M AC A changes with the change of
the sequencing of the elementary divisor, as well as the synthesis of 7" matrix from the same
sequence of elementary divisor. In this connection. along with the pseudo chromosome
format, each solution stores the underlying 7" matrix.|

The algorithm to randomly generate an M AC A is elaborated next. Any steps specific
to Scheme 1 or 2 is categorically mentioned.

Algorithm 5.1 Rand_gen MACA

Input: n - the size of M AC A, m: where 2™ is the number of attractors. - Scheme 1
Input: n - the size of MACA - Scheme 2.

Output: T matrix representing an M AC A with 2™ attractor. - Scheme 1

Output: T matrix representing an M ACA. - Scheme 2

Step : Randomly Generate the value of m. - Scheme 2

Step 1: Randomly divide (n — m) into di,ds - - - d to form the corresponding djs.
Step 2: Synthesize T; matrix from each elementary divisors z% .

Step 3: Synthesize T; matrix from each elementary divisors (1 + ).

Step 4: Randomly arrange the sequence of T; and Tjs, forming the pseudo-chromosome format.
Step 5: Select either Method I, II or III of Fig. 5.9 to arrange a T; and T} to form the final 7" matrix
representing the output M AC' A

The crossover and mutation algorithms implemented are similar in nature to the con-
ventional one normally used for GA framework. We use single point crossover technique
and single bit mutation technique. However, it demands some repair of the chromosome
after mutation/crossover to maintain the integrity of the format of the chromosome (Fig.
5.8 (b)) generated. The repair algorithm differs in case of cross-over algorithm for Scheme
1 & 2. However, it is same in case of mutation. The modification scheme is next outlined
for mutation.

5.4.3 Mutation Algorithm

The mutation algorithm selects a chromosome of higher fitness from the Present Pop-
ulation (PP) and generates a new chromosome for the for the population of the next
generation(NP). The MACA, as illustrated in Fig. 5.10, is mutated at a single point.
In mutation algorithm, an (1 + z)’s position is altered. Some anomaly crops up due to
its alteration. The anomaly is resolved to ensure that after mutation the new C'A is also
an M ACA that preserves the pseudo chromosome format illustrated in Fig. 5.8. The
inconsistent format, as shown in the Fig 5.10b is the mutated version of Fig 5.10a. The
inconsistency of the pseudo-chromosome format of Fig 5.10b can be resolved by replac-
ing ‘4’ and ‘2’ with ‘3’. This leads to the consistent format of Fig 5.10(c). The similar
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Figure 5.10: An Example of Mutation Technique

inconsistencies occur in the underlying matrix. The inconsistencies arising in the matrix
corresponding to pseudo-chromosome format of Fig 5.10(a) in position are encircled. They
are correspondingly resolved and we obtain Matriz corresponding to Fig 5.10(c).

The algorithm is elaborated below.

Algorithm 5.2 Mutation Algorithm

Input: Randomly select one M ACA of PP.

Output: New M ACA for NP.

Step 1: Take the pseudo-chromosome format of the M ACA.

Step 2: Randomly select a (1 + z)'s position (p;) and put it in a non-(1 + z) position (p2).

Step 8: Make necessary modifications at mutation points to maintain pseudo-chromosome format
(Section 7.4.1) for the resulting M AC A.

5.4.4 Crossover Algorithm

The crossover algorithm implemented is similar in nature to the conventional one nor-
mally used for GA framework with minor modifications as illustrated below. The algorithm
takes two M AC' A from the present population (PP) and forms the resultant M AC A. Like
a single point crossover, it sets a crossover point and each half about the crossover point
is selected from the two respective M AC A. Similar to mutation, after crossover reparing
of the chromosome has to be done to maintain the integrity of the solution. The repair
algorithm differs for Scheme 1 & 2. A single example is developed in two steps to illustrate
the repair algorithm of both Scheme 1 & 2.

The Fig 5.11 shows an example of the crossover process. Two MACA in pseudo-
chromosome format are shown in Fig 5.11a & Fig 5.11b. The T matrix corresponding
to Fig. 5.11a & Fig 5.11b are also shown in the figure. Each of the participating M AC A
has 2 (1+ ) factors, hence has 22 attractors. The first 6 symbols are taken from M AC Ay,
while the rest 4 symbols are taken from M ACA,. The violation in pseudo chromosome
format is first explained for Scheme 2.

The resulting C A, as explained below violates the pseudo-chromosome format in 6t*
position. (encircled in Fig §.11c.). The pseudo-chromosome format has z% represented
by d; followed by (d; — 1) zeros. But in the case of Fig 5.11¢, we have 2 without any
zero following it. This is a violation since the property of M AC' A is not maintained. The
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violation in the corresponding T matrix is also shown in the figure. So we take out the
symbol and form a CA of elementary divisor  and adjust it according to the method
suggested in Fig. 5.9. The adjustment in the chromosome and T-matrix is accordingly
shown in Fig 5.11d. The resultant M AC A has three (1+ ) factors, that is, the resultant is
an MACA with 2% attractors. This conforms with requirement of Scheme 2 but in Scheme
1 there is one more restriction - the resultant M AC A should have 2? attractors. Hence,
to satisfy this constraint, further repairment of the chromosome is needed. The repairment
process is discussed next.

Since there is one extra (1 + z) factor, we randomly select a (1 + z). In the figure the
(1+ z) in the last cell is selected (Fig. 5.11d) and it is converted into a factor of z¢. The
last three cells are selected in the figure, and [2, 0, -1] is converted to [3, 0, 0] in Fig. 5.11e.
The corresponding changes in the matrix are highlighted simultaneously.

The algorithm formalizes the above discussions.

Algorithm 5.3 Algorithm Cross-over

Input: Randomly selected two MACA (MACA; & MACAs) from PP each having 2™
attractor. - Scheme 1

Randomly selected two MACA (MACA, & MACAs) from PP. - Scheme 2

Output: New MACA having 2™ attractor. - Scheme 1

Output: New MACA. - Scheme 2

Step 1: Randomly generate a number q between 1 & n.

Step 2: Take the first q symbols from M ACA; and the last n — q symbols from M AC As.
Step 3: Make the necessary modifications in the partition points to conform pseudo-chromosome
format (Section 7.4.1) for the resulting M ACA.

Step 4: Make the necessary modifications to make the number of attractor 2™.

- Scheme 1

NS

0

1 2 3 4 5 6 7 8 9 10 1un

Figure 5.11: An Example of Cross-over Technique

5.4.5 Selection, Crossover and Mutation Probability

From the study of GA evolutions, we have set the associated parameters to derive the N P
out of PP. The population size at each generation is set to 50. The crossover probability
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Figure 5.12: An Example of Cross-over Technique

(pc) is set to 0.8, while the probability of mutation (py,) is set as 0.001. We follow the elitist
model of carrying forward 10 best solutions to the next generation. The Fitness Function
is determined according to the requirement of the problem, two such requirement will be
discussed in the next chapter.

5.5 Conclusion
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Chapter 6

MACA Based Pattern Recognizer
and Pattern Classifier

6.1 Introduction

This paper reports a new scheme of modeling an associative memory with linear Cellu-
lar Automata (C'A). A special class of linear C A, Multiple Attractor Cellular Automata
(M ACA), has been used for the design. We introduce a concept of Hamming Hash Family
(HHF) and realize the structure with M AC A. The properties of HHF are explored to ease
the efficient design of C'A based associative memory. The complete analytical framework
coupled with extensive experimental results has been provided. The following considerations
have encouraged us to undertake the research.

The last few decades of the twentieth century have encountered massive advancement
in computing technology. The computing speed has leaped from kilo to mega to giga and
is now reaching the unthinkable terra flops. However, in spite of such leaps, machines have
failed to emulate the stability of human brain and to match the ease with which human
brains recognize patterns. Associative Memory organization of human brain is one of the
most important ingredients which imparts this superiority. Consequently, researchers, prac-
titioners, entrepreneurs from diverse fields are engaged themselves to develop sophisticated
techniques to emulate associative memory.

Associative Memory model provides an elegant solution to the problem of identifying
the closest match to the patterns learnt/stored [2]. The model, as shown in Fig.8.1, divides
the entire state space into some pivotal points (say) a,b,c. The pivotal points (patterns) are
assumed to be learnt by the machine during its training phase. A state close to a pivotal
point is the noisy vector (pattern) associated with that specific pivotal point. The process
of recognition of a pattern, with or without noise, amounts to traversing the transient path
(F'ig.8.1) from the given pattern to the closest pivotal point learnt. In effect, the time to
recognize a pattern in associative memory model is independent of the number of patterns
stored [2].
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Figure 6.1: Model of associative memory with 3 pivotal points.

Since early 80’s the model of associative memory has attracted considerable interest
among the researchers [3, 30]. Both sparsely connected machine (Cellular Automata) and
densely connected network (Neural Net) have been explored to design the associative mem-
ory model for pattern recognition [3, 5, ?]. The seminal work of Hopfield [?, ?] made
a breakthrough by modeling a recurrent, asynchronous, neural net as an associative
memory system. However, the complex structure of neural net with non-local intercon-
nections has partially restricted its application for design of high speed low cost pattern
recognition machine. As a result, there has been a series of work attempting to minimize the
connectivity of the Hopfield net[][][], which resulted in the introduction of Cellular Neural
Network [?, ?, ?]. In this light, solving the associative memory problem through a sparse
network like Cellular Automata(C A) would be extremely helpful. This would not only make
the underlying circuit simple but also have a natural digital V LSI implementation of the
whole circuitry providing the necessary speed and scalability required to design associative
memory.

But although the search for alternative model around the simple structure of Cellular
Automata (CA) [5, 7] continued there hasn’t been any notable development. Recently a
series of works on associative memory model designed with 3-neighborhood C A, using non-
linear rules, have been reported [25, ?, 33, ?]. However, the results in these papers are
largely experimental. The current work shows that associative memory can be modeled
using even a smaller set of rules. The paper as well gives a solid analytical foundation
regarding the capacity, basins of attraction of the C'A based memory.

This work employs only the linear C A, using XOR logic to generate its next state
function [?, ?], to model an associative memory. The design with linear C A is of special
interest to the research community due its available analysis and synthesis tools based on
linear algebra [?] and its simplest hardware architecture [?].

The powerful associative memory modeling tool. The entire model is built around a
special class of CA, Multiple Attractor Cellular Automata (M ACA), introduced in [?].
The detailed analysis of M AC' A has provided the foundation to propose a new concept of
hash family referred to as Hamming Hash Family (HHF'). The property of the hash family
- the probability of collision between a pair of patterns, hashed by a member of HH F', varies
inversely with their hamming distance, - is exploited for the current design of associative
memory model that performs complex computation like pattern recognition.
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The preliminaries of C' A based sparse network are introduced in Section II. In Section III,
we report the basic scheme of design M AC A based associative memory model. The detailed
analysis of the properties of Hamming Hash Family, employed for the design of associative
memory, is reported in Section IV. Subsequently, in Section V, the performance of the
proposed design is evaluated analytically. The Genetic Algorithm framework for evolution
of MACA is described in Section VI. Section VII reports the extensive experimentation

performed to support and reinforce the theoretical analysis. We conclude the paper in
Section VIII.

The internetworked society has been experiencing data explosion that is acting as an
impediment in acquiring knowledge. Meaningful interpretation of these data is increasingly
becoming difficult. Consequently, researchers, practitioners, entrepreneurs from diverse
disciplines are trying to develop sophisticated techniques for knowledge extraction. Data
classification forms one of the important arena of such research.

Data classification is the process of identifying common properties among a set of objects
in a database. A classification model is built based on a predefined set of data classes. A
sample set from the database, each member/tuple belonging to one of predefined classes, is
used to train the model. The training is also termed as supervised learning of the classifier.
Each member/tuple may have multiple features/attributes. The classifier is trained based
on a specific feature. Subsequent to training, the model performs the task of correctly
recognizing the class of any incoming pattern, that may or may not have been used during
the training phase, Recognition of an input sample is done based on some metric, typically
distance metric.

The essential prerequisite of designing the classifier for current information age is - it
should have high throughput with less storage requirements. Further, low cost hardwired
implementation of the scheme is becoming a very important criterion for on line real time
applications. The C' A based classifier proposed in this paper displays the following charac-
teristics :

e A special class of C A referred to as Multiple Attractor Cellular Automata (M ACA)
is employed for design of the classifier.

e The desired M AC A has been evolved with a special type of Genetic Algorithm(GA)
formulation.

e Theoretical analysis of the M ACA attractor basins establishes the capacity of the
classifier to accommodate noise.

e The experimental results confirm that its classification efficiency is better than decision
tree models.

e The classifier employs the simple computing model of three neighborhood Additive
CA having very high throughput. Further, compared to conventional techniques [11],
[30], [?], [?] developed for classification, the simple, regular, modular and local neigh-
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borhood sparse network of Cellular Automata suits ideally for low cost V LSI imple-
mentation.

The Cellular Automata (C'A) preliminaries follow in the next section.

6.2 MACA as Associative Memory

An associative memory model is trained to get familiarized with some specific pattern
set {P1, -+, Pi,---Px}. It can recognize an incoming pattern as P; even if the pattern is
distored with limited noise. If a new pattern Pj,com is input to the system, the model
identifies it as P;, where Pincom is the closest match to P;. The hamming distance between
Pincom and P; (HD(Pincom, Pi)) is the least and this is viewed as the measure of noise in a
generic sense.

This section reports the design of associative memory with M ACA. If an M ACA has
to function as an associative memory storing P = {P1,---,P;,---, Pk}, each of its attractor
basin should have one and only one of the given patterns of P. While the M AC A is run for
some time steps (maximum d) with Pjpcom as an input, it should return the pivot point P;
closest to it. That is, both P;,com and P; should lie in the same a-basin of the M ACA. The
design guidelines for such an M AC A for associative memory are specified by the following
two relations:

R1: Each attractor basin of the M AC A should contain one and only one pattern (P; €
P) to be learnt.

R2: The Hamming Distance (HD(Pincom,Pi)) between each state Pipcom € Pi-basin
and P; is lesser than the HD(Pipcom,P;) where P; € P, Vj =1,2,---k, & j#i.

To satisfy R1, the design demands the construction of an M ACA with k attractors
where no two pattern P; & P; lie in the same attractor basin att;. In order to ensure the
placement of patterns in separate attractors, the following relation has to be met.

T X 40 (6.1)

where the pattern set X = {z; |2, =P, ® P; Vﬁjzl & i # j}. T is the desired MACA
with & attractors, and d is the depth.
Relation 6.17 directly follows from Theorem 5.2. If two patterns P; and P; fall in different

attractors, the pattern z; = P; @ P; (modulo-2 sum) should necessarily fall in a non-zero
attractor basin. In effect z; while multiplied by T¢ yields a non-zero attractor.

An MACA can act as an effective hash function. The total pool of M ACA forms a
hash family and exhibits an interesting property - the hash family maintains an inverse
relationship between the collision of a pair of patterns while hashed and their hamming
distance.

