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Broadcasting in DTNs is an important problem with various applications in disaster re-
lief, rural networks, vehicular networks. Significant work has been done in epidemiology
that have addressed similar problems in a different setting. A natural question is to under-
stand the applicability of these well understood theories in DTNs. This poster is an attempt
towards making these connections. We study the effect of both omnidirectional and direc-
tional antenna in broadcasting. We derive an expression for the mean broadcasting time
and study the information dissemination in the system using elements of classical epidemi-
ology through rigorous simulations.

I. Introduction

Problem of broadcasting in a wireless delay-tolerant
network (DTN) [1] can be appropriately mapped to
disease spreading in classical epidemic model. Here,
we study the broadcasting properties of a system of
mobile agents equipped with short-range communi-
cation antennas. We have used specifically direc-
tional antenna and omnidirectional antenna and we re-
fer them as “DA” and “OA” respectively in rest of this
poster abstract. We consider, for simplicity, that there
is only one message to broadcast. In analogy to clas-
sical epidemic modeling [2], agents can be in one of
three possible states: susceptible (agent has not yet re-
ceived the message), infected (agent has received the
message and been broadcasting it for a given time),
and recovered (agent is in idle mode after broadcast-
ing). These three states are abbreviated as S, I and
R respectively. The recovered agents after some time
move back to susceptible state, following the classical
SIRS dynamics of epidemiology. Due to limited bat-
tery power of the DTN nodes, instead of transmitting
the message continuously (until battery drains out),
the nodes become inactive or idle (recovered state) for
some duration (denoted by τR). In order to model the
store and forward concept of DTN, the message is for-
warded for the entire infected period (denoted by τI )

We base our study in previous works on disease
spreading on mobile agent systems [3–5]. We show
that, information spreading dynamics of the systems
with only OA agents can be described by simple
mean-field theory. We also derive an expression for
the average broadcasting time and compare the ana-
lytical findings with extensive agent-base stochastic

simulations.
The study of epidemic broadcasting with DA is a

novel approach and although there are some recent
works on broadcast and DA [6, 7], to the best of our
knowledge this is the first work which explores the im-
pact DA produces through epidemic broadcasting. In-
terestingly DA with same power performs much bet-
ter than OA. Precisely, this poster tries to solve the
following pertinent problems:

• Understanding broadcasting in DTN using epi-
demic spreading models (specifically with mean-
field approach).

• Estimation of broadcasting time in DTN analyti-
cally and experimentally.

• Examining the utility of DA in DTN and detailed
comparative study of OA and DA with different
conditions.

II. Agent-based model

II.A. Agent motion and antenna direc-
tion

We assume agents are self-propelled and move at con-
stant speed in a two-dimensional box with periodic
boundary condition, changing their direction of mo-
tion at Poissonian distributed times. The equation of
motion of the i-th agent can be expressed as:

ẋi(t) = v (cos(αi)x̌ + sin(αi)y̌) (1)

θi(t) = Fθ(t) (2)

where xi(t) represents the position of the i-th agent,
θi(t) denotes the orientation of its antenna (a relevant



variable for DA, but irrelevant for OA), v is the agent
active velocity and αi is the active direction of motion.

Fθ(t) is the dynamics of the antenna orientation
which is determined by prot, the probability per time
step of changing the antenna direction. Antenna
changes its orientation randomly between 0 and 2π.
Initially, the distribution of the antenna orientations
are random.

II.B. Signal transmission - the agent an-
tenna

Power of the signal captured by receiving agent i from
transmitting agent j can be described by the Friis
transmission formula as

Pr(xi, θi,xj , θj) =
λ2PtGT (θj ,xj ,xi)GR(θi,xi,xj)

(4π)2 |xi − xj |2

where λ is the signal frequency, GT and GR represent
the gain of the agents in the direction to each other.
The functional forms of GT and GR depend on the
specific antenna and antenna beamwidth γ used by
the egents. Agent i receive the message sent by j if
Pr crosses a certain threshold δ. For more details re-
garding the Friis transmission formula and the possi-
ble functional forms of GT and GR we refer the reader
to [8]. However, we have assumed that antennas are
not ideal antennas. They exhibit a some small leakage
of power as side lobe in DA . For more details see [9].

Notice that the system can have a mixture of OA
and DA agents. Fig. 1 illustrated the six possible rela-
tive orientations of antennas.

III. Mean-field approach

When agent interactions are mainly binary and the
system is well-mixed, we can represent the informa-
tion dynamics by mean-field approach as

Ṡ =
R

τR
− (ρψ) IS (3)

İ = (ρψ) IS − I

τI
(4)

Ṙ =
I

τI
− R

τR
(5)

where S, I and R are defined as S = NS/N , I =
NI/N and R = NR/N , with N being the total num-
ber of agents in the system, and NS , NI , and NR be-
ing the number of susceptible, infected and recovered
agents, respectively. Here ρ stands for the agent den-
sity and ψ represents the (new) area an agent explores
per time unit [5].
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Figure 1: Relevant configurations between transmit-
ting antenna (TA) and receiving antenna (RA), de-
pending on the antenna type. Figure (a) corresponds
to a pair of OAs. Figures (b), (c), and (d) illustrates the
relevant configurations for a pair of DAs. The mixed
case, i.e., the configurations corresponding to OA and
DA are illustrated in figures (e) and (f). Notice that if
the TA becomes RA and vice versa, the communica-
tion range remains the same.

