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In this paper, we develop methods to estimate the network coverage of a TTL-bound
query packet undergoing flooding on an unstructured p2p network. The estimation based
on the degree distribution of the networks, reveals that the presence of certain cycle-

forming edges, that we name as cross and back edges, reduces the coverage of the peers
in p2p networks and also generate a large number of redundant messages, thus wast-
ing precious bandwidth. We therefore develop models to estimate the back/cross edge
probabilities and the network coverage of the peers in the presence of these back and
cross edges. Extensive simulation is done on random, power-law and Gnutella networks
to verify the correctness of the model. The results highlight the fact that for real p2p
networks, which are large but finite, the percentage of back/cross edges can increase
enormously with increasing distance from a source node, thus leading to huge traffic
redundancy.

Keywords: Peer-to-peer networks; network coverage; network performance; overlay
characteristics; message redundancy.

1. Introduction

Many unstructured peer-to-peer (p2p) networks like Gnutella, FreeHaven and
Kazaa use broadcasting as their query and search mechanism [12]. The query and
search performance of these p2p networks are directly proportional to the net-
work coverage of the peers achieved through broadcasting. Since, broadcasting or
flooding generates huge amount of traffic [3, 21], to control the volume of traffic,
most networks limit the number of hops of a broadcast message to a particular
Time-to-Live (TTL) value, naturally sacrificing coverage hence search efficiency.
For example, dynamic querying [1] in Gnutella uses TTL(2) (numeric value inside
parenthesis represents the number of hops to search with) flooding for most searches.
Apart from the p2p networks, in context to which the importance of network cov-
erage has been discussed here, the impact of network coverage extends to many
other important applications like online social networks, online recommendation
systems and also online advertising systems. There have been some recent works on
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improving network coverage for increasing search efficiency through better topology
management. In [8, 28] the authors have proposed cycle-free topology generation
mechanisms for improving network coverage and message redundancy in networks
that use TTL(2) flooding; however, the works are not supported by proper analysis
of the coverage bounds. Thus proper analysis of the coverage bounds of the peers in
the network is required to understand the effectiveness of the strategies; this paper
is directed towards fulfilling that goal.

Topological properties of large graphs have been a much investigated topic in
classical physics [9–11, 26], in context of which Newman et al. [17] studied the
neighborhood properties of nodes in large random networks with arbitrary degree
distributions using a generating function formalism. We have used these concepts
of Newman et al. in our earlier paper [7] to derive a basic model of TTL(2) coverage
bounds of the peers in p2p networks with a given degree distribution. The topology
of these networks was assumed to be random, where a particular topology can be
selected uniformly from all the possible topologies with such a given degree distri-
bution. We have also identified that the basic model makes a simplified assumption
that the underlying topology is tree-like; in contrast real networks contain certain
cycle forming edges, which we referred as back and cross edges. In a network, if
a source node broadcasts a TTL based message, the cross and back edges of the
source node are those edges, through which a transmitted non-duplicate message
from one end of the edge will produce a duplicate message at the receiving node.
In the process of broadcasting the TTL-based message of a source, the probability
of encountering these cross and back edges are termed as the cross and back edge
probabilities, respectively, of the source node.

In Ref. 7, we introduced the concept of cross/back edges and derived the TTL(2)
coverage of the peers in these networks, assuming a common back and cross edge
probability for all the nodes in the network. No efforts were made to derive the
back and cross edge probability of the nodes in the network. However, from the
simulations (the details of which is discussed later) we observed that the num-
ber of back/cross edges of a node depend on its current degree. Hence, based on
this observation, in this paper we derive models to estimate the back/cross edge
probabilities of the peers, with respect to their degrees, for random networks when
certain network properties like the degree distribution and clustering coefficients
are known. The proposed refinement thus derives the TTL(2) network coverage
of the peers with respect to their current degree. The accuracy of the models is
validated on several types of networks, like Erdős–Rényi networks, scale-free net-
works, random clustered networks [19] and also on a simulated Gnutella-like network
using extensive simulations. We further generalize the concept of back and cross
edges for any TTL values and derive the TTL(n) network coverage of the peers
in the network. The results indicate that the probabilities of occurrence of these
edges increase enormously with increasing distance from the source nodes, which
can result in huge traffic redundancy, thus questioning the effectiveness of larger
TTL based search. Although the models have been derived and validated for p2p



August 4, 2011 11:57 WSPC/S0219-5259 169-ACS S0219525911003141

On Coverage Bounds of Unstructured Peer-to-Peer Networks 613

based applications, however they are applicable for various other network-based
information spreading or biological applications that assumes random network
topologies.

The organization of the paper is as follows: in Sec. 2, we provide a brief
background of the topology formation and search mechanism in unstructured p2p
networks. In Sec. 3, we provide a brief review of the basic model and state its limi-
tations, in Sec. 4, we derive a refined model of estimating TTL(2) network coverage
for given cross/back edge probabilities. We derive the back/cross edge probabilities
for purely random as well as clustered random networks with arbitrary distribution
in Sec. 5; in Sec. 6, we derive the TTL(n) network coverage and generalize the
back/cross edge probabilities for any distance from a source node. Finally, we draw
conclusions in Sec. 7.

2. Overview of Unstructured p2p Networks

We here provide a brief outline of the characteristics of unstructured p2p networks.
In these networks, the peers or the nodes that join a particular p2p network form a
community among themselves. The peers store certain files, which are shared over
the network community. Peers willing to obtain a file from any remote peer initially
issues a query for that file; the peers storing the intended file are searched over the
network and if the file exists, it is downloaded from the peers where it resides.
Although the precise characteristics of the various unstructured p2p networks dif-
fer slightly, however, the topological structure and the search mechanism in these
networks are largely the same.

