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ABSTRACT
In this paper, we present a model of a delay tolerant net-
work (DTN) and identify that this model can be suitably
reformulated as a bipartite network and that the major pre-
dictions from the former are equivalent to that of the latter.
In particular, we show that the coverage of the information
dissemination process in the DTN matches accurately with
the size of the largest component in the suitably thresholded
one-mode projection of the corresponding bipartite network.
In the process of this analysis, some of the important in-
sights gained are that (a) arbitrarily increasing the number
of agents participating in the dissemination process cannot
increase the coverage once the system has reached the sta-
tionary state for a given buffer time (i.e., the time for which
a message resides in the buffer of the places visited by the
agents), (b) the coverage varies inversely with the square
of the number of places in the system and directly with the
square of the average social participation of the agents and
(c) it is possible to design an optimal buffer time for a de-
sired cost of coverage. To the best of our knowledge, this is
the first such work that employs the rich theoretical back-
bone of bipartite networks as a “proxy” for the analysis of
the otherwise intractable DTN dynamics thus allowing for
various novel analytical estimates.
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1. INTRODUCTION
The medium of communication among the devices in a

DTN is wireless and therefore the connectivity among them
is of short range 1 and inefficient. This creates a lack of cer-
tainty in direct communication among the devices. There-
fore, the concept of indirect communication is introduced
in DTN which involves storing a message temporarily in a
certain ‘throwbox’ [26] or ‘buffer’ in different places so that
other devices can pick up the message when the agents car-
rying the devices, visit these places. Consequently, it is rea-
sonable to advocate that the performance of any search or
information dissemination application, developed for such
a network, is strongly influenced by the mobility pattern
of these participating agents. The destination of the mo-
bile agents in general are selected on a purely random ba-
sis as is the case for the random way point model [5] and
various other similar models [4, 6]. However, in a realis-
tic scenario, it becomes important to incorporate the social
behavior of the agents (as in for humans) that has been
recently introduced for instance ‘Self Similar Least Action
Walk’ based mobility model [15]. A very important com-
ponent of such observation is that, the agents have a ten-
dency to visit places depending on the attractiveness of those
places. In other words, there is a preferential choice driving
the mobility pattern of the agents. The preferential choice
induces long and short range correlation among the walkers.
This increases the complexity in the mobility pattern making
it extremely difficult to use traditional mathematical tech-
niques, like mean field theory, in calculating the coverage,
i.e., the number of distinct nodes receiving the message in

1The radius of communication of the devices using technol-
ogy such as bluetooth [7], is of the order of a few meters.



the steady-state. In fact, this is possibly one of the most
important reasons why such an analysis is almost inexistent
in the literature although there have been many works re-
lated to the design of dissemination algorithms directed to
maximize coverage in both wired and wireless networks [2,
10, 17, 18].

In this paper, we identify that, the message dissemination
process in DTN has a natural and one-to-one correspon-
dence with a time varying bipartite network where one par-
tition contains a fixed number of places and the other parti-
tion contains the agents whose number continuously grows
starting from zero. Hence, we try to show that, without
“re-inventing the wheel” (such as recasting the DTN sce-
nario as an epidemic spreading process or otherwise), the
existing rich theoretical backbone of the evolving bipartite
network [8, 16, 19] can be exploited to analyze the other-
wise intractable characteristics of the message dissemination
process in DTN. In principle, we concentrate on the analysis
of the coverage in terms of the largest component of the one-
mode projection of the underlying bipartite network suitably
thresholded by a time-varying threshold.

In the following, we first present a brief survey of the works
already done to model different aspects of DTN. In section 3
we describe a realistic scenario of information dissemination
in DTN and subsequently examine it under the lens of the
analytical framework of the bipartite networks (section 4).
In section 5, first we show that the time evolution of the
fraction of nodes to which a message gets disseminated (i.e.,
coverage) in the DTN has a perfect overlap with the growth
of the largest component size of the one-mode projection (ex-
plained later) of the bipartite network suitably thresholded
by a time varying threshold. Next, we show the correlation
of the parameters in the two domains. Finally, we provide
a closed form expression for the largest component size of
the thresholded one-mode projection which in turn gives the
theoretical estimate for the coverage achievable in the DTN.