The hash family having this property is referred to as Hamming Hash Family (HHF).
The concept of HHF imparts an important property to the attractor basin of M ACA.
Since keys (patterns) that collide lie in the same attractor basin, the keys (patterns) which
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lie close to each other in terms of hamming distance belong to the same basin. That is, if
a set of patterns P satisfies R1, then R2 naturally follows.

Therefore, the design of an M AC A based associative memory for a pattern set P boils
down to design of a method of deriving T satisfying R1 - that is, relation 6.17 for the given
pattern set. The characterization of HHF in respect of the probability of collision and
hamming distance between patterns is in the next section.

6.3 Performance Analysis

This section reports the performance analysis of M AC A based associated memory. The
performance is measured with respect to two major aspects (i) Stability and (ii) Basins of
Attraction.

6.3.1 Stability

Stability or Memorizing Capacity (MC) is defined as the number of patterns the machine
can store. Stability gives the measure of the number of patterns (say k) for which all
possible combination of patterns can be distinctly remembered.

To memorize any random pattern set P, the prerequisite is that there should be at least
one M ACA in which each pattern P; € P falls in separate attractor basins. It implies that
the entire set X, the set formed from X ORing each pair of members of the pattern set P,
should satisfy Relation 6.17

T . 240 VzeX

That is, any £ € X should not lie in zero-basin. If the cardinality of P is k, then the

maximum cardinality of the set X is k = %

Let p; be the probability of a pattern z; € X to fall in zero basin. Then (1 - p;) = ¢; is
the probability that the x; is not in zero-basin. Therefore, the probability - patterns of X
are not in the zero basin, is

Q=q X g2 X Xgj. (6.2)

To memorize k patterns, the candidate M AC A should have 2™ number of attractors,
where 2™~ < k < 2™. Let the number of all possible M AC A(n,m) be N(n,m). Then the
number of M AC' A, capable of memorizing the pattern set, is given by

N =@Q - N(n,m) (6.3)

If each of the pattern sets P of cardinality k has to be stable, then for all values of Q, N
should be greater than 1. So in order to determine the lower limit, the task is to find the
least value of Q).

The probability of weight w occurring in zero basin is

|P(w,n,m)]
pu = (6.4)
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where 27" is the number of patterns in the zero basin. |P(w,n,m)] is the expected number
of patterns with weight w in the zero basin of M ACA(n,m). Consequently, the probability

of non-occurrence is given by

qw =1 — pu (6'5)

The least value of @ is directly determined from the least value of g, - that is, the least
probability of a pattern with weight w not in the zero basin. It is observed that g, is least
while w is around n/2. Therefore, the equation 6.3 can be rewritten as

N = (least(qy))* - N(n,m) (6.6)

The value of & for which A/ > 1 gives us the absolute stability value (k) of the machine.

Table 6.1: Stability Analysis for different value of n

No of | No of Random
cell (n) Patterns
10 9
20 13
30 17
40 22
50 25
60 28
70 30
80 32
90 34
100 36

Table 6.1 reports the nature of absolute stability. The absolute stability is very high for
smaller values of n. However, at larger values it stabilizes roughly at 0.2n.

6.3.2 Basins of Attraction

For effective pattern association, the patterns stored in an associative memory must act
as the attractors. Ideally a given initial state will relax to the nearest attractor with which
it has the least hamming distance. Consequently, the basin of attraction of an attractor
includes the pattern set which are closest to that attractor.

In an M AC A, the basin of attraction is not ideal. The amount of noise that can be
recovered is estimated from the Expected Occurrence Graph. The Expected Occurrence
reflects the occurrence of pattern set with weight w in the zero basin and is denoted as

~

|P(w,n,m)| x 2™

EO(P(w,n,m)) = Tom

A

| P(w, n,m)| is the expected number of patterns with weight w in the zero basin of M AC A(n, m).
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Figure 6.2: Theoretical Estimation of Noise Accommodating Capacity Of MACA at stable
point for n = 10, 30, 40, 60

The total number of n-bit patterns with weight w is "C,. Therefore, the fraction of
patterns having weight w present in the zero basin is given by

A~

|P(w,n,m)| _ EO(P(w,n,m))
nCy - om

Py = (6.7)

Fig.6.2 shows the basin of attraction (theoretical value) of the M AC A with respect to
the set of patterns at stable point for n= 10, 30, 40 & 60. It is observed that any attractor
P; has an ideal dominance behavior, that is, it has better attraction capability for patterns
Pincom if it is close to it in terms of Hamming Distance.

Fig.6.3 depicts the basin of attraction (theoretical value) of the M ACA of size n =
40, for different k¥ (number of patterns stored). Since an M AC A basin only breaks into 2™
attractor (m =1, 2, - -+, n), therefore pattern set of cardinality k, where 2™ 1 +1 < k < 2™,
will have same error recovery capability. However, as we decrease the number of patterns
to be stored beyond 2™, the error recovery capability increases.

The efficiency of basin of attraction is further extended by exploring multiple M AC A.
The next subsection elaborates the scheme.

6.3.3 Enhancing Performance - Multiple M ACA

In this section, we present a technique for enhancing the error recovery capability. For
pattern recognition instead of using a single M AC' A we use multiple M AC A each classifying
the same set of patterns. Although the percentage of patterns classified has a strong bias
towards lower hamming distance pattern but the rate of recovery is less mainly because a
single basin hence the zero basin has only 2"~ patterns. That is, for example, a pattern
Pincom may have HD(Pincom, P1) =1 and HD(Pincom, P2) =2, where (P1,P2) are pivot
points. Therefore, p; = 0.3 while po = 0.2, hence have more chance of colliding with

Pincom- But the pattern Pincom @ P1 may not be present in the zero basin, hence the
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Figure 6.3: Theoretical Estimation of Noise accommodating capacity of MACA(n = 40) at
various k

probabilistic advantage will be lost.

To take advantage of the probabilistic approach, using of multiple M AC A where each
C A classifies the same set of patterns is pursued. The decision of the pivot of the pattern
is decided by the majority function. It thus enlarges the zero basin and allows the bias of
smaller weights to take advantage.

The algorithm to design Multiple M AC A proceeds in the following manner. Let the
number of M ACA(n,m) taken be N, where each M AC' A has classified the patterns in
distinct attractors. Any incoming pattern Pjycom is hashed upon all the NV MACA. At
each instance of hashing, Pj,com collides with a pattern P; € P. Each P; € P records the
count of the number of times it collides with Piy,com-

Once the process of hashing in all the N' M AC A is completed, the maximum number of
times with which Pj,com has collided is recorded as the identifiable pattern.

Stating it in Algorithmic form

Algorithm 6.1 Find Majority

Input : Incoming Pattern : Pincom

Output : Pivot Point : P;

forj =1to N

Hash Pincom with MACA;.

Pick P; with which Pincom has collided the most number of times in the process of hashing.
Output P;.

The Figure 6.4 shows the enhanced capacity of the pattern recognizer for n = 40, k
= 22. The graph shows that designing the Pattern Recognizer System using multiple C A
provides an ideal basin of attraction. It is seen that as we increase the value of N, the
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Ideal case, for n=40, at k=22
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Figure 6.4: Number of MACA vis-a-vis Noise
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Figure 6.5: Number of MACA required to accommodate fixed bit noise(w = 1, 2, 3)

radius of basin of attraction increases for example, we can recover upto .... bits of noise if
that attractor is closest.

Figure 6.5 shows the number of M AC A - N required to recover w (= 1, 2, 3 -- - 40) bits
of noise respectively for n = 40, k = 22. It is seen that the number of M AC A required to
recover the noise slowly increases with the increase in value of w.

The method by which we obtain the graphs of Fig. 6.4 and 6.5 is next discussed.
Computing the value of N

Suppose the basin of attraction of the machine is w, that is it can recover noise upto
weight w. To design such machine, we have to ensure that in order to recover the proper
pivot of a pattern Pjy,com, which is at a distance w from the nearest attractor P;, the number
of collision of Pjycom with P; should be more than ones. To ensure that the collision is at
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Figure 6.6: MACA encoding for GA formulation

least two number of times, so that it can be distinguished from other pattern set P; € P,
(which has less collision probability, the number of collision with P; will be less than 2) the
following relation has to hold.

Py X N =2 (6.8)

Hence from the equation both the value of w(Figure 6.4) as well as N (Figure 6.5) is com-
puted keeping the other constant.

Moreover, with the introduction of Multiple C'A, the recovery of noise beyond the thresh-
old limit w cannot be done at all because the incoming pattern collides once with all the
pivot point, making it impossible to differentiate by majority function. Hence the graph 6.4
shows the noise recovery capacity slides drastically.

Let n = 10 and m = 2.

6.4 Experimental Observation

The experiments are performed to evaluate the stability point and the Basins of At-
traction both using single and Multiple M ACA. The experimental results are reported
next.

6.4.1 Stability

The experiment for finding out the memorizing capacity was performed for different value
of n. The stable point for different value of n was enumerated through experimentation.
Random Pattern Set P is taken as input. The cardinality of P is increased progressively. At
each cardinality point 30 random sets are taken as input. If more than one fails to generate
MACA for the selected P of a particular cardinality (k), it is assumed that cardinality
(k — 1) is stable point of the M ACA. The M ACA is evolved by the process of Genetic
Algorithm.

The Table -6.3 reports the experimental results for various values of n. Column 2 shows
the maximum number of random patterns(P) the set of M AC A has been able to memorize.
Column 3 shows the average number of generations required to memorize. The memorizing
capacity is seen to be almost same as the theoretical limit. The slight difference occurs
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because the individual M AC A chosen to classify the random patterns has slight different
probability of non-occurrence(least q - relation 6.6) than the theoretical measure which is
enumerated through probabilistic approach.

Table 6.2: Collision mean and Variance of sample pair with a fixed hamming distance

No of | No of Random No of

cell (n) Patterns Generation
10 8 )
20 13 11
30 17 13
40 22 17
50 24 29
60 27 30
70 27 31
80 31 39
90 33 43
100 37 47

6.4.2 Basins of Attraction

To evaluate the noise recovery capacity of the M AC A, extensive experiments are per-
formed. The experiments are performed with both single M ACA as well as Multiple
MACA. For each case, experiment is done on 30 different set of classified patterns. The
results based on single M AC A is reported next. The experimental setup is as follows.

Experimental Setup

For each set of patterns P = {Py, P2 - Pk}, 300 random pattern Pjjcom are picked,
each pattern Pjjcom having a fixed hamming distance(d) from any of the randomly chosen
patterns P;. The value of d is increased from 1 to n. The error recovery at each d is the
percentage of patterns which converge to the pivot pattern(P;) from which it is generated.

Single MACA - Noise Recovery Capacity

For single M AC A, the recovery is calculated on different cardinality (k) of the pattern
set. The following results of pattern recognition capability are based on single M AC A.

Figure 6.7 € 6.8 shows the experimental results illustrating the noise recovery capacity
of MACA. Fig. 6.7 shows the results for different value of k(= 7, 15, 17, 21) for a fixed
value of n(=40). Fig. 6.8 shows the result for different value of n(= 10, 30, 40, 60) at the
stable point of each n. The results are the average of 30 different set.

The nature of the graph is similar to the one predicted through theoretical analysis.
Only in Fig. 6.7, we see that there is difference in the nature of the noise accommodating
capacity of the M AC A for two k =(17, 22). In the theoretical analysis, we have predicted
for all values of k which need same number of attractors to classify, for example (both 17 &
22 need 32 attractors), they have the same basin of attraction. However, in experiment we
see that in fact the basin of attraction for kK = 17 is better than &k = 22. This is because,
the degree of freedom of classifying k = 17 is more (we have 15 attractor unused). This acts
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Figure 6.7: Experimental Results of Noise Recovery capacity of MACA (n = 40) at various
k

as an advantage and we subsequently end up in selecting M AC' A with better recognizable
capacity. However, the most important observation in the experimental results is that there
is a significant gap in the theoretical and experimental observation regarding the error
correcting capacity of the M ACA.

Figure 6.9 shows the result of the abnormal difference in the theoretical limit as well
as the experimental observation(n = 40, k¥ = 22). We explain this abnormality by taking
a look at the M AC'A basin and the methodology of M AC A space analysis undertaken in
Section V.

Reason Behind the Gap in Theoretical & Experimental Result :

The entire theoretical analysis in Section V regarding Basin of Attraction is developed taking
into consideration the statistical property of the M AC A space. The M AC A(n, m) space
will form a (n+2) - variable frequency distribution where each of the independent variables
indicates | P(w,n,m)| V" _,, while the dependent variable is the number of MACA(n,m) -

w:O’

~

N (n,m), which displays the property of the corresponding (n + 1) independent variables.
Defining in functional form

N(nam) :f(|]5(07n7m)|a|P(17n’m)|"" |P(n’n7m)‘) (69)

The Fig. 6.10 displays a simplified 3-dimensional representation of the M AC A space,
the 2 and y axis representing the |P(w,n,m)| for w = 1 & 2, the assumption being that
there are only 3 variables - the independent variables |P(w, n,m)| for w = 1, 2 and N(n,m)
- the dependent variable represented in the z-axis.

While exploring the M AC A space, the statistic upon which the analysis of error correct-
ing capacity is done is mean. That is we have shown our result in respect to the behavior
of an average M AC A.

However, with only a small percent of M AC A, classification of all the distinct config-
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Figure 6.8: Experimental Results of Noise Recovery Capacity Of MACA at stable point for
n = 10, 30, 40, 60

uration of the pattern set P having cardinality & can be done. We explain the statement

through the following discussion.

The number of all possible pattern set of cardinality k& chosen from all possible 2" patterns

K] =2" ¢, (6.10)

Let the cardinality k of the pattern set P follow the relation where 2™~ < k < 2™. An
n-celled MACA(n,m) can classify [K] number of k set of patterns that is, in the MACA
each member of the set P falls in different attractors - [K] is given by

[K] =" Ci(2m~™)~ (6.11)

The relation is obtained by selecting an element from each of the selected K-basin.

Therefore, the number of M AC' A required to classify the whole set of combination is

given by
i = (6.12)
K] '

The number of M AC' A forms a small fraction of the of the entire space of the M AC A, the
fraction is given by

fracMACA(n,m) = % (6.13)
n,m

where N (n,m) is the total number of M AC A(n, m) which can be formed.
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Figure 6.9: Noise Distribution n = 40 (Experimental & Theoretical)

We show the fraction of MACA - fracM AC A(n,m) - required to classify the total set
of patterns for different values of n at the stable point in Table 6.3. For example, in the
case of n = 40, we see that at stable point, the fraction is around 10~'°, which implies that
to classify each patterns, such a meager percentage of the whole population (108 %) is
sufficient to classify the whole range of pattern.

So when during evolution we employ a fitness preference to those M AC'A whose pattern
recognition capacity is more, we reach the zone of M ACA which has the best pattern
recognition capacity. Since it is a meager percentage of the entire population, selected
M AC A displays above average noise recovery capacity.

We present a mathematical formulation of the above statement for one bit noise that is w
= 1. In order to present the mathematical model, we assume that the frequency distribution
is Gaussian in nature and simplify the model to a 2-dimensional normal distribution (Fig.
6.11). Through the model, we illustrate how the enhancement of pattern recognition occurs.