Popular unstructured p2p systems like Gnutellaa and Kazaa use a super-peer
based architecture, where a set of few resourceful (like having high storage space,
high bandwidth etc.) peers act as super-peers or ultra-peers, whereas, rest of the
peers are termed as leaf peers. Each peer runs the p2p application software that we
term as servant, which performs all the basic p2p tasks like bootstrapping, com-
municating with other peers and file retrieval. Apart from these basic tasks, the
ultra-peers handle the search and indexing mechanism in the network. Although
the exact values of the number of ultra and leaf neighbors depend on the specific
servant that is being used by the peers but for the case of Limewire servant, which
is a very popular Gnutella-based servant [23], each ultra-peer connects to a max-
imum of 30 leaf peers and maintains a hashed index of the files that are present
in the leaf peers to which it is directly connected. Each ultra-peer is connected to
a maximum of 32 other ultra-peers; the ultra-peers are responsible for searching
the files requested by peers. Each leaf peer connects to 3–4 ultra-peers; however,
the leaf peers are not connected to each other. Thus the majority of the traffic
moves on the ultra-peer level. Early measurements studies have shown that there

aFrom version 0.6 onwards, the Gnutella networks switched to a two layer super-peer based archi-
tecture; previous versions used a pure decentralized model, where all the nodes are considered
equal.
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are approximately 100–200K live Gnutella peers in the network at any time out of
which nearly 15–16% are ultra-peers [15].

Some peers maintain information about other remote peers along with their dis-
tance, in terms of the number of hops from it, in a cache called GWebCache. The
information about these remote peers is propagated through their neighbors; newly
joined peers obtain the information about these remote peers from some of these
GWebCaches and attempts to connect to them, randomly. This protocol determines
the topological nature of the system. The topological properties of these unstruc-
tured p2p systems have been studied in details [16, 20, 25] and it has been observed
that the degree distribution of the peers follows a power-law distribution. This is
because, due to higher connectivity, the information about the high degree peers
disseminates to more number of nodes as compared to the low degree peers; hence
newly joined peers are more likely to connect to a high degree peer as compared
to a low degree one (preferential attachment), thus forming a power-law degree
distribution of the peers. Further, it has also been observed that the average clus-
tering coefficient in Gnutella is higher (0.02) as compared to Erdős–Rényi graphs
of the same size (0.002); however, the exact reasons for this high clustering is not
yet known. Hence, keeping in view the clustering properties of the nodes, we derive
our models for two kind of random network topologies, (a) uncorrelated random
networks with given degree distribution generated using configuration model and
(b) clustered random networks with given degree distribution and average clus-
tering coefficients of each node degree, generated using Serrano model [22], that
generates random networks with given clustering properties.

The query propagation mechanism in unstructured p2p networks is based on
flood-based mechanisms. For example, the query propagation mechanism from
Gnutella version 0.6 onwards are done using a technique known as Dynamic Query-
ing mechanism [1]. In this method, the ultra-peers use a controlled broadcasting
means to propagate the queries to other peers. Initially, a query is sent by an
ultra-peer to its neighbors with TTL value of 1. If the total number of search
results returned by the neighbors is greater than 150, the query propagation is
stopped, otherwise the query is propagated with a TTL value of 2 to a subset of
neighbors. A TTL value of 3 is only used for very rare searches when the num-
ber of results returned by TTL(1) and TTL(2) broadcast is less than 150. Modern
Gnutella servants never propagate a query with TTL value greater than 4; Kazaa,
also uses a similar TTL value. Thus, the search performance of the peers is directly
proportional to their network coverage, i.e. the number of unique peers to which
the TTL bound queries can reach. Hence, we initially derive the network cover-
age of the peers for up to TTL values of 2 and then later generalize the same for
any TTL.

We next provide a brief review of the basic model, but prior to that a list of
main notations that will be used throughout the paper is summarized in Table 1
for ready reference.
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Table 1. Notations.

TTL(r) Query with TTL = r

N Total number of peers in the network
pi Probability that a random node in the

network is of degree i
〈z〉 Average degree of the peers in the network
〈z2〉 Second moment of the degree of the peers
κk Cross edge probability at level 1 of peers with degree k
bk Back edge probability at level 1 of peers with degree k

κ
(c)
k Cross edge probability at level 1 in a clustered

random network of peers with degree k

b
(c)
k Back edge probability at level 1 in a clustered

random network of peers with degree k
κk(l) Cross edge probability at level l of the peers of degree k
bk(l) Back edge probability at level l of the peers of degree k
ak(l) Total number of neighbors of a peer, of degree k, up to level l

3. The Basic Model and Its Limitations

In this section we present a brief review of the basic model for deriving the TTL(2)
coverage of the peers in a random network with given degree distribution and
discuss the limitations of this model. The degree of the nodes are chosen randomly
based on the specified distribution; the network topology is assumed to be chosen
randomly from all the possible topologies with that given degree distribution.