2. RELATED WORKS
Routing/dissemination of information in DTN have been

in focus for a long period of time. Many algorithms have
been developed to solve these problems. For example, in
the store-carry-forward paradigm based algorithms, the mo-
bility of the agents is exploited to convey message packets.
In these strategies, the devices carried by the agents tem-
porarily buffer the data and forward it to other (appropriate)
agents. Epidemic routing [11], spray and wait protocols [24]
are some examples of these. Analysis and subsequent use of
contact history among the agents have also been the focus
of various works [3, 14, 25].

Modeling DTN through different analytical framework has
also gained much interest in recent times. Epidemic mod-
eling [20], ordinary differential equations [23], partial differ-
ential equations [1] or Markov models [21] have been suc-
cessfully used to represent DTN. Performance of different
routing strategies have been evaluated using these mathe-
matical techniques. The primary objectives of these studies
were to analyze the data delivery ratio and data delivery
latency.

Augmenting the DTN with different types of stationary
message storing devices, such as throwbox [26], has been the
recent trend to enhance the communication opportunities in
between the mobile devices. In [22], the authors show that,
use of such relay devices effectively decreases the data deliv-

ery latency as well as increases the data delivery ratio. How-
ever, the existing modeling or analysis related works on DTN
do not consider the presence of such message buffers. Re-
cently, Gu et al [13] have addressed this issue in similar lines
as of those presented here. They have proposed the use of
message buffers as an instance of bio-inspired methods (e.g.,
pheromone or footprint). Using discrete Markov chain based
modeling, they analyzed the importance of buffer time, i.e.,
the amount of time a message copy can stay in a message
buffer, as well as the preferences of visiting different places
by the mobile agents. They studied the impact of these
two crucial system features on the latency and the message
delivery ratio of the dissemination process in the network.
In our work we specially emphasize on the inherent bipar-
tite nature of the “buffer augmented DTN” and thus bring
forward the fact that instead of starting from scratch, the
existing theories of the bipartite network can be used (with
necessary modification) to analyze the coverage problems
related to DTN.

3. INFORMATION DISSEMINATION
IN DTN

We consider a certain number of mobile agents (t) who
participate in the information dissemination process and a
certain number of common places (N) where the agents usu-
ally go. An agent is assumed to make μ number of visits to
different places (hence, μ directly models the social partic-
ipation of the agents). The place to be visited next by an
agent, is chosen preferentially from the pool of places where
the preference to be given on a place is directly proportional
to the number of other agents who already visited the place.
A sequential agent arrival pattern is assumed which implies
that the next agent will join the system after the previous
agent has visited all of the μ places. To make the process
realistic, we introduce a concept of time which denotes the
count of the agents who have joined the system and visited
all the places they were supposed to visit. Within a single
time unit an agent creates μ number of connections (τ varies
from 1 to μ). To follow the store and forward paradigm, we
assume that, each of the places as well as the agents has
a buffer (‘throwbox’ [26]) where several pieces of informa-
tion can be stored. Throughout this paper we assume that
all the communications between the agents take place via
these message buffers. Without any loss of generality, we
consider here the dissemination of a single message. Due to
the limited size, a message will be discarded from the buffer
of a place, after a certain time duration b, termed as buffer
time 2. However, due to sequential agent arrival pattern,
we assume that the agents can store a particular message
for their full life time, after they have got the message. The
information dissemination process along with the observable
in the process are described below.

• Initial Condition: Initially, i.e., prior to the start of
2The buffer time happens to be a very crucial factor in the
message dissemination process. A longer buffer time im-
plies plenty of redundant message copies, higher CPU cycle
as well as higher battery power consumption in the mobile
devices. On the other hand small buffer time may imply in-
sufficient node coverage. Therefore, arriving at an optimal
buffer time is crucial for the system to maintain a balance
between performance and load. Consequently, this factor
plays as one of the most significant constraints in the sys-
tem.



the dissemination process, the buffers of each place
and device of the agents are assumed to have enough
space to participate in the dissemination process.

• Start : The initiator of the dissemination process brings
or creates a message in its buffer and sequentially visits
μ number of places (preferentially) where the messages
are dropped so that other agents can pick up the mes-
sage and participate in the dissemination process.