The z dimension of the distribution is taken as |P(w,n,m)| for w = 1 and the y axis
represent the number of MACA - N (n,m) - corresponding to the a particular |P|.

Table 6.3: Average Stability

No of | No of Random Frac z(Frac)

cell (n) Patterns
10 9 24 x10°3 2.8
20 13 5.4 x 1075 3.9
30 17 2.3 x 107° 5.9
40 22 3.8 x 10710 6.2
50 25 4.7 x 1071 6.5
60 28 2.4 x 10711 6.6
70 30 8.3 x 10712 6.8
80 32 1.8 x 10~1! 6.6
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Figure 6.10: Three Dimensional Frequency Distribution

We calculate the mean (u) and standard deviation (o) of the frequency distribution
formed from relation 77. The relation is reproduced for convenience

EPerm(n (’U) ) (n(l)’m)
V(n,m)

|P(w,n,m)| =

The relation can be rewritten as

|P(w,n,m) Z X -p(z (6.14)
Perm(n)
where
X = fwi) & plo) = dhm)

Assuming the distribution as a standard normal distribution, we find the value()) of
|P(1,n,m)| so that the M AC A having number of 1 bit patterns greater than )’ covers the
(3.8 x 1078 %)of the entire space. (The space is shaded in Fig. 6.11). From the formula
of standard normal distribution, we find the value of ) where

Yo z(fracMACA) (6.15)

o
where 1 and ¢ implies the mean and standard deviation of the distribution respectively and
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z is the function defining the value corresponding to the fracM AC A area. The value of
the function is obtained from the standard normal distribution table. p is average while o
is the standard deviation of the M AC A distribution.

e

B o P oy ]

lg(w,n,m)

Figure 6.11: Gaussian(Normal) Probability Distribution Function

From relation 6.15, it is quite clear that the value of ) is much more than the mean
. We illustrate the calculation for n = 40 at stable point 22. The mean p and standard
deviation (o) are 14.20 & 3.25 respectively and fracM ACA = 3.8 x 1070, Therefore, the
value of Y will be

Y—pu

g

=2(3.8 x1071%) =6.2 (6.16)

Consequently, the value of Y is 34. Hence EO(P(1,n,m)) = n?’él which is roughly equal to

om

the experimental observation.
Multiple MACA - Noise Recovery Capacity

The experimental results of noise recovery capacity of systems developed through the
use of Multiple M AC A is illustrated through analysis of Fig. 6.12. The Fig. 6.12 shows a
typical representative experimental result. The pattern width (n = 40) and the system is
trained with k = 22 patterns.

The line diagram 1 shows the hamming distribution of the pattern set P. The distribution
is enumerated by taking 300 random patterns (Pijpcom) of hamming distance d for each (d =
1, 2, --- 40) from any of the random patterns P;, € P and seen whether H D(Pjpncom, Pi) <
HD(Pincom, Pj) szl & j # i. The graph shows the percentage of case for which it follows
the relation. It is seen that for hamming distance = 6, it always follow the relation beyond
which it begins to slowly degenerate. At Hamming Distance 18, none of the pattern Pjpcom
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Figure 6.12: Experimental Results of Noise Accommodating Capacity of MACA(n = 40)
for Multiple MAC A

is close to the pivot point P; from which it is generated.

Through evolution we have obtained 20 different M AC A each classifying the input pat-
tern set P. The line diagram 4 shows the noise recovery capability of a single M ACA. The
line diagram 3 shows the error recovery capacity of the system developed with 6 M ACA.
The value 6 is taken because in Fig. 6.5 we have shown theoretically that 6 M ACA is
needed to recover the 1-bit noise. However, in this case we see that we can fully recover
3-bits of noise as well as we can recover most of the noise upto 8 bits. Moreover, the
error recovery capacity doesn’t degenerate as sharply as has been theoretically predicted.
However, the rate of degeneration is much sharper compared to the behavior exhibited by
single attractor. Around bit 20, the recovery capacity is less than that of single M ACA.
This also shows that the multiple M AC A system exhibit much more accuracy in recover-
ing noise because according to the pattern distribution curve if an a-basin of an M ACA
attracts patterns of more than 18 bit, it is attracting a pattern from a different class.

However, if we think in terms of the error correcting capacity of individual M AC' A which
is much better than theoretical limit, then the capacity enhancement through multiple
MACA is not as good as that predicted by the theoretical limit. This is because the
theoretical formulation has made the assumption that all patterns of a certain weight occurs
uniformly whereas in actual experimentation there are more repetition of some patterns than
others. The sharpness in fall has mellowed down due to the same reason.

The non-uniformity of pattern distribution of a particular weight gets more reflected as
we increase the number of M AC A to design the system. The rate of improvement in error
recovery capacity also slows down as we introduce more and more M ACA to the system.
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6.5 MACA - As a Classifier

An n-bit MACA with k-attractors can be viewed as a natural classifier. It classifies a
given set of patterns into k-distinct classes, each class containing the set of states in the
attractor basin.

To enhance the classification accuracy of the machine, most of the works [8, 48, 43] have
employed M AC A to classify patterns into two classes (say I & IT). Multi-Class Classifier
is built by recursively employing the concept of two class classifier. We have also employed
the same strategy. MACA based two class classifier: The design of the M AC A based
Classifier for two pattern sets P; and P» should ensure that elements of one class (say P;)
are covered by a set of attractor basins that do not include any member from the class Ps.
Any two patterns a € P; and b € P, should fall in different attractor basins. According
to Theorem ??, the pattern derived out of modulo-2 sum of a and b (a & b) should lie in a
non-zero attractor basin. Let X be a set formed from modulo-2 sum of each member of P;
with each member of P, that is, X = {z; | z; = (a; € P1) @ (b; € P») V,; ;}. Therefore, all
members of X should fall in non-zero basin. This implies that the following set of equations
should be satisfied.

T X #0 (6.17)

where T is a valid M AC A to be employed for designing two class classifier and d (Definition
5.1) is the depth of the M AC A. But none of the earlier works have progressed beyond this
point, that is none have proposed any efficient algorithm on how to find the T" Matrix
satisfying equation 6.17.

The strategy is illustrated with an example.

Example 6.1 Let us have two § bit pattern sets Py and P, where P, = {P; = 11111,
Py = 01111,P13 = 11010} and Py = {Py; = 01000, Py = 01010} respectively. In order to
classify these two pattern sets into two distinct classes - Class I and I1 respectively, we have

to design an M ACA such that the patterns of each class falls in distinct attractor basins of
an MACA.

The MACA of Fig. 5.2(a) is able to classify them into distinct attractor basins where
Class I (C1) is represented by one set of basins with attractors as {00001, 10001 & 10000},
while Class IT (Cy) represented by the 4™ basins with {00000} as the attractor.

When a CA is loaded with an input pattern (say x = 00010) and is allowed to run
in autonomous mode for a number of cycles equal to the depth of C A, it travels through a
number of states and ultimately reaches an attractor state. The attractor to which the input
pattern should reach depends on the average Hamming Distance (H D) of the pattern from
the elements of two classes as illustrated next. The theoretical foundation of this observation
is noted in Section IV.

The Hamming Distance (HD) between x and Class I = (HD(z, C})) is measured by
averaging the HD with each member of the class. For example, (HD(x, P;1) = 4 , HD(x,
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Pyy) = 8, HD(z, Pi13) = 2). Hence average (HD(z, C1)) = 44’% = 3. Similarly, (HD(z,
Cy)) = 1.5.

Therefore, (HD(x, C2)) < (HD(x, C1)). Hence, the input pattern z = (00010) settles to
attractor 00000 - the attractor representing Class II.

For an ideal classifier, to distinguish between two classes, we would need one bit. The
classifier of Fig 5.2(b) requires four attractors hence two bits to distinguish between two
classes which is a memory overhead of the design.

[Note: The two class classifier identifies the class of an element in a constant time (d)
- d is the depth of M ACA. If we didn’t have a classifier and yet wanted a constant time
identification, we would have needed a hash table of size 2", n being the width of the
pattern. This is impractical even for a moderate value of n. Further, there would not be
any proper formulation of the method of prediction of noisy patterns.

Design of Multi-class Classifier: A two class classifier can be viewed as a single stage
classifier. For designing a multi-class classifier, this scheme of single stage classification will
be repetitively employed leading to a multi-stage classifier consisting of multiple C' A, each
CA corresponds to a single stage (Fig.6.13).

Hence, in the rest of the paper, we concentrate on designing an efficient two class clas-
sifier. The exponential complexity of the design satisfying relation 6.17 has provided the
motivation to fall back on the evolutionary program of Genetic Algorithm.

T0

S={S1, 82, %3, 4

TL——=| SR S8 | =— T2

Figure 6.13: M AC' A based multi-class classifier
Note : A leaf node represents a class in input set S = {51,52,53,51}

For an ideal classifier, to distinguish between two classes, we would need one bit. The
classifier of Fig 7?7 requires two bits to distinguish between two classes which is a memory
overhead of the design. A k-attractor two class classifier needs loga(k) bits.]

The above discussions set our design perspective. In order to reduce the memory over-
head, the design will strive to find an M AC A that would have least number of attractor
basins. That is, to classify pattern set into two classes, we should ideally find an M AC A
with two attractor basins - each basin having the members of one specific class. Even if
this ideal situation is not attained, the algorithm should design an M AC' A based classifier
having minimum number of attractor basins - while one subset of basins accommodates the
elements of one class, the remaining subset houses the elements of the other class.

116



6.6 Evolving MACA

6.6.1 Fitness function

The fitness F(MACA) of a particular M ACA in a population is determined by the
weighted mean of two factors - F; and F». While F; reflects satisfiability of relation 6.17
in Section 7.2 by the currently evolved M AC A (T Matrix), the number of attractors of the
M AC A gets reflected in the factor Fy.

Determination of Fy : X, as noted in relation 6.17 of Section 7.2, is the set formed
from modulo-2 summation of each pattern of P; with each pattern of P,. With 30 randomly
chosen patterns from X, we test fraction of X satisfying the T9X # 0 Relation 6.17 in
Section . The fitness criteria F; of the M AC A is determined by the percentage of patterns
satisfying the Relation 6.17. For example, if 15 out of 30 chosen patterns from X satisfies
relation 6.17, F; = 0.5.

Determination of Fo : The factor F5 varies inversely with the number of attractors
required to classify the pattern set. It has been defined as -

Fy=1—[(m—1)/n] (6.18)

where 2™ denotes the number of attractor basins for the n cell CA, and [ is set to 1-8.

Subsequent to exhaustive experimentation, we have set the relative weightage of F; and
F as follows.

F(MACA) = 8-F, +.2-F, (6.19)

The experimental results reported in Section 6.7 confirms that the relation 6.18 and 7.6,
although evolved empirically, provides the direction for fast GA evolution to arrive at the
desired M AC A.

The capability of the evolved M ACA to classify a pattern with noise is next analyzed
along with the characterization of the Attractor Basins of the evolved M AC A.

6.7 Performance Analysis of M ACA based Classifier

The characterization of M AC A basins reported in the previous section has established
the fact that a basin has patterns which are close to each other in terms of hamming
distance. Hence patterns satisfying this criterion have high probability of getting classified
into minimum number of attractors. Patterns not covered by the training sets, but satisfying
the criteria, will also have high probability of being predicted as the right class. Moreover,
the efficiency of classifying two classes of patterns in distinct attractor basins increases if
the average distance between them is high. The classifier is assumed to be designed to
classify n-bit patterns into k classes.

In the above context, to characterize the data sets to be classified in two classes, we
introduce two terms Dy, and dpqz. Dpin is the minimum hamming distance (inter-cluster
distance) between two patterns P; € C; and P; € Cs in two classes C; & C» respectively;
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while d,,4; is the maximum distance (intra-cluster distance) between two patterns within a

class.
6.7.1 Distribution of Patterns

For the sake of convenience of performance analysis, the distributions of patterns in two
classes are assumed as shown in Fig 6.14. Each pair of sets on whom classifiers are run are
characterized by the curves (a—a’, b—b', c—c', d—d'). The ordinate of the curves represents
the number of pairs of patterns having the specified hamming distance. For example, the
point A (on the curve for a) has y number of pairs of patterns which are at hamming
distance x. The abscissa has been plotted in both direction, from left to right for Class I
while from right to left for Class II. The curves of Class I & II overlap if Dy < dmaz- An
ideal distribution a — a’ is represented by the continuous line without any overlap of two
classes.

Distribution of Patterns
Distribution of Patterns

Figure 6.14: Distribution of patterns in class 1 and class 2
(HD denotes Hamming Distance)

6.7.2 Experimental Setup

In each of the above distribution various values of n are taken. For each value of n, 2000
patterns are taken for each class. Out of this set, 1000 patterns are taken from each class
to build up the classification model. The rest 1000 patterns are used to test the prediction
accuracy of the model. For each value of n, 10 different pairs of pattern sets are built. The
Genetic Algorithm (GA) has been evolved for 100 generations.

6.7.3 Experimental Results

The Tables 6.4- 6.6 represent the classification efficiency for the data set a —a’, b — V',
¢ — c. Column II represents the different values of m for which GA finds the best possible
solution; 2™ is the number of attractor basins of the M AC A designed as the classifier for
the given pattern set. Column III and IV represent the classification efficiency of training
and test data set respectively. Classification efficiency of training set is the percentage of
patterns which can be classified in different attractors while that of test data implies the
percentage of data which can be correctly predicted. The classifier predicts the class of a
pattern in constant time. The best result of classification efficiency corresponding to each
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m in the final generation is taken. This is averaged over for the 10 different pairs of pattern
set taken for each value of n. The average is shown in Column II & IIL

6.7.4 Analysis of Classifier Performance

The experiment, noted below, validate the theoretical foundations laid in the earlier
sections.

Expt 1: Study of GA Evolution - The GA starts with various values of m. The GA
parameters, as reported in Section 8.4.3 and 7.4.2, are so formulated that it soon begins to
get concentrated in certain zone of values. The genetic algorithm is allowed to evolve for
50 generations. In each case 80% of the population in the final solution assumes the two or
three values of m noted in Column I1.

This shows that our scheme of GA is able to hit the correct zone of classification, the
values of m where classification efficiency and design overhead is optimum is reported. It has
been tested that even if we increase the value of m than the ones reported, the classification

performance improves at a very slow gradient.

Table 6.4: Experiment to find out the value of m (Ideal Distribution(a — a'))

Size | Value | Performance (%)
(n) | of m | Training | Testing
20 2 85.40 85.60

3 96.10 94.35
40 3 98.20 97.75
4 98.35 98.85
60 3 98.55 97.75
4 98.50 98.00
80 3 98.81 98.65
4 99.15 99.20
5 99.75 99.70
100 3 99.65 99.25
4 99.67 99.35

Expt 2. Experiment done on ideal set a —a’ and b— b with low overlap - It shows
that classification accuracy is above 98% in most of the cases of the ideal situation (curve a
- a'). Moreover, the prediction accuracy is also almost equal to the classification accuracy.
In fact, it is better in some of the cases. The entire experiment is repeated with less than
ideal sets characterized by the curve b — b’. There is some overlapping area between the
data set of two classes. Table 6.5 represents results on overlapping data sets. It is seen that
even with the relaxation of conditions, the classification accuracy doesn’t deteriorate much.