The coverage of a peer for a TTL(2) broadcast is actually the sum of its first
and second neighbors. Newman et al. [17] derived models for the distribution of the
number of first and second neighbors of a node in a large graph, where the number of
nodes, N → ∞. Suppose, in a large network with N nodes (N is large), let pk denote
the probability of any random node in a network having k first neighbors. Such an
uncorrelated random network can be easily generated using the configuration model
[6]. The first neighbor distribution of the nodes in the network can be represented
using a generating function [27] as,

G0(x) = p0 + p1x + p2x
2 + p3x

3 . . . , (1)

where the coefficient of xi in G0(x) gives the probability that any random node
in the network will have degree i. The average number of neighbors of a node is
given by,

〈z〉 = 1 · p1 + 2 · p2 + 3 · p3 + · · · = G′
0(1). (2)

On traversing a random edge, the probability of reaching a node with k−1 outgoing
edges is proportional to both its degree k and also the probability of selecting the
node of degree k, which is pk. Thus, the probability of reaching a node with k − 1
outgoing edges is given as kpkP

j jpj
= kpk

〈z〉 . The generating function for the distribution



August 4, 2011 11:57 WSPC/S0219-5259 169-ACS S0219525911003141

616 J. Chandra and N. Ganguly

of the remaining outgoing edges of a node reached by following a random edge can
thus be represented as,

G1(x) =
1
〈z〉 ·

(∑
kpkxk−1

)
=

G′
0(x)

G′
0(1)

. (3)

Suppose, we want to find the number of second neighbors of a node, P . The distri-
bution of the number of outgoing edges from k neighbors of a random node with
degree k is given by

Sk(x) = [G1(x)]k. (4)

Thus, if each of the outgoing edges from the k neighbors leads to a unique node
(i.e. no cycles are formed), then Sk(x) represents the distribution of the number
of second neighbors of a node with degree k and the distribution of the number of
second neighbors of any random node P, is given by,

S(x) =
∑

k

pk[G1(x)]k = G0(G1(x)). (5)

If 〈z2〉 denotes the average number of second neighbors of a node, then

〈z2〉 =
[

d

dx
G0(G1(x))

]
x=1

= G′′
0 (1). (6)

The total network coverage of a peer in p2p networks that use TTL(2) flooding
scheme is the sum of its number of first and second neighbors. Hence the distribution
of the total node coverage of a peer P that deploys a TTL(2) flooding mechanism
is represented by the generating function C(x) as,

C(x) =
∑

k

pkxkSk(x) =
∑

k

pk[xG1(x)]k = G0(xG1(x)). (7)

Using these expressions, we can obtain the expected TTL(2) coverage, 〈c〉 of a peer
which is given as,

〈c〉 = C′(1) =
[

d

dx
G0(xG1(x))

]
x=1

= G′
0(1) + G′′

0 (1) = 〈z〉 + 〈z2〉. (8)

Limitations of the Basic Model. The expression in Eq. (7) provides correct
reachability distributions only when the nodes reached from a source node, using
TTL(2) flooding, do not form any short length cycles among themselves, i.e. it
actually provides a maximum TTL(2) coverage bound of a node for a given degree
distribution. This is because, the expression Sk(x) = [G1(x)]k in Eq. (4) gives the
distribution of the number of excess outgoing edges from the first neighbors of a
k-degree node, P . Assuming that each outgoing edge from the neighbors of P leads
to a unique node, i.e. a node that has not been reached through any other path,
Sk(x) represents the distribution of the number of second neighbors of P . But,
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for many real cases, this condition fails to hold; for example, in p2p systems that
behave like social networks, the nodes inherently form many short length cycles.
The cycles, caused by edges that affect the coverage of the nodes are referred to as
cross and back edges (see Fig. 3(a)), which are defined as follows.

Definition 1. To define cross and back edges of a source node (say P ), we perform
a breadth first traversal from P . A node Pi is said to be at level i with respect to
P if Pi is reached using a minimum of i hops from P . Considering the root P to
be at level 0, a cross edge at level i of node P is formed, if an edge from a node at
level i of P , connects to another node at the same level (in Fig. 3(a) edges P1P2,
P3P4 are cross edges of P at level 1 and XY is a cross edge of P at level 2) or to
a node at level i − 1 except its parent (in Fig. 3(a), XP2 is a cross edge of P at
level 2). To define back edges of node P at level i, we traverse the edges from the
nodes at level i, in any random order, to reach the nodes at level i + 1; an edge is
defined as a level i back edge of node P , if the edge connects to a node at level i+1,
which has already been reached through a different node (in Fig. 3(a), edge P2X is
a level-1 back edge of P as P1X has been traversed earlier than P2X). Thus, edges
are defined with respect to nodes; hence an edge can be a back-edge with respect
to a node and cross edge with respect to other. Further, for a particular node, the
same edge can be a back edge at a particular level i and cross edge at level i + 1
(in Fig. 3(a), edge P2X is a back edge of P at level 1 and a cross edge at level 2.

Every other edge will always lead to a new node that has not been explored earlier
and will be termed as regular edge. For simplicity, we refer the back/cross edges at
level 1 as simply back/cross edge,without repeatedly mentioning the term, level 1,
whereas back/cross edges at level l (l > 1) are referred explicitly as back/cross
edges at level l. In this paper, unless otherwise mentioned explicitly, the terms back
edge and cross edge for a source node refer to back and cross edge at level 1 only.
Certain salient features of the back/cross edges observed by simulating a prototype
of Gnutella network and an Erdős–Rényi network are as follows:

(1) The presence of back and cross edges in a network reduces the average second
neighbors of the nodes in the network. Figure 1(a) shows the effect of back/cross
edges on the distribution of second neighbors of the Gnutella network with
around 27 k nodes. Due to the presence of back/cross edges, the average number
of second neighbors for nodes with degree 7 is 151, which would have been 168
otherwise, thus resulting in 10% drop in coverage at TTL(2).