• Dissemination through places: When some agent comes
in a place where the initiator has already dropped the
message, the message gets transferred to the buffer of
the agent if the agent is not already containing the
message.

• Dissemination through other agents: Once some agent
picks up a message from some place, it also partic-
ipates in the dissemination process. When such an
agent visits a place where the message is not present,
the message gets transferred to the buffer of the place.
At the same time, the buffer timer of the place gets
set to the value b which implies that the message can
be stored in the place for b time units. This provides
some chances to the place to convey the message to
different agents.

• Buffer timer manipulation: After the end of each time
unit, the buffer timers in all the places decrease by one.
However, when an agent who has already got the mes-
sage from some place, arrives at another place where
the message is already there, we assume that a fresh
copy of the message is brought to the place. We re-
late this event to the importance of the message which
is being disseminated and therefore give advantage to
the place by setting its buffer timer value back to the
maximum value, i.e., b.

• Observable: Keeping the ‘on the fly’ [21] structure of
DTN in mind, we abstract out the definition of cov-
erage as number of different places a particular mes-
sage can reach, under a given message dissemination
scheme. Hence, in the process described above, we
measure, the number of distinct places, the buffers of
which contain the message at different time steps. We
denote this quantity by Gd. This specific quantity is of
interest from the perspective of dissemination because,
the probability that any other mobile agent will receive
the information while visiting a place, is directly pro-
portional to the value of Gd.

Figure 1 pictorially describes this information dissemination
process. In the next section we describe the analysis of this
process of dissemination using evolution of the bipartite net-
work.

4. MODELING BY BIPARTITE NETWORK
In this section, we describe the modeling of the whole

information dissemination dynamics in DTN as a bipartite
network with one growing partition. We visualize the DTN
dynamics as a bipartite network where one of the partitions
corresponds to the places while the other corresponds to the
agents. The number of places is fixed and finite (=N) while
the number of agents grows over time and is modeled by
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Figure 1: A schematic diagram showing the informa-
tion dissemination process running in a DTN. There
are 5 places: P1 ... P5 and 2 agents A1 and A2. The
notation bpi denotes the current value of the buffer
timer of Pi, i.e., the rest time units for which the
message can be stored in the buffer of place Pi. We
assume here that the maximum buffer time is 10(=b)
and the agents can travel 10(=μ) places sequentially.
The empty and filled up circles denote the absence
and presence of message respectively. Arrows de-
note the direction of transfer of the message. Part
(a) and (b) are snaps of the process at the beginning
of creating the 9th and 10th connection at time t by
agent A4. In (a), the message gets transferred to P1

from A4. In (b), the buffer timer of P2 gets set to 10.
Part (c) and (d) are snaps at the beginning of cre-
ating 1st and 2nd connection by the agent A5. In (c),
no message transfer happens. In (d), the message
gets transferred from P3 to A5. Most of the possible
interactions are shown through this figure.
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Figure 2: Schematic diagram of a possible scenario
of the bipartite network corresponding to a DTN
comprising five places, i.e., N=5 (P1...P5) and three
agents, i.e., t=3 (A1 ... A3) with μ=3. The dia-
gram shows a possible status after all the agents
have joined the system. Part (a) shows the bipar-
tite network, (b) is the one-mode projection and (c)
is the thresholded one-mode projection for thresh-
old value 2.



the parameter t. Each agent is allowed to make μ connec-
tions sequentially one by one, each time choosing a place in a
preferential fashion (see Figure 2). Therefore, in both the bi-
partite network as well as the DTN domain, the parameters
N , μ and t have the same significance. Table 1 summarizes
the precise relationships between the parameters in the two
domains.

4.1 One-mode projection in bipartite network
In the course of visiting from place to place, the underlying

store and forward paradigm based algorithm, operating in
the mobile devices of the agents, allows one agent to convey
a message from one place to other. In order to capture
this message flow, we take the one-mode projection of this
bipartite network on the place set (one-mode projection, on
the place set, is a place to place graph where two places are
connected by an edge if there is one common agent who has
visited/connected both of the places). In this projection,
we assign weights to the edges where a particular weight
denotes the number of parallel edges between the two places
via same or different agents (if one agent has visited two
places each twice, then there will be four parallel edges in
the one-mode projection which captures the fact that there
are actually four different possible communications between
the two places). For a bipartite network G, we denote its
one-mode projection on the place set by GP (see Figure
2(b)).