This validates the theoretical foundation that M AC A basins form natural clusters.

Expt 3: Experiment on data set ¢ — ¢ - With increasing overlap of data set (curve
¢ — (), classification efficiency of test data set falls below that of training data set. Table
6.6 shows the result. But even in this case the classification efficiency and the number of
attractors required to represent the data set doesn’t deteriorate appreciably.

In the theoretical analysis, it has been shown that the expected behavior of MACA
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Table 6.5: Experiment to find out the value of m (Curve b — b')

Size | Value | Performance (%)
(n) | of m | Training | Testing
20 2 83.20 82.00
3 92.20 93.35
40 3 97.60 96.80
4 97.20 97.45
60 3 96.90 96.05
4 96.90 96.05
80 3 98.70 97.70
4 98.70 97.70
5 98.30 97.30
100 3 98.30 97.45
4 98.40 97.30
5 97.65 97.55

Table 6.6: Experiment to find out the value of m (Curve ¢ — )
Size | Value | Performance (%)

(n) | of m | Training | Testing
20 2 81.20 72.40
4 92.20 83.35
40 2 77.60 66.80
4 94.28 87.45
60 3 86.98 77.55
4 91.90 86.60
80 3 81.70 76.35
4 88.79 87.30
5 91.65 87.10
100 3 86.40 77.95
4 83.10 80.35
5 93.40 91.50

is that its basin forms natural clusters. But since it is a statistical behavior, there are
some (small amount) of M ACA whose basins doesn’t conform with the condition. In
view of availability of such M ACAs, the results for data set ¢ — ¢’ do not deteriorate to
an appreciable extent. Naturally, the prediction capacity deteriorates as there is no such
metric to bind each individual class of the data set.

Expt 4a: Experiment with data sets having implicit clusters - Even if the data set
between two classes may have a fair amount of overlap (d —d'), the classifier functions well
if the classes have implicit clusters among them. The following experiment is performed to
validate this observation.

To perform this experiment, we first randomly generate four pivot patterns which are
separated by a fixed hamming distance (say Dyin). Then around each pivot, we randomly
generate a cluster of p number of patterns within d;,q, distance (maximum hamming dis-
tance between a pivot and an element in the associated cluster); where dyar <= Dpin /2.
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e 9 o

Figure 6.15: Clusters Detection by two-class classifier

Table 6.7: Clusters Detection by MACA based Classifier,
n = 100, p = 2000, Dyin = 20, dppaz = 5

Combi”™ Value | Performance (%)
of Clusters of m | Training | Testing

A& B, C& D 2 95.90 92.30
4 99.82 97.10

A& C,B& D 2 94.50 92.30
4 98.70 96.62

A& D,B& C 2 94.60 90.40
4 99.20 96.82

The Fig 6.15 represents four pivots A, B, C, D which are separated by hamming
distance Dy, - Around each pivot, we generate some patterns within d;,,, distance. Four
clusters are generated in the process. Then combining two clusters each, we generate two
classes. For example, the data set of clusters A and B is represented by Classl; whereas
Class2 represents the data set of clusters C and D. When two clusters together form an
individual class, the elements of the new class do not maintain (Dyy,ip, dpmez) relationship -
a variant of the form denoted by the curve (d — d’) in Fig 6.14.

It is seen that the M ACA based classifier perform classification task very well even
though the distribution of patterns of each class is not ideal. The Table 6.7 reports the de-
tail result of cluster detection. The Column III and IV depict the classification efficiency
of the training and testing data set respectively at different values of m.

Expt 4b: The last experiment is subjected to further study. The contents of each attractor
basins are probed. For example, the first row in Table 6.7 has employed 22 attractors to
classify the patterns. Clusters A & B form a class (Class I) and occupies two attractors
while Cluster C & D occupies the other two attractors. In the two attractors ( say a &
b) which Cluster A & B occupy, it is found that 99% of patterns of Cluster A occupies
attractor a, while 99% of patterns of Cluster B occupies the attractor b. It is similar in case
of the class formed from C and D.

This is in line with the theoretical formulation that each attractor basin generates a
cluster of patterns having lesser hamming distance. Thus the M ACA in this case have
been able to identify clusters within a class and have put them in separate basins.

The experimental observations illustrates beyond doubt that the classifier proposed is
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very robust one and has the capacity to execute a wide variety of practical classification
task.

6.8 Conclusion

The paper presents the detailed design and analysis of Cellular Automata (C'A) based
Pattern Classification technique. Theoretical formulation supported with experimental re-
sults have established the M AC A (Multiple Attractor CA) as an efficient machine to solve
the problems of real life pattern classification.
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Chapter 7

An Evolutionary Design of
Pseudo-Random Test Pattern
Generator Without Prohibited
Pattern Set (PPS)

7.1 Introduction

The pseudo-random pattern generators (PRPGs) are widely used in VLST circuits as
the efficient test pattern generators [?][?]. The PRPG generates a large volume of patterns
to test the different CUTs (Circuit under Test) of a VLSI chip that may be accessed
through a full or partial scan path. However, there are applications where some patterns
are declared prohibited to a CUT'. If the CUT is subjected to a pattern of the prohibited
pattern set (PPS), the CUT may be placed to an undesirable state and even may get
damaged. The manufacturers do face the problem while testing the chip equipped with
PRPG.

The prohibited pattern set (PPS) can be of two different types.

Type I: The first one are random patterns regarding which the test designer has gathered
information in the process of testing. These patterns are random in nature and do not
display any co-relation whatsoever. The test engineer doesn’t have any idea why those
patterns are creating problem. Consequently, the cardinality of the prohibited pattern set
is small in this case.

Type II : The second type of PPS are those formed out of some prohibited functions (PF's)
on a subset of primary input (PIs). Test designer identifies the functions from analysis of
the circuit. Generally, a few number of PIs are involved in PF. However, the prohibited
function (PF) produces PPS of cardinality much larger than that of Type I.

The design of a CA based test pattern generator (T'PG) enriched to generate large
sequence of patterns without any pattern from the given PPS has been first proposed in [?].
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This paper refines the earlier work with specific emphasis on real life problems encountered
by test engineers in a typical semi conductor industry. The design methodology proposed
in the paper ensures PPS free T PG considering both the Types, I and II. The Type II
PPS, due to some prohibited function, was not considered in [?]. Moreover, the solution in
the current paper is based on a novel scheme which combines the guided search technique
provided by Genetic Algorithm (GA) and the analytical framework of vector subspaces
generated by a Cellular Automata (C'A). The class of C'A referred to as the group C'A [?]
are used for the design of T PG.

The proposed methodology can also be implemented for the LF SR (linear feedback shift
register) based TPG. However, the modular, local neighborhood cascadable structure of
cellular automata (C'A) suits ideally for VLST applications [?].

The next section briefly introduces the C'A preliminaries. Section III presents the T'PG
design scheme followed by G A based evolution strategy of the proposed design in Section
1V. The experimental results are subsequently reported in Section V which clearly establish
the proposed design of T'PG as the most desirable solution to address the real problem
semiconductor industries encounter.

7.2 Cellular Automata Preliminaries

This section presents the preliminaries of Cellular Automata (C'A) theory that are nec-
essary to follow the proposed design of TPG without prohibited pattern set (PPS). The
detailed theoretical foundation has been reported in the book [?]. A Cellular Automaton
(CA) can be viewed as an autonomous finite state machine (F'SM) consisting of a num-

ber of cells. The next state of a cell depends on the present states of its neighbors. In a

3-neighborhood dependency, the next state g/

2
on itself and on its two neighbors (left and right). It is denoted as

t+1
= flad 1, q,d0),

where ¢! represents the state of the i*" cell at #'* instant of time and ‘f’ is the next state

of a cell is assumed to be dependent only

function, referred to as the rule of the automata. The decimal equivalent of the next state
function, as introduced by Wolfram [?], is the rule number of the C A cell. For example,
Rule 90 : ¢;(t +1) = gi—1(t) ® qiy1(t)
Rule 150 : g;(t +1) = ¢i—1(t) ® ¢;(t) © qit1 ()
where @ (XOR function) denotes modulo-2 addition. Since fis a function of 3 variables,
there are 22° i.e., 256 possible next state functions (rules) for a C'A cell. Out of 256 rules
there are 7 rules with XOR logic. The C A employing only the X OR rule is referred to as
Linear CA [?]. In the present work we will concentrate on linear C' A.

7.2.1 Characterization of Linear C' A

A linear C'A is represented by an n x n characteristic matrix 7', where
1, if the next state of the i*" cell depends

on the present state of the j* cell

i, 3 =12, ..., n
0, otherwise.

T,'j =
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If we restrict to the 3-neighborhood dependency, then T'i,j] can have non zero values
only for j = (1 — 1), i, and (i + 1). Thus, T becomes a tri-diagonal matrix. The state
Si(x) of an n-cell CA at t** instant of time is a string of n binary symbols. The next state
(pattern) Sii1(z) of the C'A is given by :

St+1 (.’II) = TSt(.’,C)

The CA can also be represented by a polynomial referred to as the characteristic poly-
nomial of the C' A. The following subsection provides some of the important issues related
to the polynomial representation of C'A which are relevant for the current design.

7.2.2 Polynomial Representation

The polynomial p(z) of which the characteristic matrix 7' is a root is referred to as the
characteristic polynomial of the CA. The characteristic polynomial ¢(z) is derived from
T by computing det(T + Iz). The ¢(z) comprises of invariant polynomials ¢;(x)", where
¢i(z) is irreducible. The polynomials ¢;(z)™, invariant to the linear operator 7', are referred
to as elementary divisors. The elementary divisors and characteristic polynomial maintain
the following properties. These are relevant for the proposed T'PG design.

Property 1: Different characteristic polynomials produce different vector subspace.

Property 2: Multiple T's (characteristic matrices) can have the same characteristic poly-
nomial [?].

Property 3 : Elementary divisors arranged in different orders produce different vector
subspaces.

If all the states in the state transition diagram of a C'A lie in some cycles, it is a group
C A whereas a non-group C'A state transition graph has both cyclic and non-cyclic states.
In this paper we have employed group C'A. The characteristic polynomial as well as the
characteristic matrix of a C'A are used to analyze the state transition behavior of the C'A.

7.2.3 Properties of Group CA

All the states of a group CA lie on some cycles. For a group CA, the T matrix is
nonsingular - that is, the det[T] # 0. The group C' A can be classified as maximal-length
and non-maximal length CA. The maximal length CA (Fig.7.1) is the special class of
group C'A having a cycle of length 2" — 1 with all non-zero states, where n is the number
of cells in the CA. Maximum length C'A generates excellent pseudo-random sequence [?].
The characteristic polynomial of an n-cell maximal length C A is the n'?-degree primitive
polynomial.

For a non-maximal length CA (T} of Fig.7.2), the characteristic polynomial gets factored
to invariant polynomials (elementary divisors). The characteristic polynomial ¢(z) of such
a CA can be represented as

$(z) = di1(z)™ o)™ - - - dx (z)"F.
Each of the elementary divisors ¢;(z)™ forms cyclic subspace - which leads to the generation
of multiple cycles in a group C' A. The entire state space V' of a non-maximal length group
CA is the direct sum
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V:II —I—Ig—l—---—l—IK,
where I; is the cyclic subspace generated by the divisor ¢;(x)™.

The proposed design of T PG employs non-maximal length group CA. An example non-
maximal length group C'A is shown in Fig.7.2 with its T' matrix (Fig.7.2a) and its four
cyclic subspaces(Fig.7.2b). The subsequent discussions report the enumeration of cyclic
sub-spaces of a CA and the synthesis of C' A with desired specifications.

Ti= 1100

é 2 i (1) Characterstics Polynorial X'tx 41

001144

3T - Matrix of aMaximal - Length Group CA

) The Sate -Transtion Diagram of aMaximal-length Group CA

Figure 7.1: A 4-cell maximal length group C A

7.2.4 Enumerating Cycle Structure of a CA

The cyclic subspace divides the entire state space of the group C'A into discrete cycles
(cycles LILIII, and IV of Fig.7.2(b)). The method of enumerating the cycle structure for
linear C A are detailed through the following theorems. The proofs of the theorems are
reported in [?].

Theorem 7.1 A CA of size n with characteristic and minimal polynomial ¢(z), where
¢(z) is irreducible, has cycle structure [1(1), p(k) J; where u x k= 2" — 1. p is referred to
as cyclic component and k is the cycle length of each cyclic component.

Theorem 7.2 A CA with characteristic and minimal polynomial ¢(z)!, where $(x) is ir-
reducible, has cycle structure [1(1), p1 (k) - - - pm (2™ - k)];

where 21 < t < 2™ and p; = 270=D(27 —1)/2" - k. k is the primary period, r is the
degree of ¢;(x) and t refers to the power to which polynomial ¢;(x) is raised.

Theorem 7.3 If a C A with characteristic polynomial ¢1(z) and ¢o(x) has the cycle struc-
tures Ay and Ay respectively, where Ay = [1(1), jn(k), po(2-k), - (20 - k) - - - i (27 - k)]
and Ay = [1(1), i (k), fo(2- k), - fis (28 - k) - - - i (2™ - k)], then

the cycle structure of the CA with characteristic polynomial ¢(z) = ¢1(x) - p2(x) is the
product of each i term of Ay with j** term of Ag, i = 1,2,---,n1, j = 1,2, --,n9. That is,
the product of ﬂz(ic) and ﬁj(ic) produces cyclic component p of cycle length k [?], where

= ﬂi./]j.gcd(Qiiﬁinc) and
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k = lem(2'k, 27k)

7.2.5 Synthesis of Group CA

This subsection details the technique of synthesizing a group C A from a given charac-
teristic polynomial ¢(z) = ¢1(x)™ - ()™ - - - ()X, where each ¢;(z) is an irreducible
polynomial. The following three theorems provide the framework for synthesis scheme [?][?]
reported in this section.

Theorem 7.4 Corresponding to each irreducible polynomial ¢;(x) with degree p, a linear
CA (tri-diagonal [T;],xp matriz) can be synthesized.

Theorem 7.5 Given a tri-diagonal matriz T; with the characteristic polynomial ¢;(x), the

matric
T 1
Tin)=| | 1
0 0 T;

Mg XNg

has both characteristic and minimal polynomials as fi(z) = ¢i(x)™.

Theorem 7.6 If the matrices T;, i=1,2,3,---, K, with characteristic polynomial f;(x) are
arranged in block diagonal form which results in

Tl (nl) 0
T — 0 TQ(TLQ) 0

0 0 TK(TLK)

then ¢(z) = f1(x) - fa(z) - - - fx () is the characteristic polynomial of the resultant matriz
T.

We next outline the synthesis algorithm for group C'A.

Algorithm 7.1 Synthesis of Group CA

Input: Characteristic Polynomial ¢(x) = ¢1(z)™ - po2(x)™2 - - - dr(z)"K.

Output:  Tri-diagonal matriz (CA).