(2) The back/cross edge probabilities are dependent on the degree k of a source
node and cannot be considered a single value for the entire network (an initial
suggestion in Ref. 7). Figure 1(b) illustrates the situation. In this figure, we
compare the distribution of second neighbors in a Erdős–Rényi network, of a
node of degree 40, obtained from our model by considering fixed back/cross
edge probability and degree dependent back/cross edge probability. The root
mean squared error (RMSE) value derived for our refined model, that considers
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Fig. 1. (a) shows the effect of back/cross edge on the second neighbor distribution of the peers in a
Gnutella Network; the actual number of second neighbors is much less in the presence of back/cross
edges as compared to the case when no back cross edge is present. (b) shows the accuracy of
the calculated average second neighbors when back/cross edge probabilities are calculated as a
function of the source degree as compared to the case when a fixed probability is used for the whole
network. The network size is 30 k with connection probability p̂ = 0.0017. The graph compares
the second neighbor distribution of nodes with degree k = 40, obtained from simulation results
with 3 possible cases, (i) when a fixed mean back and cross edge probability, bk = 0.04 and
κk = 0.001, respectively, is used, (ii) when back/cross edge probability is calculated using our
model and (iii) for the basic model when no cross/back edge is assumed.

degree dependent back/cross edge probabilities, with respect to the simulation
results was found to be 0.0005, whereas the RMSE for fixed back/cross edge
probabilities with respect to the simulation results was around 0.0013. The
normalized RMSE (NRMSE) obtained by dividing the RMSE value with the
difference between the maximum and minimum values of the probabilities of
second neighbors is around 0.05 and 0.13, respectively, thus indicating that
degree dependent back/cross edge probabilities produces a better fit as com-
pared to the fixed back/cross edge probabilities.

Thus the task is to derive a rigorous model which will estimate the second neighbor
distribution of a network taking into consideration the degree-dependent back/cross
edge probabilities which is done in the next two sections.

4. Coverage Bound With Back and Cross Edges: Refined Model

In this section, we derive models for two-hop network coverage of a node in any
random network when the degree distribution and the back/cross edge probability
of the network is known. Thus unlike the basic model, where apart from the degree
distribution, all other aspects of the network was random, in this case we consider
networks, where the degree distribution and the cross/back edge probabilities of
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the nodes in the network are given; however connectivity between the nodes is
totally random. We later go on to derive back/cross edge probabilities for certain
networks like uncorrelated random networks, Erdős–Rényi networks and random
networks with given clustering coefficient. Further, the derived two-hop coverage
model will be used later to derive the generalized coverage of the peers for any
TTL values. We later validate the models using simulations on various network
topologies like (a) Erdős–Rényi networks formed by connecting each pair of nodes
in the network with a fixed probability, (b) uncorrelated power-law networks formed
by distributing the degree of the peers according to a power-law (pk ∼ k−α, where α

is a constant that varies from 2 to 3 for most real networks [4, 5]) and connecting the
peers randomly using configuration modelb [6] and (c) the ultra-peer level network
topology in a simulated Gnutella-like network [8], so as to obtain an arbitrary degree
distribution. We refer this topology as a Simulated-Gnutella topology. Apart from
these we also validate our protocols on topologies that are generated based on real
Gnutella snapshots obtained from Ref. 2 like, (d) an uncorrelated random network
formed using the degree distribution of the peers in real Gnutella and connecting
these peers using the configuration model (Random-Gnutella) and (e) a clustered
random network based on the degree distribution and clustering coefficients for each
node degree in the real Gnutella network, generated using an algorithm proposed
by Serrano et al. [22] (Serrano-Gnutella).

Let us assume that a network with known degree distribution has N nodes
and a random node P has degree k. Then as shown in Eq. (4), the number of
outgoing edges from the first neighbors of node P follows a distribution that can
be represented using a generating function as

Sk(x) = [G1(x)]k.

However, due to the presence of back or cross edges, the underlying independent
assumption that all the outgoing edges results in distinct neighboring nodes does
not hold. We define the cross/back edge probability at level i of a node P with degree
k (denoted as κk(i) and bk(i) respectively) as the probability that a randomly picked
outgoing edge from any of its ith hop neighbor is a cross/back edge. However for
level 1, we denote the cross and back edge probabilities for a source node with degree
k (κk(1) and bk(1), respectively) as κk and bk, respectively. Then the probability
that any randomly chosen outgoing edge from the first neighbors of P is a regular
edge (i.e. neither a back nor a cross edge) is given by,

wk = 1 − bk − κk. (9)

bConfiguration Model: The degree distribution of the peers are used to generate the degree of
each node, i.e. if the total number of nodes in the system is N , then the number of k-degree
peers formed is Npk; these peers were selected randomly and assigned k free stubs. This process
is repeated for all possible values of k. The network is then formed by selecting two disconnected
nodes randomly having at least one free stub each and connecting these stubs to form an edge.
This process is repeated unless no free stub remains.
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For a node P with degree k, and having t outgoing edges from its set of first
neighbors, let γ denote the number of regular edges from the first neighbors of
P , the probability of which is given as

(
t
γ

)
wγ

k (1 − wk)t−γxγ ; thus the generating
function for the distribution of the number of second neighbors of a node, P , can
be represented as,

Qk,t(x) =
∑
γ≤t

(
t

γ

)
wγ

k (1 − wk)t−γxγ . (10)

According to Eq. (4), Sk(x) denotes the generating function for the distribution of
the remaining outgoing edges from the first neighbors of a node with degree k. Let
Sk(x) be represented as,

Sk(x) = sk,0 + sk,1x + sk,2x
2 + · · · + sk,tx

t + · · · . (11)

The coefficient of xt in Eq. (11) represents the probability of t remaining outgoing
edges from the first neighbors of a node with degree k. An outgoing edge leads to a
unique second neighbor if the edge is a regular edge. Thus the distribution for the
unique second neighbors of a node with k first neighbors is given by,

Ak(x) =
∑

t

sk,tQk,t(x). (12)

The distribution of second neighbors for any random node in a network is,

Ŝ(x) =
∑
k′

pk′Ak′(x). (13)

The distribution for total coverage of the network will be given by Ĉ(x) =∑
k pkxkAk(x). Thus the average TTL(2) network coverage of a random source

node in the presence of back/cross edges is given as,

〈c〉 = Ĉ′(1). (14)

We discuss next the simulation results that we have obtained in order to validate
the above derived model.