4.2 Thresholding edge weight in the bipartite
network

It can be intuitively understood that, the buffer time in
the information dissemination process in a DTN, actually
controls the flow of the message from one place node to
the other. Therefore, the probability that a common visit
will convey a message, is directly proportional to the buffer
time b. Hence, for a given value of b, there is a minimum
number of common visits required to effectively convey a
message from one place to the other. To reflect this scenario
corresponding to a buffer time b in DTN, we introduce a
threshold edge weight c in the bipartite network. In partic-
ular, we prune those edges in the one-mode projection of the
bipartite network whose edge weights fall below c. Hence,
the rest graph contains only those edges which represent
strong and stable inter-place communication and thereby
accurately simulates the effect of b in DTN. For a certain
bipartite network G we denote this thresholded one-mode
projection on the place set, by G∗

P (see Figure 2(c)).

4.3 Time-varying threshold
The weights of the edges in GP vary with time for con-

tinuous arrival of the agents and their connection patterns.
Therefore, in order to bring the concept of temporal stability
of the edge weights between places of the bipartite network
(always imposed by b in DTN over the entire time evolution
of the system), we calculate the threshold c as a function of
time t, i.e., number of agents who already joined the system
(as we consider the arrival rate as one agent per time step).
In this work, we assume that c ∝ t and hence c = v × t. We
take this constant of proportionality v as the characteristic
parameter equivalent to a buffer time b in DTN.

Table 1: Relationship between the parameters in
DTN and the bipartite network
Type DTN Bipartite Net-

work
Remarks

Parameters Agents(t) Agent parti-
tion (t)

Growing

Places(N) Place parti-
tion (N)

Fixed and fi-
nite

Number of
place an agent
visits (μ)

Number of
connections
an agent
creates with
different
places (μ)

Constant (can
be taken from
some specified
distribution
also)

Buffer time
(b)

Threshold
varying with t
(v)

(See subsec-
tion 4.3)

Observable Number of
places where
the message
could reach
under the
dissemination
process (Gd)

Size of the
largest com-
ponent of the
thresholded
one-mode
projection
(Gb)

These quan-
tities should
match

5. RESULTS
The coverage in DTN for a certain value of b is conceptu-

ally the same as the size of the largest component (denoted
by Gb) in the one-mode projection of the bipartite network
suitably thresholded (keeping other parameters same in the
two domains). We simulate the time evolution for both Gd

as well as Gb for many different parameter combinations.
We find that these quantities become independent of t (be-
come stable) after a certain number of agents have joined
the system and their time evolutions also match accurately
with each other for different value pairs of v and b. Figure
3 shows few such sample cases for different combinations of
the other two parameters N and μ.

Thus, it can be understood that, to analyze the coverage,
i.e., number of distinct sites where a message can be spread
by means of a specific information dissemination scheme in
DTN, the very first step to be carried out is to estimate
the parameters of the bipartite network setup that can work
as a perfect “proxy” for the DTN setup. Therefore, this
parameter estimation process is our next focus.

5.1 Estimation of parameters of bipartite net-
work from DTN

In order to successfully establish a correlation between
the two domains we need to find a value of the time varying
threshold v in bipartite network functionally equivalent to
the value of the parameter b in DTN. In other words, the
relationship between these two parameters creates a bridge
between the two domains. To understand this equivalence
we start from the ground state in the DTN, where there is no
buffer i.e. b=0. In that case the information will not pass on
to a single other node. Therefore, the coverage will be zero.
This situation is captured in the bipartite network by using a
sufficiently high value of v which prunes all the parallel edges
in the one-mode projection of the bipartite network resulting
in a set of isolated nodes only. Similarly, in the opposite case,
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Figure 3: Comparison of the size of the largest com-
ponent (Gb) in the thresholded one-mode projection
of the bipartite network and the number of places
in DTN where the information, being disseminated,
is found i.e. coverage (Gd). The bipartite network
is formed corresponding to a DTN set up consisting
of (N=) 100 common places and (t=) 2000 mobile
agents each of which creates (μ=) 10 connections
with the places i.e. visits 10 places sequentially.
The four parts of the figure shows the results for
four different combinations of N and μ.