1. For each ¢;(x) generate T; matriz (Theorem 7.4).

2. Generate T;(n;) corresponding to ¢;(x)™ (Theorem 7.5).

3. Generate T matriz corresponding to ¢(x) by combining the T'(n;)s (Theorem 7.6).

With this theoretical background we now propose our T'PG design scheme employing
non-maximal length group C'A.
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7.3 TPG Design Scheme

The patterns generated from a maximal length C'A display better "randomness” quality
and hence used as Pseudo Random Pattern Generators (PRPGs) for testing of VLSI
circuits. However, the n-cell (n > 16) non-maximal length group C' A having cycle length
greater than 2" ! doesn’t suffer in respect of randomness qualities and also can be used as
the T PG for a CUT. This observation has been validated through exhaustive experimental
results reported in Section V.

In the proposed design, the state space of a CA considered for TPG is divided into
multiple cycles. At least one of the cycles has large cycle length, fairly close to the maximal
cycle length (2" — 1). The large cycle is designated to generate the pseudo-random test
patterns free from the given PPS.

The proposed design, as noted in Section 7.1, takes into consideration of two types of
PPS. Type I PPS with random vectors (patterns). For such a case, the cardinality of
PPS is very small. Type II PPS displaying some prohibited function on a subset of PI's
has larger cardinality. The Type [ is typically prevalent in circuits with small number of
P1Is, whereas the second case is applicable for a circuit having large number of PIs.

We introduce the following terminologies to designate the cycles of a non-maximal length
group C'A to be designed as a T PG.

Target Cycle (TC): The cycle of largest length generated by the C A and used for gener-
ating test patterns.

Redundant Cycle (RC): The cycles other than T'C - these are redundant in the sense
that these are not used for generation of pseudo random test patterns.

Design Objectives: The basic design objectives are:

e Cover the PPS as far as possible with RC's;
e Maximum length of T'C should be free from PPS not covered by RC's; and

e The patterns generated by the T'C' without the PPS should display good pseudo-
random qualities.

The following observations provide the guideline for the proposed design.

e If the number of primary inputs (PIs) n of a CUT is large, the number of test patterns
needed to test the circuit is then comparatively much lesser than 2™ — 1, the total
number of patterns generated by the n-cell maximal length C'A.

e In small circuits (less number of PIs), maximal space of the Target Cycle (T'C) should
be free from PPS so that the number of test patterns is close to the maximal length
(2" —1).

e For a circuit with large number PIs, a large space, but small compared to the maximal
length, should be free from PPS, so that it can be used for testing the CUT.
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Although a small percentage of maximal length is required to test the CUT, the T'C
should be of length close to maximal length, as far as possible, to provide good pseudo-
random patterns.

Let us consider the 7-cell group C' A of Fig.7.2 with characteristic matrix [11]7x7 (Fig.7.2(a)).
Its characteristic polynomial 27 +2°+2%+2%+1 can be factored as (z*+z+1) and (z®+z+1).
So as per the theory noted in the theorems 7.1 -7.3, the states generated by the C' A are
divided into three small cycles of length 1, 7 & 15 and only one large cycle of length 105
(Fig.7.2(b)). The CA (Fig.7.2(a)) can be selected as the desired TPG for a CUT with 7
PIs for some given set of prohibited patterns either supplied in the form of random PPS
(Type I) or in the form of a prohibited function (PF') (Type II).

Type I : Let us assume that the PPS of the CUT contains 10 prohibited patterns
as shown in Fig.7.2(a). Out of the given PPS, the cycle II (length = 7) contains 3-
prohibited patterns PPS;={0110100, 1101101, 1011001}, whereas the prohibited patterns
PPSy; = {0000110, 0000010, 0001001, 0000111, 0001111} fall in cycle III (length = 15).
The rest 2 prohibited patterns {0010001, 0100100} covered by the cycle IV are separated by
a distance of 10 time steps - that is 77°(0010001)* = (0100100)¢. ( ¢ denotes the transpose
of the vector). To avoid these two prohibited patterns, the C'A is loaded with 0100100
and can run for L=94 time steps to generate test pattern sequence starting from 1111110 -
that is, the state following 0100100. In effect, the group CA (71) with 0100100 as the seed
is a desired T PG, which avoids generation of the PPS while generating pseudo random
patterns of length 94 which is close to maximal length - approximately 75% of maximal
length 127.
{pps} = oooo110
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a) Prohibited pattern set and T matrix of the CA
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Figure 7.2: PRPG without the Prohibited Patterns

Type 2: For this illustration let the prohibited pattern set is given in the form of patterns
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satisfying a prohibited function (PF') on PIs marked as a,b,c- - - g. For example, let out
of the 7 PIs of the CUT three Pls - a,b, and c¢ are associated with the given prohibited
function defined as abc + abc = 1. So the number of prohibited patterns resulted from the
PF is 2 x 2* = 32. Out of the Target Cycle (T'C) we should generate a pattern sequence
of sufficient length (k) without encountering the PPS. For circuits with large number of
P1ls, the number of test patterns k is small compared to the length of T'C.

The task of designing the T PG for a CUT without the PPS is a computationally hard
partition problem. For Type I PPS, we reported some heuristic in [?]. However, on
detailed analysis we came to the conclusion that design of efficient heuristics to realize the
design objectives (noted in the initial part of Section III) is extremely difficult. So, we
employ genetic algorithm to evolve the desired C'A satisfying the design objectives. The
next section reports an efficient scheme for fast convergence of GA evolution leading to the
desired T PG.

7.4 Evolution of Group CA Based TPG

The basic structure of GA encodes a solution in bit string format referred to as chromo-
some. It evolves the successive solutions according to its fitness. For the current application,
the evolved solution is a group C' A and the fitness of the solution depends on its capability
to meet the design objectives specified as a set of constraints for GA evolution.

The following subsections report the technique to encode a solution (chromosome) and
the formation of fitness function for the proposed evolution process. Subsequent subsec-
tions report the scheme for implementation of the three major functions of GA - random
generation of Initial Population, Crossover, and Mutation, as developed in the current G A
formulation.

7.4.1 Pseudo-Chromosome

The pseudo-chromosome is a string of n symbols representing the C'A. It gives a sem-
blance of the chromosome and hence termed as pseudo-chromosome format. The structure
represents a group CA with respect to the arrangement of the cyclic subspace. In this
format, the representation of each elementary divisor ¢;(z)™ of a CA with characteristic
polynomial ¢(z) is done by R; number of cells. The value of R; can be derived, following
the theorems 7.1 & 7.2, as

1092(Hi X k; + 1) X n; = R; (71)

where p; is the cyclic component and k; is the cycle length of ¢;(x). The first cell contains
the elementary triplet < ju;, ki, n; >. For example, the ¢;(z)=z*+ 23+ 22+ z+1 is encoded
as [< 3,5,1 >, %,%,x|. The significance of * symbol is discussed in Subsection C.

The pseudo-chromosome format is illustrated in Fig.7.8 for the group C'A having its
characteristic polynomial ¢= (z* + 2% + 22 +z+1)- (22 + 2+ 1)%- (2 + = +1). It has been
explained in details in Subsection C of this section.
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7.4.2 Fitness Function

The fitness function of the evolution scheme differs for the two types (Type I and Type
II) of prohibited patterns defined in the earlier sections. The following discussions provide
the framework of the formation of fitness function for each of the cases.

Fitness function for Type 1: The fitness F of a group C A in a population is deter-
mined by weighted mean of the following factors.

e F) : The amount of PPS free test patterns available.

e Fy : The length of the Target Cycle (T'C).

Calculation of Fy : The ideal situation is the total space of T'C' is available for generation of
test patterns (maximum possible value is 2" — 1 for an n-cell CA). The fitness deteriorates
while the available space goes down. Let k; be the length of the space available. Then

Fi =k /(2" 1) (7.2)

Calculation of F> : As already mentioned, the maximum length C'A is an excellent pseudo
random generator. So the best situation would be if the T'C' is equal to the maximal length
cycle. Let k2 be the actual length of the Target Cycle (T'C) of a population (CA), then

Fy = ko /(2" —1) (7.3)

Subsequent to exhaustive experimentation, we have set the relative weightage of F; &
F5 and the fitness function is fixed as follows:

F=085-F +0.15-F, (7.4)

Fitness function for Type 2: In case of prohibited function the objective is - rather
than finding the maximum available free space, find a free space of size (say) k as the
length of T'C for such cases is very large. A typical value of k is assumed to be greater than
1,00,000. The fitness depends upon the two factors F; : The amount of available space as
a factor of k and Fy : the length of the target cycle (T'C).

Calculation of Fy: To find the available space, we perform a non-deterministic test. We
generate randomly 10 seeds (.S;) and run the C'A for length p; (< k) until and unless we
encounter a prohibited pattern. The fitness function is

Fy = Vimaz(p;/k) (7.5)

Calculation of Fy: It is same as defined in Relation 7.3

The relative weightage of F|, F, are set as follows:

F=0.85-F +0.15 - F, (7.6)
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7.4.3 Generation of Initial Population

To form the initial population, it must be ensured that the each solution, randomly
generated, is an n-cell group C'A. The elementary divisor form of a group CA is ¢1(z)™ -
do(z)™2 - - - g (z)™X - that is, the group C A has K elementary divisors each of which forms
cyclic group. The random generation of a group C A, therefore, implies the generation of

K elementary divisors. To implement this, the following steps are executed.

e Randomly generate the value of K.

e Randomly generate the degree (R;) of each elementary divisor, that is degree of
¢i(x)". Therefore, Ry + Ry + - -+ + Rg = n.

¢ Randomly generate the degree (r;) of each irreducible polynomial ¢;(x) following the
relation r; X n; = R;, where n; is the power to which it is raised.

e Randomly generate the cycle structure of each irreducible polynomial ¢;(z). The
cycle structure according to Theorem 7.1 will be [1(1), u;(k;)], where p; x k; = 2" —
1. Therefore, to determine the cycle structure, randomly factor 2 — 1 into two
components u; and k; respectively.

At this point, corresponding to each elementary divisor we have a elementary triplet
< i, ki,n; > representing cyclic component, cycle length of ¢;(x) and the power to
which ¢;(z) is raised.

e The polynomial ¢;(z) corresponding the cycle structure [1(1), u;(k;)] is enumerated
as noted in [?].

e The characteristic polynomial ¢(x) is determined once all the elementary divisors are
enumerated.

e The C'A corresponding to ¢(z) is synthesized using Algorithm 7.1.

e The cycle structure of the C A is then enumerated (Theorem 7.1-7.8) and the length
of the Target Cycle (T'C) is determined.

Fig.7.3 shows a C'A that is generated randomly. For this example,

e The value of n = 11 and K=3.
e The degree (R;) of elementary divisors are 4, 4, and 3 respectively.

e The degree (r;)s of the irreducible polynomials are 4, 2 and 3 while the powers(n;s)
to which they raised are 1, 2, and 1 respectively.

e The cycle structures of ¢;(z)s are [1(1),3(5)], [1(1),1(3)] and [1(1),1(7)].
e The polynomials ¢;(z)"s are (z* + 23 + 22 +z + 1), (2> + x4+ 1) and (23 +z + 1)

respectively.
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e The CA synthesized from them is represented by the 7" matrix of Fig.7.3.

e The cycle structure of the CA (T') is shown in Fig.7.3, while the length of the Target
Cycle is 210.

A departure from the conventional form of chromosome representation demands associ-
ated modifications, as introduced below, for the cross-over process of GA.

(o5t [x [x [= [ 252 [= [x [« [ 271 [= [+ ]
(x4+x3+ x2+x+1) (x2+x +1)2 (x3+x + 1)

2
CharameristicF’olynomial:(x4 + x3 + x2+ X +:L).(x2 +Xx +1) .(x3 +x+ 1)

Y Y Y

[ 139 | [101329] [ 1017 ]

J16Go00000
1110000000
10101000000
10010000000
0006010000
0000111000
0006000100
00000011000
00000000601 ¢;
0000000011 1:

\

1(1), 1(3), 3(5).2(6), 1(7), 3(15), 1(21), 6(30), 3(35),2(42), 3(105), 6(210)

Figure 7.3: Group C'A in pseudo-chromosome form

7.4.4 Crossover Algorithm

The crossover algorithm implemented for the present application is similar in nature to
the conventional one with minor modifications as illustrated below. The algorithm takes
two group C'A from the present population (PP) to form the resultant group C A for the
next generation. We implement single point crossover.

Fig.7.4 shows an example of the crossover process. Two group CA CAi, & CAs in
pseudo-chromosome format are shown in Fig.7.4a & Fig.7.4b. The first 6 symbols are taken
from C Ay, while the rest 5 symbols are taken from CAs to form the CA for the next
generation. At the cross over point 6, the resulting CA (CA’) violates (explained below)
the pseudo-chromosome format (positions 6 - 8 encircled in Fig.7./c).

The pseudo-chromosome of ¢(z) is represented by the triplet < u;, ki, n; > followed by
R;—1 * symbols, where R;= logs(1; X k;+1) X ;. In the representation of C A’ (Fig.7.4c), we
have the triplet < 3,5,1 > followed by two *s - that is, R;=3. This violates the basic format
of the pseudo-chromosome, since logs(3 x 5+1) = 4. Hence, the property of group C A is not
maintained for CA’. We compensate the violation by randomly generating an elementary
divisor ¢o(z) of degree 3. For the present example, the cycle structure of ¢o(z) is [1(1),1(7)]
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and the power (ng) of ¢o(x) is 1. Therefore, the new elementary triplet is < 1,7,1 >. The
resultant group C A for the next generation is shown in Fig.7.4d. The formal algorithm for
cross over operation is next noted.

Algorithm 7.2 Algorithm Cross-over

Input: Randomly selected two group CA (CA; & CA,) from present population(PP).

Output: group C' A for the next generation.

Step 1: Randomly generate a number ¢ between 1 & n. ¢ is the cross over point.

Step 2: Take the first ¢ symbols from C'A; and the last (n — ¢) symbols from C' A, and concat to
form CA'.

Step 3: Make the necessary modifications of C A’ at the cross over point to conform with the pseudo-
chromosome format (Section 7.4.1). It generates group C'A for the next generation.

b

Ll . . . . Ll . . LT L o | o

Figure 7.4: An example of cross-over technique

7.4.5 Mutation Algorithm

The mutation algorithm emulates the normal mutation scheme. It makes some minimal
changes in the existing group C A of PP (Present Population) to form a new group C A for
next generation. We employ single point mutation.

In the mutation algorithm, an elementary divisor ¢;(z)™ is replaced with ¢;(z)™ , keeping
the degree as it is. To accomplish this, the < u;, k;j,n; > representing ¢;(z)™ is randomly
changed to < fi;, k;, 7#; > while maintaining the relation [p; X k; + 1] X ng = [fis X ks 4 1] X 7).
Fig.7.5 shows two examples of mutation. In the first case, the elementary triplet changes
from < 3,5,1 > to < 1,15,1 >. The powers of the elementary divisors remain same after
mutation. In the second case, the elementary triplet changes from < 1,3,2 > to < 3,5,1 >
while the power changes from 2 to 1.

The formal mutation algorithm is given below.