Simulations. We have simulated and compared the second neighbor distribution of
nodes derived from our model for three types of networks (a) Erdős–Rényi network,
(b) uncorrelated power-law network and (c) simulated-Gnutella network. For all
cases, the back and cross edge probabilities (bk and κk, respectively) used in the
model were derived using separate methodology that we discuss later.

The simulation result for the Poisson graphs with 30K nodes, having an average
degree of 51 is shown in Fig. 1(b). As can be seen in figure, the second neighbor
distribution calculated using our model matches almost exactly with the simulation
results. The RMSE value of our model results, with respect to the simulation results
is 0.0005 (NRMSE = 0.05), whereas for the case of Newman model, the RMSE is
around 0.0046 (NRMSE = 0.46), thus indicating that our model produces a much
better fit as compared to the Newman model.
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Fig. 2. Second neighbor distribution of a node with k = 4 first neighbors for power law network
with N = 30K nodes, α = 2.78, back probability bk = 0.0024 and cross probability κk = 0.0013,
and a Random-Gnutella network with N ≈ 27K ultra nodes, bk = 0.0043 and κk = 0.0002. The
points show the simulation results, the heavy broken lines indicate the results of our refined model.
(Figures replotted.)

Simulation results in Fig. 2(a) show the second neighbor distribution for nodes
with k = 4 first neighbors in a network that follows power-law distribution with
N = 30K and for α = 2.78. The values of bk and κk used were 0.0024 and 0.0013,
respectively. The RMSE of the model values with the simulation results is 0.0052
and the corresponding NRMSE value is around 0.14. Thus the simulation result
matches well with our derived model.

For the case Simulated-Gnutella network, we simulated the network with N =
26870 ultra-peer nodes. Figure 2(b) shows the second neighbor distribution of the
nodes that have k = 10 first neighbors with a back edge probability, bk = 0.0043
and cross edge probability κk = 0.0002. Here also the simulation result matches
reasonably well with the model values, the RMSE being 0.0026 and the NRMSE is
around 0.17.

5. Back Edge and Cross Edge Probabilities for Various
Network Distributions

In this section, we initially propose an analytical model for deriving back/cross
edge probabilities with respect to the degree of the nodes in uncorrelated random
networks, with given arbitrary degree distribution. This kind of network can be
formed by using the simple configuration model (see footnote b) where the degrees
of nodes in the network are randomly chosen integers based on the specified distri-
bution. Later, we derive the back/cross edge probabilities in random networks with
given average clustering coefficient, ck, of the peers of degree k, along with their
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degree distribution. Such a topology can be generated randomly using the Serrano
model described in Ref. 22.

5.1. Back and cross edge probabilities in uncorrelated random

networks with arbitrary degree distribution

We next derive the back and cross edge probabilities for uncorrelated random
networks with given arbitrary distribution. As stated earlier, such a topology is
considered to be randomly selected from the set of all topologies, with such a given
distribution and can be generated using the configuration model discussed in foot-
note b. Prior to deriving the cross and back edge probabilities, we derive certain
expressions that will be required for future use.

(1) The probability that any node in the network (say X) connects to a given node
(say P2) (see Fig. 3(b)) with degree v is given as v

N〈z〉 , where 〈z〉 represents
the average degree of the network as found from Eq. (2). This is because, the
probability that an edge from X leads to a random node of degree v is vpv

〈z〉 .
However since there are, on average, Npv nodes of degree v, the probability
that X connects to the given node, P2, of degree v is(

vpv

〈z〉
) (

1
Npv

)
=

v

N〈z〉 .

(2) The probability that a random neighbor of P is of degree v is vpv

〈z〉 ; hence, the
probability, ξ that a randomly selected edge from P1 connects to any given

X

P4

P

P1 P2 P3

Y

C C

C

B/C

X

Pα

P

P1 P2

1
2 α

u

(a) A topology with cross/back edges (b) Cross/back edge formation

Fig. 3. (a) shows a portion of a p2p topology. The solid lines indicate the regular edges that
connect two peers. The edges marked C are cross edges and the edge P2X marked B/C is a cross
edge for node X, where as it is a back edge for node P2. (b) shows the formation of cross and back
edges in networks with arbitrary degree distribution. A random node X connects to a random

neighbor of P with probability ξ =
〈z2〉

N(〈z〉)2 . Thus, a neighbor P1 of P (with degree k) connects to

any other neighbor of P with probability (k− 1)ξ. The edges of a random node X are represented
by a sequence number. Back edges are formed when a particular sequence of edges connects to
more than one neighbors of P .
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neighbor of P (see Fig. 3(b)) is

ξ =
∑

v

(
v

N〈z〉 ×
vpv

〈z〉
)

=
〈z2〉

N(〈z〉)2 , (15)

where 〈z2〉 =
∑

v v2pv, represents the second moment of the node degree in the
network.

We now initially derive the cross edge probability of a random node in the network,
then go on to derive the back edge probability.

5.1.1. Cross edge distribution in uncorrelated random networks
with arbitrary degree distribution

A random edge from a random neighbor of node P (node P is of degree k) is a
cross edge, if the edge connects to any one of the other k − 1 neighbors of P , the
probability of which is (k − 1)ξ. Thus the cross edge probability of a node with
degree k, in any random network, is given as,

κk = (k − 1)ξ =
(k − 1)〈z2〉

N(〈z〉)2 . (16)

5.1.2. Back edge probability in uncorrelated random networks
with arbitrary degree distribution

A random edge from P1 (see Fig. 3(b)) is a back edge of node P with probability
α−1

α , if the edge connects to a node X (level of X is greater than the level of P1),
such that X is connected to exactly α−1 other neighbors of P . We derive the back
edge probability by the sequence of following steps.