if we employ a sufficiently high value of b, eventually almost
all the nodes in the DTN will receive the message (after
sufficiently large number of agents have joined the system
with a sufficiently high value of μ). This scenario can be
mimicked by a very small value of v (≈ 0) in the bipartite
network which does not prune any of the edges from the
one-mode projection. Hence, an inverse relationship among
these two parameters can be observed. It can also be realized
that the relationship between v and b, is not independent of
N and μ. We extensively simulate the relationship between
v and b for different values of N and μ. Figure 4 shows few
sample results and the nature of the increase in the Gd and
decrease in the Gb with the increase in b and v respectively
for few combinations of N and μ. Using the commonality
of Gd and Gb, we infer values of v for given values of b. We
find that all these relationships between v and b (for different
combinations of N and μ) fit the following equation-

v = Ab−α + C (1)

where A and C are certain constants. Figure 4 also shows
the values of the parameters A, C and α for few different
combinations of N and μ. Through extensive simulation we
find that the value of the exponent α is directly proportional
to a non-linear combination of N and μ that we plan to
explore further as a part of our future work.

Next we focus on the theoretical analysis of the size of the
largest component in the thresholded one-mode projection
of the bipartite network for a given value of v. We describe
this process in the following subsections.

5.2 Component formation in bipartite network
In real life, the selection process for the next place to

be visited by the mobile agents, incorporates a little ran-
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Figure 4: Plots in (a) and (b) show the relationship
of Gd and Gb with the buffer time b and the time
varying threshold v respectively for different values
of μ while the value of N is set at 100. Plots in (d)
and (e) show the same relationship for different val-
ues of N while the value of μ is set at 15. Plots in (c)
and (f) show the relationship between b and v for dif-
ferent values of μ and N along with the parameters
A, C and α for the best fitting instance (99% con-
fidence level) of the equation 1. In all these cases
the values of Gb and Gd have been collected after
enough number of users have joined the system and
the system has stabilized.

domness, rather than being fully preferential. However, for
simplicity purpose, in this work, we have assumed a pure
preferential selection model. Due to this reason, the place to
place graph generated after application of threshold on the
one-mode projection of the bipartite network on the place
set, exhibits a special property described below. We denote
this property by P.

P: After any number of agents have joined, the thresholded
one-mode projection of the bipartite network on the place
set, consists of a single connected component while the rest
of the places that are not part of the largest component are
degenerate, i.e., have degree zero.

The full proof of this property (as empirically observed
by us for the first time in Figure 5) is out of the scope of
this paper. However, the basic intuition behind this sce-
nario can be sketched as follows. Due to preferential at-
tachment, the nodes of the connected component necessar-
ily have high degree in the bipartite network. Hence, any
new agent would almost surely make some of the connec-
tions with these nodes. Conversely, none of the new agents
will make all its connections only with the isolated nodes.
Hence, isolated nodes will either get absorbed in the giant
component or stay as single entity.

In order to test the above hypothesis, we simulate the
evolution process of the bipartite network for various com-
binations of the parameters N , μ and v for large values of
t. For pure preferential attachment process, we always find
that the sum of the two quantities : size of the largest com-
ponent, i.e., Gb and the number of components (denoted by
Cb), is equal to N+1. Plots of Figure 5 show the evolution
of Gb and Cb for two different values of v in four differ-
ent combinations of N and μ. It is clear from the plots
that the relationship Gb+Cb=N+1, is maintained through-
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Figure 5: Comparison of the number of components
(Cb) and largest component size (Gb) in four differ-
ent combinations of N and μ. For each such com-
bination, the relationship is shown for two sample
values of v throughout the evolution of the bipar-
tite network as 2000(=t) agents join the system se-
quentially. Each plot also shows the sum of the two
quantities (i.e. Cb+Gb) in all these cases.

out the whole evolution of the bipartite network for all v
which implies that the property P is satisfied throughout
the process. This result would help us to calculate the size
of the largest component.