Algorithm 7.3 Mutation Algorithm
Input: Randomly select one group C'A of PP.
Output: group C' A for the next generation.
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Step 1: Take the pseudo-chromosome format of the group C A.

Step 2: Randomly select an elementary divisor ¢;(z)™:.

Step 3: Generate an elementary divisor ¢;(z)™ and synthesize T}(#;) corresponding to the elemen-
tary divisor.

Step 4: Replace the existing Tj(n;) with the Tj(7;).

woear [ con | [ o] o] [ o] e [o]]
MoCAZ 351 | 3500 | L7 |

Figure 7.5: An example of mutation technique

Selection, Crossover and Mutation Probabilities: From the study of GA evo-
lutions, we have set the associated parameters to derive population for the next generation
out of PP (Present Population). The population size at each generation is set to 50. The
crossover probability (p.) is set to 0.8, while the probability of mutation (p,) is set as 0.001.
We follow the elitist model to carry forward 10 best solutions for the next generation.

7.5 Experimental Results

This section reports a detailed study on the design of proposed T'PG. The first part of
this section contains the findings of the feasibility study pertaining to this T PG design. The
study is performed with different classes of prohibited patterns and prohibited functions for
a large number of CUTs. Finally, we provide the fault coverage of the proposed T'PG for
ISCAS benchmark circuits.

7.5.1 Feasibility Study

Real life data in respect of PPS for a CUT is proprietary in nature and not usually
available. In the absence of real life data the experiments are conducted with randomly
synthesized data.

The number of prohibited patterns, structure of the prohibited functions (PF's) - that
is, the number of prohibited PIs responsible for the formation of PF and the number of
minterms in the PF affect the success rate of getting the desired TPG for a CUT with n
P1Is. The efficiency of the scheme, proposed, can be evaluated in respect of the percentage
of free space available for test generation, success rate of the design, the randomness quality
of the patterns generated by the T'C!, and the complexity of the design.

The complexity of the design is measured as the number of generations of the evolution

scheme is required to find a T PG for a given PPS. The free space is computed as
# test patterns in TC without PPS % 100
Total no. of 2™ patterns :
The number of prohibitive patterns for a CUT is expected to be very small, it is typically

freespace percent =
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around 15. for experimentation we have considered randomly generated 100 different sets
of PPS for a CUT with n PIs. Then the scheme is employed to arrive at the desired T PG
for each of the sets. The number of times the desired T'PG is resulted out of those 100
trials is the success rate of the proposed scheme for this particular value of n.

The following are the summary of the experimental results showing the success rate,
percentage of free space achieved for a design and the complexity of the scheme to arrive
at the final TPG for a given PPS or the given PF of the CUT.

1. Table 8.1 depicts the summary of the success rate in designing the T'PG that generates
good quality pseudo random patterns while avoiding generation of the given PPS. The
value of n and |PPS]|, the cardinality of PPS, are noted in the columns 1 & 2. Column 8
denotes the length of TC' (Target Cycle) used to generate the test patterns. The free space
% available, without encountering any prohibited patterns, for test generation is shown in
Column 4. The results of Table 8.1 are shown for |[PPS|=10 and 15. It is found that the
available free space reduces with the increase of number of prohibited patterns. The more
comprehensive result of this fact is shown in Fig.7.6. It depicts the effect of increasing the
|PPS]| in achieving the free space for a particular value of n (number of PIs of a CUT).
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Figure 7.6: Variation of free space with the cardinality of PPS.

2. The experimentation with Prohibited Functions (PF's) are performed for the CUT's
having number of PIs > 20. The results of these experiments are noted in the graphs
Fig.7.7 - Fig.7.10.

(a). Fig.7.7 depicts the success rate of the design for a desired amount of free space (say
3,00,000) without prohibited patterns. Assuming a fixed number of PIs are participating
to form the prohibited function (with fixed number of minterms). The success rate of the
design increases with the number of PIs. For the example presentation, it achieves 100%
when number of PIs>30. However, the complexity of the proposed design reduces with the
increase of #PIs (Fig.7.8).

(b) For a fixed number of PIs (n) if the number of prohibited PIs increases, then the
number of generations to achieve the desired T'PG also increases for a specific amount of
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Table 7.1: Success rate of the T PG design

#Cell | |[PPS)| TC FreeSpace %
8 10 217 59.76
9 10 381 62.30
10 10 1023 56.73
11 10 1953 72.31
12 10 3255 63.96
13 10 8001 67.78
14 10 15841 55.02
15 10 27559 51.53
16 10 63457 64.16
17 10 131071 57.78
18 10 262143 70.41
19 10 458745 57.70
20 10 1040257 50.55
21 10 2097151 58.41
22 10 4063201 65.62
8 15 225 44.14
9 15 465 48.63
10 15 889 45.41
11 15 1905 33.64
12 15 3937 39.11
13 15 8191 39.13
14 15 15841 41.00
15 15 31705 50.00
16 15 59055 44.90
17 15 82677 34.80
18 15 259969 37.70
19 15 458745 45.70
20 15 1040257 45.54
21 15 1966065 49.51
22 15 3138051 42.65

free space. Fig.7.9 shows the number of generations required in designing the 25-cell TPG
for a CUT. The number of prohibited minterms is assumed to be 27! - p being the number
of prohibited PIs.

(c) For fixed value of n (number of PIs) and p (# prohibited PIs), the complexity in-
creases with the number of prohibited minterms that are involved to form the PF. Fig.7.10
illustrates the fact 25-cell T PG, where p = 8 and the the target free space is 3,00,000.

3. Study of randomness property: The randomness property of the patterns gener-
ated by the T'C (Target Cycle), for different values of n, are studied, based on the metric
proposed in [?] and DiehardC [1]. The comparative studies on randomness quality of the
patterns generated by the T'C' and the corresponding maximal length C' A are presented in
the tables 8.3 & 8.2.

DiehardC 1.01 is a public domain tool which supports randomness testing of a set of
patterns. It consists of 15 different tests. The results of 10 tests are noted in Table 8.2.
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Figure 7.8: Variation of complexity with the number of PIs.

Each test produces a set of ’p’ values. For a pattern set with good randomness quality, the
values of ps will be uniformly distributed between 0.001 and 0.999.

The first columns of the tables depict the names of the tests. The columns under the
heading of ‘Max’ specify the test results for an n-cell maximal length C'A, while the columns
under T'PG signify the result out of the patterns generated by the proposed design. Each
of the tests is performed for a number of runs with different seeds. The results noted for
maxlength C A and the proposed T'PG are the average of the results produced with different
seeds.

In Table 8.3, the ‘pass’ implies that the test succeeds at least for 75% cases while for
Table 8.2 it means - the ‘p’value is evenly distributed on [0,1] for at least 75% of seeds.

The results reported in Table 8.3 & 8.2 establish the fact that the randomness quality
of the patterns generated by the T'C' (proposed TPQG) is as good as that of maximal length
CA.
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7.5.2 The fault coverage

It is observed that the T'PG designed with the proposed scheme is as powerful as the
corresponding maximal length C' A based test pattern generator in respect of fault coverage
and number of test patterns required to achieve the desired fault coverage. The fault simu-
lation is done for large number of ISCAS benchmark circuits in the framework of Cadence
fault simulator verifault. Table 8.4 compares the fault coverage shown by maximal length
CA and the T'C of the proposed T'PG in the columns 4 and 5 respectively. The fault cov-

erage figures are expressed in terms of

_Total no. of detected faults
faultcoverage = Total no. of faults in the CUT”’

while the FF's of the sequential circuits are assumed to be initialized to 0. A benchmark

circuit is tested with the same number of test vectors for both the designs. Column 3
indicates the number of test vectors applied for the test.

Table 8.4 reports the results of testing of 21 combinational and sequential circuits with
maximal length C'A and as well as with the patterns generated by the T'C' of the TPG
designed with the algorithm proposed in this paper. It can be observed that out of 21

139



Table 7.2: Randomness Test I

Random n=29 n =15 to 20

Test Max | TPG | Max | TPG
Gap test pass | pass | pass | pass
Run test pass | fail | pass | pass

Serial corr test | pass | pass | pass | pass
Equidist. test | fail fail fail fail
Auto-corr test | pass | pass | pass | pass
Cross-corr test | pass | fail | pass | pass

cases, the fault coverage of the proposed T PG:
(i) is same or better for 8 cases (marked with *), and

(ii) worse for 13 cases

than the result obtained with maximal length CA. The difference in fault coverage
between the two schemes is marginal.

Table 7.3: Randomness Test 11

Random n=24 n =32 n =48
Test Max | TPG | Max | TPG | Max | TPG
Overlap Sum pass | pass | pass | pass | pass | pass
Run pass | pass | pass | pass | pass | pass
3Dsphere pass | pass | pass | pass | fail | fail
Parking lot fail | fail | fail | fail | fail | fail
B’day spacing fail | fail | fail | fail | fail | fail
Craps pass | pass | pass | pass | pass | pass
Minimum Dist fail | fail | fail | fail | fail | fail
Overlap 5-permut | fail | fail | fail | fail | pass | pass
DNA fail | fail | fail | fail | pass | fail
Squeeze fail | pass | fail | fail | pass | fail

7.6 Conclusion

The paper presents an elegant solution for the problem of designing a T'PG that generates
good quality pseudo random test patterns while avoiding generation of Prohibited Pattern
Set (PPS) for a given CUT. The design methodology proposed in the paper ensures
PPS free TPG considering both the random prohibited patterns and the functions of PIls
declared prohibited for a CUT. The reported solution, evolved through GA, does not
incur any extra area overhead than the conventional CA/LFSR based TPG. Exhaustive
experimentation confirms that the the 7PG maintains the fault efficiency in a CUT that
could be achieved through a maximal length CA/LF SR based design.
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Table 7.4: Comparison of Test Results

Circuit | # | # Test | Fault Coverage (%)
Name | PI | Vector | Max Len TPG
s349 9 400 84.00 84.00 *
s344 9 400 84.21 84.21 *
s1196 14 | 12000 94.85 94.04
s1238 14 | 10000 89.67 89.08
s967 16 9000 98.22 98.12
s1423 17 | 15000 56.50 53.60
s1269 18 1200 99.18 99.48 *
83271 26 | 10000 98.99 98.99 *
c6288 | 32 60 99.51 99.43
c1908 | 33 4000 99.41 99.41 *
sb378 | 35 8000 67.63 67.72 *
s641 35 2000 85.63 85.08
s713 35 2000 81.41 80.72
s35932 | 35 | 14000 61.91 59.82
c432 36 400 98.67 99.24 *
c432m | 36 4000 83.57 83.96 *
c499 41 600 98.95 98.68
c499m | 41 2000 97.78 97.22
cl1355 | 41 1500 98.98 98.11
c¢1355m | 41 12000 92.23 92.17
s3384 | 43 8000 91.78 91.60
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Chapter 8

DESIGN AND CHARACTERIZATION OF CELLULAR AUTOMATA
BASED ASSOCIATIVE MEMORY FOR PATTERN RECOGNITION

8.1 Introduction

This paper reports a Cellular Automata (CA) based model of Associative Memory de-
signed to recognize patterns. Characterization of the model in respect of its pattern recog-
nition capability along with other associated parameters has been reported from extensive
study of the model. The storage capacity of the model has been found to be higher than
0.2n for pattern size of n bits.

Pattern recognition is the study as to how the machines can learn to distinguish patterns
of interest from their background. The Associative Memory model provides an elegant
solution to the problem of identifying the closest match to the patterns learnt/stored [2].
The model, as shown in Fig.8.1, divides the entire state space into some pivotal points
(say) a,b,c. The pivotal points (patterns) are assumed to be learnt by the machine during
its training phase. The states close to a pivotal point are the noisy vectors (patterns)
associated with that specific pivotal point. The process of recognition of a pattern with or
without noise, amounts to traversing the transient path (Fig.8.1) from the given pattern to
the closest pivotal point learnt. As a result, the time to recognize a pattern is independent
of the number of patterns stored.

Since early 80’s the model of associative memory has attracted considerable interest
among the researchers [3, 30]. Both sparsely connected machine (Cellular Automata) and
densely connected network (Neural Net) have been explored to design the associative mem-
ory model for pattern recognition [3, 5, ?]. The Hopfield’s neural net [?, ?, ?] models a
‘general content addressable memory’, where the state space is categorized into a number
of locally stable points referred to as attractors (Fig.8.1). An input to the network initiates
flow to a particular stable point (pivot). However, the complex structure of neural net with
non-local interconnections has partially restricted its application for design of high speed
low cost pattern recognition machine.

The associative memory model around the simple structure of Cellular Automata has
been discussed by a number of authors [5][36][?]. Most of the CA based associative memory
designs concentrated around uniform CA [5, ?, 36] with same rule applied to each of the
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Figure 8.1: Model of associative memory with 3 pivotal points.

C A cells. This structure has restricted the C' A based model to evolve as a general purpose
pattern recognizer [5]. Further, estimation of memory capacity of the C' A in relation to its
architectural parameters such as number of cells (n), rules of the C'A cells, etc has not been
explored.

In the above background, this paper proposes an efficient C'A model of associative mem-
ory for pattern recognition. It employs non-linear rules for different C' A cells. This class
of hybrid CA is referred to as Generalized Multiple Attractor CA (GMACA) [25]. It is
the generalization of M ACA (Multiple Attractor Cellular Automata) that employs only
additive rules with XOR/X NOR logic [10].

We employ Genetic Algorithm (GA) to arrive at the desired GM AC A configurations.
The non-linear rule space of GM AC A has been investigated. The diverse parameters A, Z,
entropy, G-density etc., proposed by the researchers [?][?][58] [57] to study C' A behavior, are
employed to characterize GM AC A designed for pattern recognition. The results derived
from the study confirm the following facts : (i) the GM ACA lies in between order and
chaos defined as the edge of chaos [?]; (ii) the complex computation like pattern recognition
occurs only at the edge of chaos; and (iii) the memorizing capacity of GM AC A is more
than 20% of its lattice size and is better than Hopfield network.

The design of GM AC A based associative memory and its application for pattern recog-
nition are outlined in Section I'V preceded by the design specification noted in Section I11.
The characterization of the model in respect of different parameters is reported in Section
V. A brief introduction to Cellular Automata follows.

8.2 Cellular Automata

Cellular Automata (CA) are the simple model of spatially extended decentralized systems
made up of a number of cells [39]. Each individual cell of a CA is in a specific state which
changes over time depending on the states of its neighbors. In this paper we will concentrate
on 3-neighborhood (left, self and right) one dimensional C A, each C'A cell having two states
-0 or 1. In a two state 3-neighborhood C A, there can be a total of 22° i.e, 256 distinct next
state functions referred to as the rule of C A cell [55]. If the same rule is applied to all the
cells, then the CA is referred to as uniform CA, else it is a hybrid CA. The rule tables for
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two such rules, 90 and 150 are illustrated below:

Neighborhood : 111 110 101 100 011 010 001 000 RuleNo
(i) NextState: 0 1 0 1 1 0 1 0 90
(ii) NextState : 1 0 0 1 0 1 1 0 150

The first row lists the possible combinations of present states of the neighbors (left, self
and right) of the 7' cell at time ¢ referred to as g;(t). The next two rows list the next states
of i cell at time instant (¢+ 1) denoted as ¢;(t+1). Decimal equivalent of the 8-bit binary
number is referred to as the rule number (90/150) associated with the next state function
of CA cell i as defined below:

Rule 90: ¢;(t +1) = gi—1(t) ® ¢i1(?)