(1) We initially derive the probability that for a second neighbor, X , (of degree u)
of node P (of degree k), a given sequence of α − 1 edges of X connects to any
α − 1 neighbors of P (see Fig. 3(b)). The probability P(α) of this is given as

P(α) = (k − 1)ξ(k − 2)ξ · · · (k − α + 1)ξ

= (k − 1)(k − 2) · · · (k − α + 1)ξα−1.

(2) For all possible sequence of edges of X , given that one edge is connected to a
neighbor of P , we use the expression for P(α) to next derive the probability,
that out of the rest u− 1 edges, exactly α− 1 edges connect to other neighbors
of P . If B(α) represents this probability, then

B(α) =
(

k − 1
α − 1

)(
u − 1
α − 1

)
ξα−1(1 − kξ)u−α.

(3) Since α can vary from 1 to min(k, u), we next sum over all possible values of
α; thus the probability that an edge from X to any neighbor of P is a back
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edge is

Bk(u) =
min(k,u)∑

α=1

[
α − 1

α
B(α)

]
.

(4) The probability that the node X , reached through a neighbor of P is of degree
u is upu

〈z〉 ; thus summing over all possible values of u, we get the probability that
any random edge from a first neighbor of a k-degree node, P , is a back edge is,

bk = (1 − κk)
∑

u

[
upu

〈z〉 Bk(u)
]
. (17)

We next consider a special case of Erdős–Rényi Networks and derive their cross
and back edge probabilities.

5.1.3. Cross/back edge probability in Erdős–Rényi networks

Equation 16 can be used to derive the cross edge probability in Erdős–Rényi net-
works; a special property of Erdős–Rényi network is that 〈z2〉 = (〈z〉)2 (Ref. 18).
Hence the cross edge probability of a random node of degree k in an Erdős–Rényi
network is given by

κk =
k − 1
N − 2

≈ k − 1
N

. (18)

Similarly, Eq. (17) can be used to derive the back edge probability in Erdős–Rényi
network; in this case, since 〈z2〉 = (〈z〉)2, we replace ξ in Eq. (17) with 1

N . Further,
in these networks the probability that a random neighbor of node P1 (here X as in
Fig. 3(b)) is of degree u is simply pu−1 [17]; the back edge probability in Erdős–
Rényi networks can be derived as

bk =
k∑

α=1

(
k − 1
α − 1

)
p̂α−1q̂k−α ·

(
1 − 1

α

)
= 1 − 1

kp̂

(
1 − q̂k

)
, (19)

where p̂ is the probability of connection of any two random nodes and q̂ = 1 − p̂.

5.1.4. Simulations

We performed simulations to verify the correctness of our models using a ran-
dom Gnutella network (shown in Fig. 4) and Erdős–Rényi networks (shown in
Fig. 5(a)). The figure shows that theoretical output and simulation results are
in good agreement. For the case of Erdős–Rényi networks, the RMSE values for
cross and back edge probabilities are 0.0001 and 0.0004, respectively and the cor-
responding NRMSE values are 0.05 for both the cases. For the random Gnutella
networks the RMSE and NRMSE values for the back edge probability are 0.00089
and 0.05, respectively, whereas for the cross edge probability the respective val-
ues are 0.000068 and 0.049. The results of both back and cross edges for random
Gnutella network deviate a little at the higher degrees. Since the Gnutella network
follows an heterogeneous degree distribution, the higher degrees cannot be made
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Fig. 4. (a) The figure in the inset shows the back edge probability with respect to the degree of
the nodes; the outside figure shows the cross edge probability for a network size of N = 30K nodes.
The RMSE and NRMSE values for the back edge probability are 0.00089 and 0.05, respectively,
whereas for the cross edge probability the respective values are 0.000068 and 0.049. (b) Shows the
variation of cross edge probability for nodes with degree = 25 with varying network size.
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Fig. 5. (a) The figure in the inset shows the cross edge probability with respect to the degree
of the nodes and the outside figure shows the back edge probability calculated using Eqs. (18)
and (19), respectively. The RMSE are 0.0001 and 0.0004 for cross and back edge probabilities
respectively and the corresponding NRMSE values are 0.05 for both the cases. (b) Compares the
average second neighbor for the nodes calculated using our model (Eq. (14)) with that of the basic
model (Eq. (6)). The network size is varied from 10 k to 50 k; however the average degree of the
nodes are kept fixed and equal to 51.
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completely uncorrelated through the configuration model, hence we observe the
deviation in the result.

The model (Eqs. (16) and (17)) indicates that cross and back edge probabil-
ities depend not only on the number of nodes in the network but also on the
second moment of the nodes in the network. Hence, for a fixed second moment, the
cross edge probabilities decrease with network size following a hyperbolic relation
(Eq. (16)), as shown in Fig. 4(b). Consequently, as shown in Fig. 5(b), the average
number of second neighbors of a node in the network, calculated using our model, is
less than that calculated using the basic model, the difference is found to be around
5% for even a network as large as 40,000 nodes. That means TTL(2) covers 5% less
node than expected and produces similar amount of redundancy instead.