5.3 Calculation of the size of the largest com-
ponent

In this subsection, we use the existing theory of bipartite
network to derive the expected coverage in the described
information dissemination process in DTN. We denote the
ground state of the bipartite network G as G0 where set A
is empty and set P contains N places. One agent joins the
set A per time step and creates μ connections with some
elements in the set P . We consider here only the fully pref-
erential attachment process. Using the basics of Polya Urn
scheme and the de Finetti theorem [9], it can be shown that
the probability that a new agent will create a connection
with a place i in P (let us denote this probability as θi) of
G, is marginally Beta distributed with the parameters bi and
b0 where bi is the initial degree of node i in G0 and b0 is the
sum of the degrees of the other nodes in P of G0. The work
in [12], assumes that all the nodes in set P have same initial
degree 1, i.e., bi=1, ∀i ∈ P which implies that θi, ∀i ∈ P ,
are identically Beta distributed with parameters (1, N -1).
It has been shown in [12] that the expected number of edges
at large time between node i and j of set P is (μ2 − μ)θiθj .
From this it has been shown that at large time, the proba-
bility that a place i with attractiveness θi will be connected
to some other place in the thresholded one-mode projection
of G, i.e., G∗

P (conversely the probability that a place i with
attractiveness θi have more than c = v × t parallel edges
with some other node in the one-mode projection, i.e., GP )

is equal to
�
1 − v

(μ2−μ)θi

�(N−1)

. Finally, deriving the ex-

pected number of such connections of node i and using the
Beta distribution of the attractiveness of the places of set P ,
[12] develops the cumulative degree distribution of the nodes
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Figure 6: Comparison of the size of the largest com-
ponent in the bipartite network obtained from equa-
tion 3 and the same obtained from simulation of the
evolution process in the bipartite network under dif-
ferent combinations of N and μ.

of the set P in G∗
P . Equation 2 shows this cumulative de-

gree distribution which effectively gives the probability that
a randomly selected node in G∗

P has degree greater or equal
to k at large time t.

Fk(t) =

�
1 − v

(μ2 − μ)x

�(N−1)

(2)

where v is the time varying threshold and x=1−
�

k
N−1

� 1
N−1

.

We use this result for calculating the size of the largest
component as follows. As we consider only fully preferential
model of attachment, the property P holds true throughout
the evolution process. Hence, the fraction of nodes which
form the largest component are the nodes that have degree
1 or higher. This fraction could be obtained by putting k=1
in equation 2. We multiply this probability with N to get
the number of nodes in the largest component which reads
as follows.

Gb = N ×
�
1 −

�
N−1
�

(N − 1)
N−1
�

(N − 1) − 1

�
×
�

v

μ2 − μ

�	N−1

(3)
We simulate the evolution of the bipartite network for

various combinations of N and μ and measure the size of the
largest component. Figure 6 shows the match of theory and
the simulation results for eight such different combinations.

For large value of N , the ratio

�
N−1

√
(N−1)

N−1
√

(N−1)−1

�
is almost

equal to 1. The value v is generally less than 1 and (μ2 −μ)
is comparatively a large value (� 1). Hence, ignoring the
higher order terms in binomial expansion in equation 3, we
get the following simplified form of Gb.

Gb = N − N(N − 1)

μ(μ − 1)
× v (4)

5.4 Calculation of the coverage in DTN
Putting the exact expression for v in terms of b in equation

4 we get the following formula which provides a very close
estimation of the coverage in DTN.
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Figure 7: Comparison of the size of the largest com-
ponent, i.e., Gb in the bipartite network obtained
from equation 3 and the coverage values obtained by
simulating the information dissemination process in
DTN for various buffer times under four different
combinations of N and μ.

Gd(= Gb) = N − N(N − 1)

μ(μ − 1)
× (Ab−α + C) (5)

To test the accuracy, we simulate the dissemination process
in DTN, for several buffer times (for different combinations
of N and μ) for which we already know the relationship
with their equivalent time varying threshold. Using that re-
lationship we calculate the equivalent values of v and also
calculate the size of the largest component in the thresh-
olded one-mode projection of the equivalent bipartite net-
work from equation 3. We find that these theoretical results
and the coverage obtained by simulation of information dis-
semination in DTN, match quite accurately thus pointing to
the fact that the empirically derived relationship between v
and b is quite appropriate. Figure 7 shows four such cases
for different combinations of N and μ.