III.A. Average broadcasting time

The fraction of informed agents at time t can be rep-
resented as

Y (t) =
(

1
N
− 1

)
exp

[
−(ψρ)

∫ t

0
dt′I(t′)

]
+ 1, (6)

assuming that we know I(t) and at t = 0 there is only
one agent informed and transmitting the message.

According to Eq. (6) all agents receive the message,
i.e. Y (t) = 1, at t →∞. No doubt that in a finite sys-
tem, in simulations Y (t) becomes 1 at a finite time t.
To overcome these problems, we propose to use an al-
ternative definition for broadcasting time. According
to Eq.(6), Y (t) experiences a crossover when:

∫ T ∗b

0
dt′I(t′) =

1
ψρ

, (7)

where T ∗b is the new defined broadcasting time repre-
senting the time (t) where Y (t) = 1− exp(−1).

IV. Results

We have mainly tried to compare the broadcasting be-
havior in systems with different ratio of OA and DA
agents. Note that the power of DA is same as that
of OA agents. First, we have shown the closeness
of mean-field approach when all agents are equipped
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Figure 2: Time evolution of S (green dashed), I (red
solid) , R (black dashed), and Y (blue dash-dotted) for
a system with N = 1000 agents with OA at a density
ρ = 0.06. Black solid curves correspond to the mean-
field approach ( Eqs. (3)-(5)) and (6). The vertical
black dashed line corresponds to Eq. (7).
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Figure 3: Average broadcasting time T ∗b as function
of the agent density ρ. Simulations were performed
using N = 1000 agents. Each circle corresponds to
the average of 100 simulations.The red dashed curve
indicates the theoretical prediction given by Eq. (7).
Notice that there is no fitting parameter.

with OA. Then we incorporate the DA agents into the
systems and observe various interesting results.

IV.A. Omnidirectional antenna

The simulation shown in Fig. 2, and the rest of the
simulations of this poster, were performed with N =
1000 agents and the following parameters: τI = 500,
τR = 50, and v = 0.1. In Fig. 2, agents are equipped
with OA with a maximum interaction range r = 1,
and the linear system size L = 133, i.e., ρ = 0.056.

Finally, we show that Eq. (7) can be used to predict
T ∗b at different densities. Fig. 3 shows T ∗b as func-
tion of the agent density ρ. Each circle corresponds
to an average over 100 simulations, while the dotted
curve is the prediction given by Eq. (7). As it can
be observed, the mean-field approach provides a rea-
sonable description of the broadcasting dynamics of
the system at intermediate densities without any fit-
ting parameter.
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Figure 4: Average broadcasting time T ∗b vs. DA frac-
tion ρDA for various rotation probability prot, agent
density ρ = 0.05, beam width γ = 60.
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Figure 5: Average broadcasting time T ∗b vs. DA frac-
tion ρDA for various values of antenna beam width γ
with rotation probability prot = 0 (a) and prot = 1 (b)
for an agent density ρ = 0.05.

IV.B. Omnidirectional vs. Directional
antenna

In simulations, DA agents have the same values of Pt

and δ as OA agents. Fig. 4 shows that the broadcasting
time T ∗b decreases as the fraction of DA agents (ρDA)
is increased. Notice that for ρDA = 0, i.e., for only
OA agents, T ∗b , as expected, does not depend on prot.

Fig. 5 focuses on the two extreme cases, (a) prot =
0 and (b) prot = 1. When prot = 0, the evolution
of message broadcasting depends exclusively on agent
migration (Fig. 5 (a)). On the other hand, when prot =
1, the new area explored by the antenna per unit time
is dominated by the turnings perform by the antenna
direction. As it can be seen in Fig. 5 (b), these effects
become more pronounced for smaller values of γ.

Fig. 6 shows the response of T ∗b as agent den-
sity ρ is changed. The simulation data indicates that
DA performs better for all densities. Inset plot of
Fig. 6 describes the comparative performance of sys-
tem with all DA agents over the system with all OA
agents. It shows that in higher density DA system per-
forms better. This also highlights the benefits of the
longer range transmission of DA agents in higher den-
sity where it broadcasts the message more quickly by
reaching more number of distant agents.
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Figure 6: Average broadcasting time T ∗b vs. agent
density ρ for various values of DA fraction ρDA, for
γ = 60, prot = 0. Inset figure shows the Ratio of T ∗b
of system with ρDA = 100 and ρDA = 0 for different
agent density.

From the above stated detailed simulation results
we can infer mainly three important observations:

1. System with DA agents with prot = 1 demon-
strates lower broadcast time than the system of
DA agents with prot = 0.

2. DA agents with smaller γ performs (in term of
T ∗b ) comparatively better than the agents with
larger γ. This is true for all values of prot.

3. Independent of other parameters, system with
DA agents always show better result compare to
the system of only OA agents (ρDA = 0).

V. Conclusions

We have carried out experiments for various beam
width, agent density, rotation probability as well as
with various proportion of DA and OA. We have
taken a deeper look into the dynamics to reason out
the cause behind the superiority of DAs. A fur-
ther more quantitative understanding regarding the ef-
fect of mixture of agents with different antenna beam
width will facilitate the use of DA more effectively
and will be main thrust of future work.
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