5.2. Cross and back edge probabilities in clustered

random networks

Several researchers have argued that data sharing networks, including p2p networks
like Gnutella and Kazaa, generally follow small world properties — showing random
connectivity among the peers along with high clustering [14, 23, 24]. Hence, in this
section we extend our model to derive cross and back edge probabilities in random
networks with clustering [19]. We assume that the degree distribution and the first
order clustering coefficient of the nodes of a particular degree is known, i.e. nodes
with same degree are assumed to have the same clustering coefficient. We follow
this assumption, as from the real Gnutella snapshots, we found that the clustering
coefficients of the same degree nodes are almost same with very negligible variance.
Existing p2p networks might reflect some higher order clustering [13] effects as well,
i.e a tendency to form cycles of length greater than 3. However in our model we
ignore such effects and assume that cycles greater than length 3 are formed due
to random connectivity of the nodes. Thus apart from the degree distribution pk

of the network, let c̄(k) represent the average clustering coefficient of the nodes
with degree k in the network. Such a network topology is assumed to be randomly
selected from the set of all topologies with such a given degree distribution and
clustering coefficients and can be generated using the Serrano model [22]. We next
derive the cross and back edge probabilities respectively of these networks.

For a node P with degree k, the maximum number of triplets that can be formed
is

(
k
2

)
. If t(k) represents the average number of triangles formed by a node of degree

k then according to the definition of clustering coefficient,

c̄(k) =
t(k)(

k
2

) ⇒ t(k) =
(

k

2

)
c̄(k).

For a node P , (see Fig. 3(a)) each triangle corresponds to a connectivity between
two neighboring nodes of P (say P1 and P2). Thus the edge P1P2 can be traversed
from P , either through P1 or P2, i.e. each such connecting edges can be traversed
in 2 possible ways from the source node. If the average number of outgoing paths
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from the neighbors of a k degree node (obtained by differentiating Eq. (4) at x = 1)
is represented by 〈sk〉, then the cross edge probability κ

(c)
k of a node with degree k

is given as

κ
(c)
k =

2c̄(k)
〈sk〉

(
k

2

)
=

k(k − 1)c̄(k)
〈sk〉 . (20)

As we have assumed that the network connectivity is random with no higher
order clustering, thus for a node P , apart from its cross edges, the other outgoing
edges from the first neighbors of P connect to random nodes. Hence the back edge
probability will be same as in the case of purely random networks and is given as
in Eq. (17), with κk being replaced by κ

(c)
k . Thus the expression for the back edge

probability for clustered random networks with any arbitrary degree distribution is
given as

b
(c)
k = (1 − κ

(c)
k )

∑
u

[
upu

〈z〉 Bk(u)
]
. (21)

5.2.1. Simulations

We attempted to validate the models of back and cross edge probabilities in clus-
tered random networks by considering the degree distribution and the average
clustering coefficients of each degree class in real Gnutella topology (obtained from
the real traces provided in [2]) and generating random networks with the same clus-
tering properties using an algorithm proposed by Serrano et al. [22]. We refer this
topology as the Serrano–Gnutella topology. The number of nodes considered for
the simulation was around 23K and the average clustering coefficient of the whole
network was 0.03. The results shown in Fig. 6(a) indicates that the model provides
a good estimate of the back and cross edge probabilities in random clustered net-
works, where RMSE of both the model values of back and cross edge probabilities
with respect to the simulation result is 0.001 and the NRMSE values are 0.05 and
0.14, respectively. We show the effect of increasing clustering coefficient on the cross
edge probability of the peers of various degrees. As can be seen in Fig. 6(b), the
cross edge probability of the high degree peers increases drastically with increas-
ing clustering coefficient, as compared to the low degree peers. This indicates that
increasing the clustering coefficient has a huge impact on the coverage of the high
degree peers. Further, we also simulated the average TTL(2) coverage of the peers
in a network for a given node degree; as shown in Fig. 6(c), our model provides a
good estimate of the average TTL(2) coverage of a random peer of a given degree.
In this case, the RMSE value of the model values with respect to the simulation
results is around 17.09 and the NRMSE value is 0.041 that indicates that the model
values matches well with the simulation results.

In the next section, we derive the network coverage of the peers for any generic
TTL value and show how the back/cross edge probabilities of a node increase
drastically with increasing distance from the source node.
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Fig. 6. (a) shows the back edge probabilities of the nodes, for various peer degrees, in the random
clustered network (Serrano–Gnutella) with 23 K nodes and an average clustering coefficient of
0.03, for both simulations and the model results. The figure in the inset compares the cross edge
probabilities. RMSE for the model values of both back and cross edge probabilities with respect
to the simulation results is 0.001, where as the NRMSE values are 0.05 and 0.14, respectively.
(b) shows the variation of cross edge probability with average clustering coefficient for various
node degrees. (c) shows the TTL(2) coverage of the peers (i.e. the average number of second
neighbors) with respect to the degree of the peers in the same network (RMSE = 17.09).

6. Generalizing the Back/Cross Edge Probabilities
for Higher TTL Values

In this section we derive the expressions for the level l back and cross edge proba-
bilities of the peers. Let κk(l) and bk(l) denote the cross and back edge probability
at level l of a node of degree k. The values of κk(l) and bk(l) determine the average
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number of (l + 1)th hop neighbors of a node. If ak(l) denotes the average network
coverage of a source node, of degree k, up to level l from it, then ak(l) − ak(l − 1)
is the number of nodes at level l only of the node. Although it is difficult to find
a closed form expression of ak(l), however, we can derive a recursive equation of
it. The number of unique nodes reached through the edges at level l, of a degree k

source node, is 〈z〉(ak(l) − ak(l − 1))(1 − bk(l) − κk(l)), and hence

ak(l + 1) = ak(l) + 〈z〉(ak(l) − ak(l − 1))(1 − bk(l) − κk(l)), (22)

and the average number of level l neighbors of any random node is given as N̂(l) =∑
k(ak(l) − ak(l − 1))pk. We next derive expressions for bk(l) and κk(l), at a level

l from the source node for the case of networks with random peer connectivities.