Rule 150: ¢;(t + 1) = ¢i—1(t) ® ¢:(t) ® ¢i+1(?)

A non-linear C A employs all possible 256 rules as next state function, while additive C A
[10] employs only additive rules with XOR/XNOR logic. The example additive CA of
Fig.8.2 with rule vector < 150,102, 60,150 > is a Multiple Attractor CA (M ACA).

The entire state space of an M AC A are divided into disjoint trees rooted at some at-
tractor cycles. The length of an attractor cycle of the example M ACA of Fig.8.2is 1. An
inverted tree is also called attractor basin. States other than the cyclic state of attractor
are referred to as Transient States. A transient state when loaded as a seed for the CA,
it reaches the attractor cycle after some time steps. The maximum number of time steps
needed for any state to reach the attractor cycle is termed as the depth or Transient Length
of MACA.

This research work generalizes the concept of M AC A to Generalized MACA (GM ACA)
with the following characteristics : (i) it employs non-linear rules; (ii) its attractor cycle

length is greater than or equal to 1; (iii) its tree structure, unlike M AC A, is not uniform.
A GMACA is illustrated in Fig.8.3.

Based on different dynamical behavior, Wolfram [55] reported a specific class (called
class IV) of CA displaying complex patterns of localized structure (attractor) with long
transients. Wolfram predicted that class IV C A with attractors and transients, are capable
of doing non-trivial computations. The term edge of chaos is the critical point of a system,
where a small change can push the system into chaotic behavior or lock the system into a
fixed behavior. The logical and complex computations are likely to occur at edge of chaos
[?]. Packard highlighted that the state transition behavior of class IV C'A exhibits the
property of a system at the edge of chaos [?]. Further, Langton [?] defined the range of a
parameter value (\) to identify the C'A rules that exhibit complex computation.

The above observations motivated us to explore GM AC A based associative memory
model for pattern recognition. Design guidelines next follows.

8.3 Design Specification of GMACA Model For Pattern Recog-
nition
A pattern recognizer is trained to get familiarized with some specific pattern set {P1,---,P;,--- Px}
so that it can recognize patterns with or without noise. If a new pattern P, is input to the
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Zerotree Attractors{ 0, 1, 8, 9} rule <150, 102, 60, 150 >

Figure 8.2: State space of a 4-cell M AC'A with attractors - 0,1,8,9

Figure 8.3: State space of a 5 cell GMACA < 89, 39,87,145,91 >

system, the pattern recognizer identifies it as P;, where P, is the closest match to P;. The
hamming distance between P; and P; (HD(P;, P;)) is the least and can be viewed as the
measure of noise.

If a GMACA has to function as a pattern recognizer, it has to learn/store the given
pattern set P = {P1, -+, P;,--- Px}. While the GM ACA is run for some time steps with
P; as an input, it returns P;. Hence, P, is a transient state close to P;. Therefore, the
design guidelines for the GM AC A can be specified by the following two relations:

R1: Each attractor cycle of the GM AC A should contain only one pattern (P; € P) to
be learnt.

R2: The Hamming Distance (HD(P;,P;)) between each state P; € Pj-basin and P; is
lesser than the HD(P;,P;), where P; € P, Vj = 1,2,---k,& j #1i.

A CA which satisfies both R1 & R2 is the desired GM ACA for pattern recognition.
The 5-cell GM ACA of Fig.8.3 can learn two patterns, P; = 10000 and Py = 00111. It
maintains both the relations R; and Ry. The state P = 11010 has the hamming distances
2 and 3 from P; & P» respectively. If P is given as the input to be recognized, then the
recognizer must return P;. The GM AC A of Fig.8.8 if loaded with the pattern P= 11010,
returns the desired pattern P; = 10000 after two time steps.

The search to arrive at a rule vector of a GM ACA, satisfying both R1 and R2, from
all possible combinations of hybrid C A rules is of exponential time complexity. So we fall
back on Genetic Algorithm (GA) to arrive at the desired GM AC A with pattern recognition
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Figure 8.4: \ parameter values of uniform and hybrid CA

capability.

8.4 Evolution of GMACA

The aim of this evolution scheme is to arrive at the GM ACA (rule vector) that can
perform pattern recognition task. The rule vector of GM AC A is viewed as the chromosome
for the current GA formulation. The following subsection reports some novel techniques of
enhancing the fitness of initial population which ensure fast convergence of the evolution
algorithm.

8.4.1 Selection of Initial Population (IP)

Three elegant schemes to construct the I P with better fitness value are proposed next.
IP from )\, Region

In this scheme the IP is developed from the study of C'A rule configuration. The rules
are popularly characterized by Langton’s parameter A [?]. The number of 1’s in a rule is
quantified by A and defined as A= (number of 1’s in the rule number)/8. For example, A
value of Rule 90 (01011010) is 0.5 (Fig.8.4(a)). The present research work explores hybrid
C A for which we introduce a parameter called \,,, the average value of A for all the cells
in a CA. For example, the \,, for the hybrid C A of Fig.8.4(b) is 0.425.

It has been observed that the GM AC A rules, acting as efficient pattern recognizers,
lie within a specific range of )\, value referred to as ), region. So the initial population
from that region ensures fast convergence of GA. The following hypothesis characterizes
the range of \p;.

Apr settles around 0.46 and 0.54 that are roughly equidistant from 0.5.

The IP for the GM AC A evolution are picked up from the rule set satisfying A, region
(Hypothesis 8.4.1). The analytical foundation of the hypothesis is reported next followed
by experimental validation.

Analytical Foundation : In a GMACA, the state PZ while traversing towards P;
assumes new state P;(t) at time step ¢. During traversal, it is not that there is a continuous
decrease in hamming distance HD(P;(t), P;) at each time step. In Fig.8.3, P;(t)=w=10111
is associated with pivot d=00111 (Attractor-2). The hamming distance between w and d is
1. After one time step, Pj(t + 1) = 2 = 11111, where the hamming distance HD(z,d) =
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Figure 8.5: Away movements for different values of n

2. During its movement towards d the seed w exhibits an oscillatory motion in terms of
hamming distance e.g. 1, 2, 3, 1. Therefore, the GM AC A rule configuration has to have
the capacity of bringing back its corresponding cell state from 1 — 0 and as well as 0 — 1,
as the case may be. The rule cinfigurations having an equal balance of 0 & 1 as the next
state function can ensure the oscillatory motion. In otherwords, rule configurations having
Aav Value around 0.5 are the better candidates for the IP.

This fact is also validated through following experimentations done on the sets of evolved
pattern recognizer (GM AC A). We randomly generate 100 seeds and observe the movements
of patterns towards a pivot P; in a GMACA. Let assume d' = HD (P;(t), P;) at time
step ‘t’, while d’ = HD(P;(t + 1),P;). If d' < d", then it refers to as ‘away movement’
of pattern from the pivot. The occurances of away movements for different values of n
(pattern size) are shown in Fig.8.5. For each n, we have taken 10 different GM ACA and
observed movements of 100 patterns for each GM AC A. Out of 100 x 10 runs for an n the
number of cases we encounter away (%) movement.

It is observed that the away movement, noted in Fig.8.5, is 15% to 20% to reach a pivot.
This validates the analysis that the hamming distance of P; from P; undergoes oscillations
in its movement towards P;.

Let us assume that during the traversal from seed P; to P; the away movement first
occurs at time step ‘¢’ and continues till (¢+m). The minimum number of bits that flip away
from the pivot point P; during this away movement is therefore M =[ HD(P;(t+m),P;) -
HD(Ps(t),P;)]- The maximum value of M for all such durations (¢, +m) for the traversal
from a seed ’P, to P; is the magnitude of ‘away movement’ for ’PZ Magnitude of ‘away
movement’ for a GM AC A is computed as the average of away movements of a large number
of seeds. Fig.8.6 depicts the variations in magnitude of away movements for different values
of n in terms of percentage of n.

It can be observed from Fig.8.6 that the away movement is limited to 20% of n - that
is, for n = 30, as many as 5 bits get flipped during the traversal from a seed to the nearest
pivot. This fact demands - GM AC A rules should have an equal balance of 1s and Os.
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Table 8.1: Mean and standard deviations of A4, value of GMACA

CA Agv value less than 0.5 Agv value greater than 0.5

size (n) Mean Std. Devi™ Mean Std. Devi™
10 0.464423 | 0.025872 | 0.530833 | 0.015723
12 0.454233 | 0.019912 | 0.528891 | 0.019137
15 0.457576 | 0.025365 | 0.524074 | 0.020580
17 0.471336 | 0.022839 | 0.529311 | 0.001763
20 0.463194 | 0.006875 | 0.560937 | 0.013532
22 0.464223 | 0.031927 | 0.542419 | 0.007345
25 0.486250 | 0.005995 | 0.517500 | 0.007500
27 0.461275 | 0.021345 | 0.524841 | 0.024519
30 0.465000 | 0.024840 | 0.509375 | 0.004541

Expt 3 This experimentation validates the selection of IP in the ), region. To find )\,
the experiment has been conducted for n = 10 to 30. For each n, 15 different sets of
patterns, to be learnt, are selected randomly. The number of patterns in a set is taken as
0-15n, - the maximum number of n-bit patterns that a Hopfield network can recognize. The
G A starts with the I' P of 50 chromosomes chosen at random and then undergoes evolution
till 100% fit rules (GM AC A) are obtained.

The A,y values for each of GM AC A are computed for an n. Table 8.1 depicts the mean
and standard deviation of Ay, of the desired GM ACA rules. Column 8 indicates the mean
value below 0-5 while Column § indicates the mean above 0-5 for different C'A size. The
result, as shown in Table 8.1, reports that the A, values of the desired GM AC A rules are
clustered around in the areas that are roughly equidistant (0.04) from 0.5 and, therefore,
Apr can be chosen as 0.46+ or 0.54+.

Scheme 2 : Graph Resolution Algorithm

This scheme is based on a reverse engineering technique. It constructs a set of GMACA
rules for the patterns P;, P, - - -, Pc to be learnt. The GM AC A rules thus are the candidates
for IP. The basic concept of mismatch pair algorithm proposed by Myer [?] is employed to
construct the 3-neighborhood GM AC' A considering patterns to be learnt as the members
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of different attractor cycles of a GM ACA. The following steps illustrate the design.

e Step 1 - Construct basin for each of the patterns to be learnt P; assuming P; as the

attractor state (single cycle) and each reachable state having ‘p’ number of predeces-
sors. The set of states [P;] which follow R2 in Section 8.3 are taken randomly as the
predecessor nodes of P;.

Fig. 8.7 represents k arbitrary basins for the & number of patterns Py, Ps,---, Py to
be learnt. For example design of Fig.8.7, ‘p'=3. 759'(1') are the 7" noisy patterns of P;,
1= 1a27ak7] = 1a27"'a'

Step 2 - Generate state transition table from the basins [?] generated in Step 1. Fig.
8.8 represents a set of representative patterns of a complete state transition table.

Step 3 - Generate rule vector of GM AC A from the state transition table. The
identification of rule for the i cell of GM AC A is done on the basis of the (i — 1),
i" and (i + 1)'* columns of state transition table. Let us consider the identification
of rule for the 27¢ cell of GMACA from Fig.8.8. States for the 8 present state
configurations of 1%*, 2"% and 37¢ columns of Fig.8.8 are

Neighborhood : 111 110 101 100 011 010 001 000
(i) NextState : 0 z 0 z 1 z 0 0

x represents don’t care. Randomly replacing don’t cares by 0/1, we arrive at the rule.
Therefore, the rule for the 2™ cell is 01001000 - that is, 72.

The collision in the state transition table - that is, both 0 and 1 appear as the next
state for a present state configuration, is resolved heuristically. In Fig.8.8, we have

5% cell. The occurance of ‘0’ in the next state of 011 is ny=1

shown collision for the
while number of occurance of ‘1’ is n;=3. In resolving the collision (a) we randomly
select either 0 or 1 if ng ~ ny. (b) If ng >> n; the next state is taken as 0 while next

state is taken as 1 for ny >> ng.

For the example design of Fig.8.8, the next state for 011 is 1. Different sets of C A
rules are derived by constructing approximate state transition diagrams for the attractor

set P, Py,---, P;. These rules are the member of IP.
Scheme 3 : Mixed Rules

This scheme combines the schemes 1 & 2. The IP comprises of the (i) chromosomes from

Apr region, (ii) chromosomes produced through graph resolution algorithm, (iii) randomly

generated chromosomes, and (iv) chromosomes that are produced from the concatenation

of fit C A of smaller sizes.

The next two subsections report the guiding principles employed for fast convergence of

the solution.
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Figure 8.7: Empirical basins created for illustration of Graph Resolution Algorithm

State Transition Table

Present State Next State
00101100 Oo0101100
1011011101 01010101
101110001 —=—01010101
}111301110 OO0O101100
110101011 Ooo101100
i oo0do 1111 Oo0o101100
111110101 Oo0o101100
2nd Cell T 2nd Cell T

sth Cell Sth Cell
For ‘011’ of 5th cell
no=1
n,=3
Present State Next State

* x * O 1 1 * *

1

Figure 8.8: An example of State transition table
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8.4.2 The Fitness Function

The fitness F(Cy) of a particular chromosome C; (that is, CA rule) in a population is
determined by the hamming distance between (i) a state 75]', evolved from the run (gen-
eration), and (ii) the desired attractor state P; (j = 1,2,---k) - an element of the learnt
pattern set. A chromosome (CA) C, is run with 300 randomly chosen initial seeds and the
fitness of C,. is determined by averaging the fitness for each individual seed.

Let us assume that, the chromosome C, is run for a maximum iteration L,,,, with a
seed and reaches to a state ’P] If 75j is not the member of any attractor cycle, that is, it is
still a transient state, then the fitness value of the chromosome C, is considered as zero. Qn
the other hand, if 75]- € an attractor cycle containing P;, then the fitness of () is ﬂﬁ*ﬂd,
where | P; —P; | is the hamming distance between P; & P; and 7 is the maximum possible

hamming distance between an input and the learnt pattern. Therefore, the fitness function
F(C,) can be defined as

F(C,) = lz n—|P;—P;| (8.1)

¢ = n

where ¢ is the number of random seeds.
8.4.3 Selection, Crossover and Mutation Probability

From the in-depth study of GA evolutions, we have set the associated parameters to
derive NP (Next Population) out of PP (Present Population). The population size at each
generation is set to 50. Out of which 35 chromosomes of NP are formed from single point
crossover of PP. The 5 chromosomes of NP are formed from single-point mutation of the
best 10 chromosomes of PP. We follow the elitist model and carry forward 10 best solutions
to the next generation. The detailed experimental results of next subsection validate the
G A framework we have set to arrive at the desired solution with feasible computation.