5.5 Insights obtained from the analysis
We arrive at several significant insights from the closed

form expression of coverage derived in terms of N , μ and b
(equation 5). Most importantly, it has been found that, for
a given value of N , μ and b, the number of nodes covered in
the dissemination process does not grow unboundedly with
the increase in the number of agents (t) joining the system;
rather, after a certain value of t, the total number of place
nodes covered, gets stabilized and is limited by the buffer
time b (see Figure 3).

Further, to visualize the significance of equation 5, we
present a three-dimensional plot (Figure 8(a)) showing the
interaction of Gd, μ and N . It is clear from the plot that
Gd bears an inverse relationship with N and a direct rela-
tionship with μ. Precisely, a closer look at the equation 5
reveals that indeed Gd is inversely proportional to N2 and
directly to μ2.

As a final remark, we note that the rate of growth of Gd

slows down with an increasing value of b (see Figure 7) and
particularly after a critical value (say bc) Gd is almost stable.
From the perspective of a design engineer, the value of bc

could be crucial. Naturally the cost associated with dissemi-
nation process (buffer space, CPU consumption, bandwidth
etc.), should bear a connection with bc. We assume that this
cost is a ratio of the coverage achieved to the overhead in-
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Figure 8: Part (a) shows the plot of the percent-
age of the number of places covered (i.e., Gd) as a
function of the total number of places (N) and the
number of places an agent visits (μ). Part (b) shows
the plot of the critical buffer time value (bc) con-
strained by different cost values (δ).

curred per unit increase of b and denote it by δ. Therefore,
the rate at which the cost increases should not overshoot
the rate at which Gd increases and so we have the following
relationship.

dGd

db
> δ (6)

Evaluating the derivative of Gd with respect to b and using
relationship 6, we get the following expression for the critical
buffer time (bc).

bc = α+1



αAN(N − 1)

δμ(μ − 1)
(7)

In Figure 8(b), we plot the values of bc for different values
of δ under few different combinations of N and μ. The value
of δ can be chosen freely according to the design requirement.
However as a proof of concept we inspect the values of delta
between 1 and 6 to investigate the nature of the equation 7.
The values of bc, for say N=100 and μ=10, effectively mean
that, to satisfy different values of δ, the employed values of b
should be below the corresponding curve in Figure 8(b). It
is seen that, with increasing cost, increasing the buffer time
rapidly becomes uneconomical.

6. CONCLUSION
In this paper, we have identified a novel way of looking at

the problem of estimating the coverage of the information
dissemination process in delay tolerant networks. In par-
ticular, we found that the DTN system has an underlying
“bipartite mechanism” which can be used as a “proxy” for
analytically estimating the coverage. We have shown that
the complexity of computing this quantity for DTN can be
reduced to the problem of inferring a suitable value of v (bi-
partite domain) from a given value of b (DTN domain). In
addition, we also observed that (i) arbitrarily increasing t
does not amount to an arbitrary increase in the coverage
while constrained by a specific value of b, (ii) the coverage
achievable is inversely proportional to N2 and directly pro-
portional to μ2 and (iii) it is possible to design an optimal
value of b for a desired cost of coverage.

Some of the limitations of the current approach are that



we assumed a sequential arrival of agents and a fully prefer-
ential choice of their movements. It is quite straightforward
to relax both of these assumptions by respectively allowing
for overlapping life span of the agents in both the domains
and introducing a randomness parameter in the model that
can control the preference factor of the agents. Preliminary
experiments on both of these issues (to be reported else-
where), show that the major trends are (almost) equivalent
to what has been presented in this paper. Furthermore, in
this work we mainly focus on the coverage achieved after
the system has stabilized/saturated. However, the coverage
achieved within a given period of time is also of high im-
portance. Many works have been already done to analyze
this in general peer-to-peer networks [17, 18]. We plan to
incorporate this factor as a part of the future extension of
this work.
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