6.1. κk(l) in networks with random peer connections

Analogous to the derivation of the level 1 cross edge probability in Eq. (16), the
cross edge probability at level l, of a k-degree node can be represented as

κk(l) =
(ak(l) − ak(l − 2))〈z2〉
(N − ak(l − 2))(〈z〉)2 (23)

where ak(l) − ak(l − 2) gives the average number of nodes at level l and l − 1, of a
k-degree source node, and N − ak(l − 2) is the possible number of nodes to which
an edge from a level l node can connect.

6.2. bk(l) in networks with random peer connections

Analogous to the derivation of back edge probability in Eq. (17), the back edge
probability at level l of a source node of degree k, is given as,

bk(l) = (1 − κk(l))
∑

u

[
upu

〈z〉 Bak(l)−ak(l−1)(u)
]

(24)

where, Bak(l)−ak(l−1)(u) is calculated using Eq. (17) by replacing k with ak(l) −
ak(l − 1). The base conditions for Eq. (22) are the average network coverage of a
random peer up to level 0, 1 and 2, respectively and are as follows:

ak(0) = 1, ak(1) = k + 1, a2 = Ŝ′
k(1) + 〈z〉 + 1, (25)

where Ŝ′
k(1) is the average number of second neighbors of a source node, with degree

k, in the presence of back/cross edges derived from Eq. (13). The back and cross
edge probabilities at level 0 are same and equal to 0; the values at level 1 can be
computed from Eqs. (17) and (16), respectively. Although it is difficult to find an
exact solution of Eq. (22), however, we can iteratively calculate the values of ak(l).
We next present the results of the validation of the model using simulations.



August 4, 2011 11:57 WSPC/S0219-5259 169-ACS S0219525911003141

630 J. Chandra and N. Ganguly

6.3. Simulation results and discussion

Figure 7(a) shows the average number of nodes at each level for a random source
node in an Erdős–Rényi network of 15K nodes with an average degree of 9.75.
The average values of the neighbors at each level, calculated using our model, are
validated using the simulation results. For comparisons, we also present the aver-
age number of neighbors at various levels according to the basic Newman model.
Figure 7(a) shows that the average number of neighbors at various levels predicted
using our model matches well with the simulation results as compared to the New-
man model. The RMSE values of our model and the Newman model as compared to
the simulation results are 96.85 and 1708.82, respectively while the corresponding
NRMSE values are 0.012 and 0.218. The difference in coverage between basic and
our model seems to increase exponentially as level increases. From 5–10% difference
observed in level 2, the difference becomes as high as 50% at level 4. (The drop
is seen at level 5 as there is no remaining nodes to be explored in this particular
example, i.e. the diameter of the network is 5). This difference can be understood
by looking at the average back and cross edge probabilities at various levels (which
is in perfect agreement). Figure 7(b) shows them as derived from the model and
simulations. The RMSE as well as the NRMSE values of the cross edge probabilities
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Fig. 7. (b) The figure in the inset shows the back edge probability with respect to the degree of
the nodes, the outside figure shows the cross edge probability. The RMSE as well as the NRMSE
value of the cross edge probabilities of our model with respect to the simulation results is 0.015,

whereas the RMSE and the NRMSE values of the back edge probabilities are 0.008 and 0.021
respectively. (a) shows the average number of neighbors of a randomly selected node. The size of
the network is 15k and the connection probability p̂ = 0.00065. The RMSE values of our model
and the Newman model as compared to the simulation results are 96.85 and 1708.82, respectively
while the corresponding NRMSE values are 0.012 and 0.218.
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of our model with respect to the simulation results are same and equal to 0.015,
whereas the RMSE and the NRMSE values of the back edge probabilities are 0.008
and 0.021, respectively, that indicates a very good fit of the model values with
the simulation results. It can be observed, beyond a particular threshold level (3,
in this case), the back and cross edge probabilities increase enormously at a very
high rate.

Since the short cycles induced by the back and cross edges generates duplicate
messages, it is observed that the redundancy in flooding increases enormously with
TTL value due to very high cross/back edge probabilities at higher levels. However,
for smaller TTL, the coverage may not be high and may be unsuitable for various
activities. For example, the percentage of nodes covered up to level 3 (by using a
TTL(3) message) is merely around 6.5% of the total network size while the redun-
dancy at level 4 is around 50% that is, every three message packets can only find
two unexplored nodes. Thus the model provides a tool to the designers to explore
the tradeoff between network coverage and traffic redundancy for a given network
and decide accordingly.

7. Conclusion

In this paper, we have developed suitable models that quantify the coverage of the
peers in networks performing TTL based searches. The models based on generating
function formalism provide a strong theoretical foundation needed to understand
the relation between the topology of a network and the achievable performance
through TTL-based searches. Using the derived models, we have provided an insight
of the effects of back and cross edges on the network coverage of the peers. Through
this formalism each individual peer can easily estimate global properties like back
edge, cross edge, and hence network coverage, from the degree distribution of the
network (which can be predicted in many cases or can be estimated using samples
collected from nearby nodes) and local properties like its own degree and cluster-
ing coefficient. Although the models have been derived for p2p networks, however,
flooding is a generalized phenomenon and finds wide use in social and informa-
tion networks. Thus these bounds can be suitably applied for these networks also.
However, the derived models are based on a basic assumption that there is no
correlation of the connectivity between two nodes and other parameters like node
degree, node strength etc. But in many practical networks (like social networks),
these correlations exist and also play an important role in determining the net-
work coverage. Further, in our derivations, we have also ignored the existence of
some motifs, like existence of quadrilaterals, in the network that can also play an
important role in determining the coverage of the peers in the network. Thus, an
important future direction of research would be to study these network parameters
for correlated (social) networks and develop suitable strategies to improve network
coverage besides reducing traffic redundancy.
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