8.4.4 Experimental Results

This section details (i) the convergence rate of the algorithm with different initial selec-
tion schemes; and (ii) the memorizing capability of the GM ACA. While the convergence
rate of G A evolution gives the measure of computation cost, the quality of desired solution
can be gauged from the memorizing capacity of GM AC A finally evolved.

Convergence Rate

The performance evaluation of the four I P selection schemes, with respect to the GA
convergence rate and the mean fitness with standard deviation is provided in Table 8.2.
The experiment has been done on Compaq server in Linux environment. The execution
time, reported in the last column of Table 8.2, clearly establishes that the execution time
increases linearly with n. The entries ‘*’ in Column 2 of Table 8.2 signify that the GA with
random I P does not converge within 1000 generations for n >35. The graph showing the
number of generations required to converge the GA for different number of CA cells with
random (Scheme I) and preselected initial populations (Schemes II, ITI, IV) are presented in
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Table 8.2: Comparison of mean fitness and number of generation required to converge with
random and preselected rules

cA Random(T) Apr region (IT) graph resolution (I1T) Mixed rule (IV) Execution
size | Noof | Mean Std. No of | Mean Std. No of | Mean Std. No of | Mean Std. time
gene™ | Fitness | Devi® | gene™ | Fitness | Devi® | geme™ | Fitness | Devi® | gene™ | Fitness | Devi® (sec)
10 166 | 65.35 | 7.395 | 141 | 67.15 | 5.249 | 118 | 72.86 | 3.863 | 128 | 73.12 | 7.819 | 18.183
12 160 | 64.25 | 5.889 | 198 | 66.19 | 5.116 | 132 | 72.71 | 3.983 96 73.09 | 7.516 | 19.438
15 156 | 62.28 | 5.611 | 253 | 65.05 | 5.463 | 148 | 72.67 | 5.611 66 74.81 | 9.114 | 21.378
17 | 328 | 61.35 | 6.113 | 312 | 63.22 | 5.714 | 268 | 71.89 | 3.274 94 73.12 | 8.102 | 23.061
20 | 512 | 61.16 | 5.828 | 413 | 61.78 | 5.926 | 364 | 70.66 | 5.493 | 172 | 72.84 | 7.436 | 24.867
22 | 634 | 61.81 | 4.119 | 521 | 61.08 | 4.761 | 368 | 71.88 | 4.106 | 198 | 73.21 | 8.662 | 27.823
25 | 721 | 60.44 | 4.045 | 690 | 61.15 | 3.746 | 376 | 73.46 | 4.128 | 210 | 74.38 | 8.037 | 30.344
27 | 785 | 60.19 | 6.719 | 688 | 61.84 | 4.992 | 412 | 74.29 | 3.982 | 235 | 73.89 | 7.159 | 34.621
30 | 852 | 59.33 | 5.712 | 718 | 62.10 | 5.139 | 468 | 75.03 | 4.106 | 280 | 76.88 | 8.196 | 37.268
32 * 59.68 | 6.119 | 715 | 61.89 | 4.329 | 486 | 73.67 | 4.942 | 312 | 74.63 | 9.613 | 39.916
35 * 59.75 | 4.981 | 785 | 60.62 | 4.107 | 525 | 67.96 | 4.359 | 340 | 70.44 | 7.824 | 42.792
37 * 59.67 | 5.723 | 809 | 60.12 | 5.006 | 537 | 67.46 | 3.746 | 362 | 70.87 | 7.114 | 45.217
40 * 59.71 | 5.182 | 826 | 59.81 | 5.628 | 575 | 67.21 | 4.109 | 410 | 71.28 | 8.129 | 48.882
42 * 58.81 | 6.091 | 872 | 59.81 | 4.984 | 599 | 67.82 | 3.917 | 428 | 70.98 | 7.197 | 53.617
45 * 58.48 | 5.661 | 935 | 58.50 | 5.647 | 612 | 66.78 | 4.008 | 485 | 71.17 | 8.004 | 57.792

Fig.8.9. 1t is observed that the convergence rate of GA progressively increases for Scheme
I II, IIT & IV respectively.

The convergence rate of the schemes vary for two reasons. (i) The initial fitness of the
population differ and are progressively better in Schemes I, II, III & IV respectively. (ii)
The more subtle reason is that the preselected versions I'V, III & II identify the right schema
instances as explained below.

A schema is a set of bit strings that can be described by a template made of ones, zeros
and asterisks, the asterisks representing wild cards. An example schema, is < * x x % 010 *
*x >. The simultaneous implicit evaluation of a large number of schemas provide implicit
parallelism to genetic algorithm. The effect of selection is to gradually bias the schemas
whose fitness is above average. The preselected rules enhances the convergence because it
finds many schemas from the beginning which help the genetic algorithm climb through
the correct path. Two important experiments have been further conducted to establish
progressive improvement of GA performance of the schemes.

Expt 4 In order to nullify the effect of difference in initial fitness, GA has been evolved
with each IP selection scheme to the same level of fitness (say F'). (In Fig.8.10 it is
marked with dotted line F.) Subsequently, the number of generations needed to converge
the solutions is noted. Fig.8.10 depicts that the better performance has been observed
progressively for the Schemes I, II, III & IV. For the representative example of Fig.8.10,
the number of generations (G) required to converge from fitness level F' are 686, 531, 369
& 260 for the schemes I, II, III & IV respectively. The G is computed as G = b — a, where
b is the total number of generations and a is the number of generations required by the
population to reach the fitness level F.
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Figure 8.9: Graph showing the number of generations required in different initial popula-
tions for different number of C A cells

Expt 5 50 chromosomes (CRp) of the population that reached the fitness value (say F') are
taken. Each such chromosome is compared bit by bit with 10 best chromosomes (CR}) of
final population. We compute Fraction of match, represented as the number of bits found
same between a pair of chromosomes of size n divided by n, for each pair of (CRp, CRy).

For Scheme IV the match is as high as 0.7 and the fraction of match on average settles
at a value > 0.6 (F'ig.8.10). This validates higher convergence rate of GA.

Memorizing Capacity of GMACA

The experiments to evolve pattern recognizable n-cell GM AC A for different values of n are
carried out. For each n, 15 different sets of patterns to be trained are selected randomly.
The number of patterns to be learnt by the CA is progressively increased.  Table 8.3

Table 8.3: Performance of the C'A based pattern recognizer

CA CA based Conventional

size (n) Pattern Recognizer Hopfield Net

10 4 2
12
15
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22
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Figure 8.10: Graph showing the number of generations required in different initial popula-
tions for a particular C A cell (n=25)

demonstrates the pattern recognition capability of C A based design. Column 2 of Table
8.3 depicts the maximum number of patterns that an n-cell CA can memorize - that is,
the number of patterns for which the GA has obtained 100% fit rules. The results of
conventional Hopfield Net on the same data set are provided in Column 3 for the sake of

comparison. Hopfield net, as reported in [?], memorizes 0-15n where size of the pattern is
of n-bit.

The experimental results clearly establish the fact that the GM AC A have much

higher capacity to learn patterns in comparison to Hopfield Net and provides
an elegant solution for the pattern recognition problem.

The rule space covered by the GM ACA capable of performing pattern recognition,
has gone through extensive study. The diverse parameters proposed over the years to
characterize the C'A behavior are used to identify the class in which the GM AC A belongs.

The significance of the parameters and the results of the studies on GM AC A are reported
next.

8.5 GMACA Characterization

The GM AC' A has been characterized in respect of the parameters proposed by earlier

authors [?, 36, 55, 58, 57, ?] to study C' A behavior. Discussions on each of the parameters
follow.

8.5.1 Space Temporal Study

Dynamical behaviors of space-time patterns generated by the C'A provide a guideline to
characterize the C A rule space [?, 36, 55]. The macroscopic measurements of C A dynamics
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Figure 8.11: Matching in different IP selection schemes

like entropy, mutual information are studied to classify the GM AC' A rules.

e Entropy is the measure of randomness of a system [?]. The maximum entropy (close
to 1) [?] of a system signifies chaotic behavior, whereas low entropy indicates ordered
behavior. In case of compler system, mean entropy is close to the critical value 0-84
[?] with high variance.

To measure the entropy, we select a moving window of 10 time steps (w=10). The
system has been run for 10000 time steps from a random initial state. The mean
entropy and the standard deviation from the mean have been computed [57]. For each
GM ACA the procedure is repeated for 15 times with different random initial states.
The values shown in the Columns 2 and 3 of Table 8.4 are the mean and standard
deviation of entropy, computed for the evolved GM AC A patterns for different size. Tt
is observed that the evolved GM AC A patterns have high standard deviation of mean
entropy and the mean value clusters around the critical value of 0.84.

e Mutual information measures the correlation between patterns generated at a fixed
time interval. If a pattern P; is the copy of Po, then mutual information between P
and Py is 1. The mutual information between two statistically independent patterns is
0. Both the ordered and chaotic C'A rules do not create spatial structures and in effect
generate pattern set with low mutual information. On the other hand, the complex
C A rules create highly correlated structures producing maximum mutual information

[7].
To measure the mutual information of the patterns generated by GM AC A, we follow
the method proposed in [?]. Here, we select patterns separated by a particular window

of size 6. The mutual informations corresponding to the evolved GM AC A rules, noted
in Column 4 of Table 8.4, are found to be very high (close to 1).
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Table 8.4: Space temporal study to categorize C'A rule space that display 100% pattern
recognizing capability

CA Entropy Mutual
size (n) | Mean | Std. Devi” | Information
10 0.840966 | 0.072076 0.969
12 0.832549 | 0.062185 0.957
15 0.820147 | 0.064446 0.940
17 0.832854 | 0.071821 0.942
20 0.845909 | 0.057592 0.978
22 0.841167 | 0.042171 0.907
25 0.834503 | 0.065129 0.929
27 0.829847 | 0.038596 0.917
30 0.839001 | 0.070335 0.928
32 0.832786 | 0.052841 0.943
35 0.838102 | 0.071002 0.964
37 0.841829 | 0.030996 0.941
40 0.848010 | 0.061029 0.953
42 0.832871 | 0.054291 0.948
45 0.839116 | 0.0510321 0.933

8.5.2 Z-parameter

The C A rule space can be categorized by evaluating Z [57] parameter. The Z parameter,
proposed by Wuensche, provides an alternative to track the C'A behavior very closely. It
not only counts the fraction of 1’s in the rule table, also takes into account the allocation
of rule-table values for the sub-categorization of related neighborhoods. The detailed is
reported in [?]. The value of Z varies from 0 to 1. The Z value close to 1 indicates chaotic
behavior of the CA, while Z = 0 indicates order. The intermediate value of Z identifies

the complex C'A rules [?].

The Z parameters for the evolved GM AC A rules of different size (n) are reported in
Table 8.5. Column 2 depicts the mean value of Z while Column 3 reports the standard
deviation in Z parameter to arrive at the desired GM AC A rules. The values, shown in the
table, are in between 0 and 1.

The attractor basins of a C A show the categorization of the C A state-space. The concept
of complexity, chaos and phase transitions (edge of chaos) in local dynamics can be related to
the convergence in the attractor basin topology of the system. Study on the characterization
of attractor basin topology of GM AC A is next reported.

8.5.3 Characterization of Attractor Basin

The global parameters such as G-density, Mazimum in-degree, In-degree frequency his-
togram, Transient length associated with the attractor basin topology, can be used to char-
acterize GM AC' A rule space. These parameters point to the degree of convergence of
dynamical flow of attractor basin.
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Table 8.5: The Values of Z Parameters of the C A Displaying 100% pattern recognizing
capability

CA Z parameter
size (n) | Mean | Std. Devi™
10 0.618 0.033
12 0.636 0.021
15 0.642 0.037
17 0.617 0.031
20 0.621 0.012
22 0.641 0.007
25 0.622 0.009
27 0.639 0.012
30 0.610 0.029
32 0.634 0.015
35 0.627 0.022
37 0.642 0.016
40 0.633 0.018
42 0.627 0.004
45 0.639 0.033

o G-density defines the density of garden-of-eden states, the states without pre-image
(predecessor). For example, in Fig.8.3, state ‘a’ is the garden-of-eden state and pre-
image of state 'b’.

e Maximum in-degree - the maximum number of immediate pre-images of a state

is referred to as Mazimum in-degree of the state. In Fig.8.3, in-degree of the state ’d’
is 3.
Very high G-density (close to 2"™) and significant frequency of high in-degree (close
to 2") imply short and dense trees, which correspond to ordered rules. Whereas, low
G-density (close to 1) implies low convergence, long sparse trees with branching points
having a low in-degree (close to 1), implies chaos. The complex rules fall in between
these two extremes [?].

The columns 2 and 3 of Table 8.6 report the G-density and the Mazimum in-degrees
of the evolved GM AC A. The results show that the proper balance between G-density
and Maximum in-degree is maintained by the GM ACA.

o In-degree frequency histogram - The In-degree frequency distribution of a basin
of attraction can be plotted as a histogram with horizontal axis representing the value
of in-degree and vertical axis as the frequency of in-degree. The in-degree frequency
histogram gives accurate measurement of attractor basin topology and its conver-
gence. The shapes of histogram indicate different C A dynamics. For complex rule,
the histogram follows power law distribution [57].

Fig.8.12 displays a typical In-degree frequency histogram for 15-cell GM ACA that
recognizes 4 patterns. The histogram exhibits power law distribution. The frequency
distribution of all evolved GM AC A exhibit similar distribution.
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Figure 8.12: In-degree frequency histogram for 15-cell CA

e Transient length - The Transient length is defined as the time required to reach at
the attractor cycle. In Fig.8.3, transient length for ’a’ is 4. At chaos, the transient
lengths of the patterns are very long, close to 2" where n is the number of C A cells,
whereas the transient lengths are short if order is maintained [?].

The figures in Column 4 of Table 8.6 depict the transient lengths of the evolved
GMACA rules. The transient lengths of spatio-temporal patterns of the GM AC A
are quite long but much shorter than the length of the transient length (close to 2")
exhibited by chaotic rules.

Table 8.6: Parameters of Attractor Basin Topology

CA G Maximum | Transient
size (n) | Density | In-degree | Length
10 70.425 16 213
12 73.687 22 728
15 78.223 39 916
17 78.873 102 1274
20 80.864 174 1559
22 81.642 263 2036
25 83.281 483 3669
27 83.011 512 4128
30 83.342 724 5138
32 84.112 898 5662
35 85.127 1012 7210
37 85.343 2136 7865
40 86.261 4152 9120
42 87.369 6211 9532
45 88.418 7122 11020

The above observations confirm beyond doubt that GM ACA rules are com-
plex and lies at the edge of chaos. For the GM ACA based associative memory
model, this has resulted in : (i) better storage capacity than that of a neural
network; and (ii) efficient recognition of patterns without/with noise.
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8.6 Conclusion

This paper presents a comprehensive overview of the potential of Cellular Automata
(CA) to act as an associative memory model. The potential has been explored by using
Genetic Algorithm to evolve the desired model of C' A termed as GM AC A. Prudent selection
of initial population ensures fast convergence of GA. The GM AC A has been found to bear
the properties of class IV CA that can perform complex computations. The memorizing
capacity of GM AC A is found to be higher than that of Hopfield Network.
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